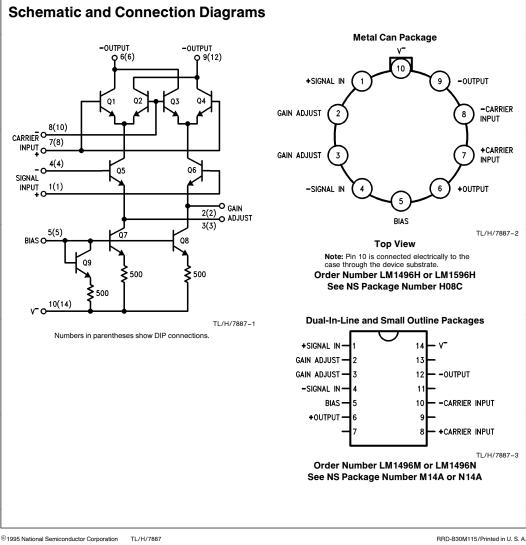


LM1596/LM1496 Balanced Modulator-Demodulator


General Description

The LM1596/LM1496 are doubled balanced modulator-demodulators which produce an output voltage proportional to the product of an input (signal) voltage and a switching (carrier) signal. Typical applications include suppressed carrier modulation, amplitude modulation, synchronous detection, FM or PM detection, broadband frequency doubling and chopping.

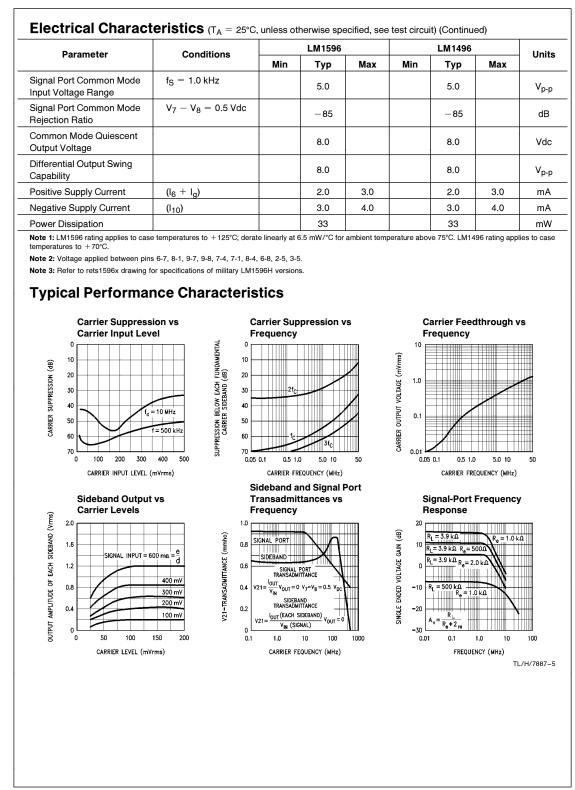
The LM1596 is specified for operation over the -55°C to $+125^\circ\text{C}$ military temperature range. The LM1496 is specified for operation over the 0°C to $+70^\circ\text{C}$ temperature range.

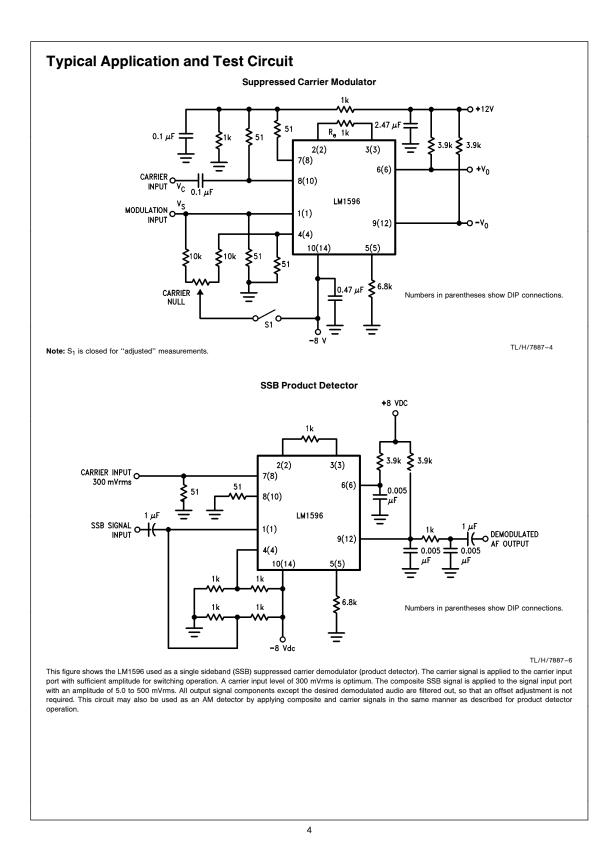
Features

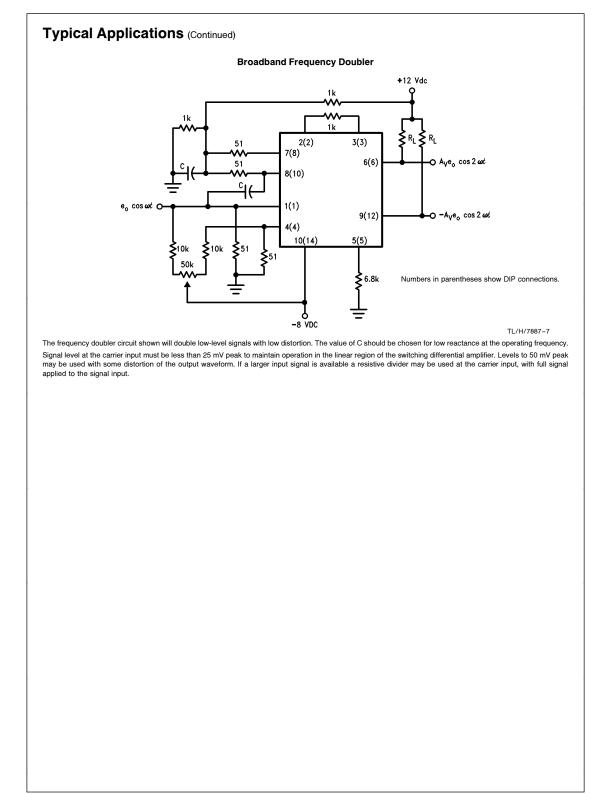
- Excellent carrier suppression
 65 dB typical at 0.5 MHz
 - 50 dB typical at 10 MHz
- Adjustable gain and signal handling
- Fully balanced inputs and outputs
- Fully balanced inputs and
 Low offset and drift
- Wide frequency response up to 100 MHz

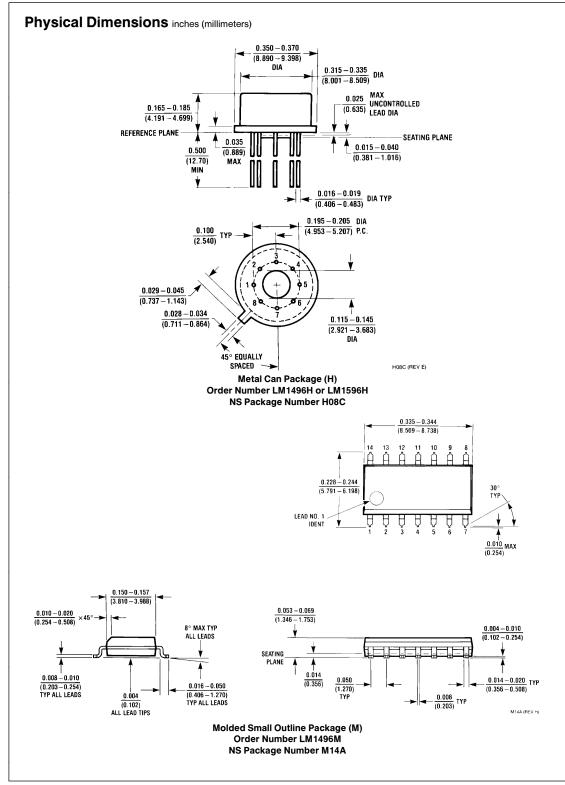
M1596/LM1496 Balanced Modulator-Demodulator

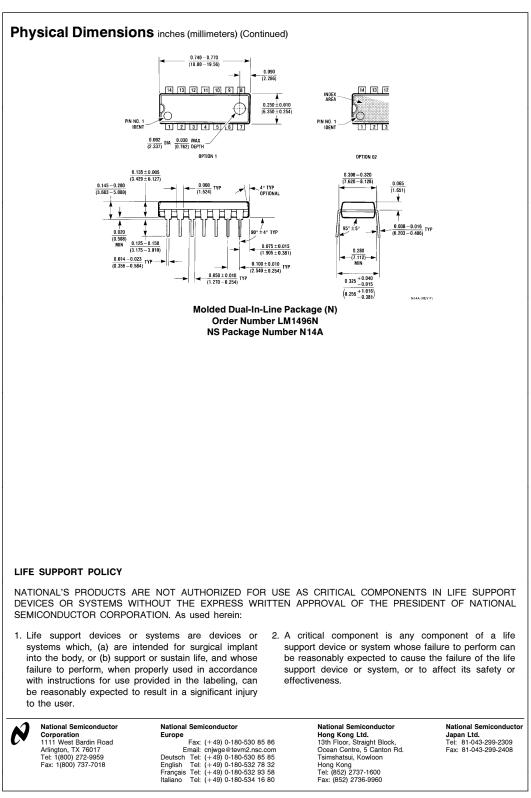
February 1995


Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.


Internal Power Dissipation (Note 1)	500 mW
Applied Voltage (Note 2)	30V
Differential Input Signal ($V_7 - V_8$)	\pm 5.0V
Differential Input Signal ($V_4 - V_1$)	\pm (5 + I ₅ R ₀)V
Input Signal ($V_2 - V_1, V_3 - V_4$)	5.0V
Bias Current (I ₅)	12 mA
Operating Temperature Range LM1596 LM1496	-55°C to +125°C 0°C to +70°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$


Soldering Information					
Dual-In-Line Package					
Soldering (10 seconds)					
 Small Outline Package 					
Vapor Phase (60 seconds)	215°C				
Infrared (15 seconds)	220°C				
See AN-450 "Surface Mounting Methods and their effects on Product Reliability" for other methods of soldering sur- face mount devices.					


Electrical Characteristics ($T_A = 25^{\circ}C$, unless otherwise specified, see test circuit)


Parameter	Conditions	I	LM159	6	LM1496			Units
Parameter		Min	Тур	Max	Min	Тур	Max	Units
Carrier Feedthrough	$V_{C} = 60 \text{ mVrms}$ sine wave $f_{C} = 1.0 \text{ kHz}$, offset adjusted		40			40		μVrms
	$V_{C} = 60 \text{ mVrms sine wave}$ $f_{C} = 10 \text{ kHz}$, offset adjusted $V_{C} = 300 \text{ mV}_{pp}$ square wave		0.04	0.2		0.04	0.2	μVrms mVrms
	$f_{\rm C} = 1.0$ kHz, offset adjusted $V_{\rm C} = 300$ mV _{pp} square wave $f_{\rm C} = 1.0$ kHz, not offset adjusted		20	100		20	150	mVrms
Carrier Suppression	$ \begin{array}{l} f_S = 10 \text{ kHz}, 300 \text{ mVrms} \\ f_C = 500 \text{ kHz}, 60 \text{ mVrms} \text{ sine wave offset adjusted} \\ f_S = 10 \text{ kHz}, 300 \text{ mVrms} \\ f_C = 10 \text{ MHz}, 60 \text{ mVrms} \text{ sine wave offset adjusted} \end{array} $	50	65 50		50	65 50		dB dB
Transadmittance Bandwidth	$\begin{array}{l} R_L = 500\\ Carrier Input Port, V_C = 60 mVrms sine wave \\ f_S = 1.0 kHz, 300 mVrms sine wave \\ Signal Input Port, V_S = 300 mVrms sine wave \\ V_7 - V_8 = 0.5Vdc \end{array}$		300 80			300 80		MHz MHz
Voltage Gain, Signal Channel	$V_{S} = 100 \text{ mVrms}, f = 1.0 \text{ kHz}$ $V_{7} - V_{8} = 0.5 \text{ Vdc}$	2.5	3.5		2.5	3.5		V/V
Input Resistance, Signal Port	f = 5.0 MHz V ₇ - V ₈ = 0.5 Vdc		200			200		kΩ
Input Capacitance, Signal Port	$ f = 5.0 \text{ MHz} \\ V_7 - V_8 = 0.5 \text{ Vdc} $		2.0			2.0		pF
Single Ended Output Resistance	f = 10 MHz		40			40		kΩ
Single Ended Output Capacitance	f = 10 MHz		5.0			5.0		pF
Input Bias Current	$(I_1 + I_4)/2$		12	25		12	30	μΑ
Input Bias Current	$(I_7 + I_8)/2$		12	25		12	30	μΑ
Input Offset Current	$(I_1 - I_4)$		0.7	5.0		0.7	5.0	μΑ
Input Offset Current	(I ₇ - I ₈)		0.7	5.0		5.0	5.0	μΑ
Average Temperature Coefficient of Input Offset Current	$(-55^{\circ}C < T_A < +125^{\circ}C)$ $(0^{\circ}C < T_A < +70^{\circ}C)$		2.0			2.0		nA/°C nA/°C
Output Offset Current	(l ₆ - l ₉)		14	50		14	60	μΑ
Average Temperature Coefficient of Output Offset Current	$\begin{array}{l} (-55^{\circ}C < T_{A} < +125^{\circ}C) \\ (0^{\circ}C < T_{A} < +70^{\circ}C) \end{array}$		90			90		nA/°C nA/°C

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications