ZigBee Demo Kit (ZDK) RZB-CC16C-ZDK # User's Manual Rev. 1.0 August 2005 www.renesas.com ### **Table of Contents** | 1.0 Introduction | 3 | |---|----| | 2.0 Contents of Product Package | 4 | | 2.1. RZB-CC16C-ZDK ZigBee Demonstration Kit Item List | 4 | | 2.1.1. CD-ROM | | | 3.0 Limited Guarantee and Support | | | 4.0 System Connectivity | | | 4.1. Host Computer Requirements | | | 4.2. RZB-CC16C-ZDK Boards | | | 4.3. RF Sniffer Board | | | 4.4. RF Sniffer Interface (RFSI) | | | 4.5. RF Sniffer Software and USB Driver | | | 4.6. In-Circuit Debugger and Programmer (ICD) | | | 4.7. Software Development Tools | | | 4.7.1. HEW (High-performance Embedded Workshop) | | | 4.7.2. NC30WA Evaluation Version C Compiler | 8 | | 4.7.3. HEW Debug Interface | | | 4.7.4. FoUSB (Flash-over-USB™) Programmer | 9 | | 5.0 Hardware | | | 5.1. ZDK Board (RZB-CC16C-ZDK) | 10 | | 5.2. RZB-CC16C-ZDK Board Block Diagram | 11 | | 5.3. M16C/28 Group of MCUs | | | 5.4. RZB-CC16C-ZDK Board Jumper Configuration | | | 5.4.1. JP1: MCU (U4) Power | | | 5.4.2. JP2: Power LED (D4) and RS232 (U7) Transceiver Power | 12 | | 5.4.3. Default Jumper Settings | 12 | | 5.5. LCD (Liquid Crystal Display) | | | 5.6. ZigBee RF | 12 | | 6.0 System Operation & Limitations | | | 6.1. Kernel (ROM Monitor) Introduction | | | 6.2. Pin and Peripheral Limitations | | | 6.3. Memory Map | | | 6.4. Register Operation Limitations | 14 | | 6.5. Limitations on Interrupts - Vectors that Reside in the Hardware Vector Table | 14 | | 6.6. Stop or Wait Mode Limitations | | | 6.7. User Program's Real-Time Capability | 15 | | 6.8. Performing Debug Using Symbols | | | 7.0 RZB-CC16C-ZDK Board Specifications | 16 | | 7.1. Hardware Specifications | 16 | | 7.2. Power Supply Requirements | 16 | | 7.3. Operating Environment | 16 | | Appendix A. Troubleshooting Guide | 17 | | A.1 Manual Installation | 17 | | A.2 USB Driver Problems | | | A.3 Debugging Problems | 18 | | A.3.1 Erratic Debug Behavior | | | A.3.2 Cannot Connect to Target | | | A.3.3 Issues that May Arise During Debug Operations | | | Appendix B. Reference Manuals | | | Appendix C. Expansion Headers | | | Appendix D. Board Schematic & BOM | 24 | | Appendix E. RZB-CC16C-ZDK Printed Circuit Board | | | Appendix F. Other Resources | 29 | ### 1.0 Introduction The RZB-CC16C-ZDK kit is a low-cost ZigBee demonstration kit for evaluating wireless ZigBee connectivity solutions based on the Renesas M16C/28 group of microcontrollers (MCU). A small ZigBee Personal Area Network (PAN) can be set up, monitored and analyzed with the included hardware and software. The kit contains one RF Sniffer board that connects to a PC's USB port via an RTA-FoUSB-MON unit, which comes pre-programmed to function as the RF Sniffer Interface (RFSI). RF Sniffer software installed on the PC allows you to record and analyze ZigBee data packets. The software can also display the network topology of a ZigBee network. For more information on the RF Sniffer software and hardware, see the RF Sniffer User's Manual, accessible via Start > (All) Programs > Renesas > RF SnifferV.x.xx A second RTA-FoUSB-MON unit included in the kit comes pre-programmed to function as a Flash Programmer and In-Circuit-Debugger (ICD). Three ZigBee Demonstration Kit (ZDK) boards come pre-programmed with demo software that allows you to quickly set up a small ZigBee PAN comprised of a ZigBee network Coordinator and two ZigBee network Routers. The kit comes with a complete software development tool chain for Renesas MCUs, including High-performance Embedded Workshop (HEW), which includes Integrated Development Environment (IDE), Graphical User Interface (GUI) and Software Debugger; NC30WA C-compiler, assembler and linker; and Flash-over-USB™ (FoUSB) Programming software. A real-time, source-level debug environment is implemented using the HEW debugging interface with the RTA-FoUSB-MON Flash Programmer/ICD. The Flash-over-USBTM (FoUSB) Programmer software, in combination with the ICD, allows in-system programming of the M16C/28 Flash MCUs on the ZDK and RF Sniffer target boards. The ICD and firmware provide a convenient Universal Serial Bus (USB) interface between the ZDK boards and the host PC. This interface reduces resource requirements on the M16C/28 MCU and allows faster code downloads. It also can be used with many other Renesas Flash MCUs, starter kits, and your own Renesas MCU-based target boards. ### 2.0 Contents of Product Package This section describes the contents of the RZB-CC16C-ZDK product package. When unpacking your RZB-CC16C-ZDK, please check to see that all items listed below are included. #### 2.1. RZB-CC16C-ZDK ZigBee Demonstration Kit Item List Table 2-1 lists the items included in the RZB-CC16C-ZDK. Table 2-1 RZB-CC16C-ZDK Item List | Item Name | Quantity | Remarks | | | |----------------------------------|----------|---|--|--| | RZB-CC16C-ZDK Board | 3 | ZigBee Demo Kit (ZDK) Boards, pre-programmed with demo software | | | | RF Sniffer Board | 1 | RF Sniffer Board, pre-programmed with Sniffer firmware | | | | RTA-FoUSB-MON (ICD) | 1 | In-Circuit Debugger and Flash Programmer Interface | | | | RTA-FoUSB-MON (RFSI) | 1 | RF Sniffer Interface | | | | 6" 10-Pin Target Cable | 2 | Connects ICD and RFSI units to ZDK and RF Sniffer boards | | | | 6' Mini USB Cable | 2 | Connects ICD and RFSI units to Host PC | | | | Battery Pack with 3 AA batteries | 3 | Powers the three ZDK boards | | | | CD-ROM | | Auto-install program RF Sniffer software HEW (IDE & debugger) NC30WA (C-compiler, assembler, and linker) FoUSB Programmer USB drivers Manuals Tutorials Sample programs | | | #### 2.1.1. CD-ROM The CD-ROM contains the electronic manuals and software necessary for developing programs. Your computer must have a web browser — like Mozilla Firefox, Netscape[®] Browser or Microsoft[®] Internet Explorer — to view the help files, and Adobe[®] Acrobat[®] Reader[®] to view the manuals. Insert the enclosed CD into your computer and the installer will auto-start. The installer program will create $C:\Renesas$ and $C:\Renesas$ folders on your machine. NC30WA, FoUSB Programmer, Documentation, sample code, and other ZDK-related files are in the $C:\Renesas$ folder. HEW is installed in the $C:\Renesas$ folder by default. If the installer program does not start, browse to the CD's root folder and double-click on ${\tt ZDK}$ Installer.exe to start the installation. ### 3.0 Limited Guarantee and Support Renesas Technology America, Inc., warrants the RZB-CC16C-ZDK to be free from component or assembly defects for a period of 180 days from the date of purchase. Settlement is limited to repair or replacement of the product only. Renesas Technology America, Inc., does not assume any liability arising out of the application or use of any product, circuit or procedure described herein. No other liability or warranty applies, expressed or implied. Software warranty is limited to replacement of the CD only. While every attempt has been made to ensure accurate documentation, Renesas Technology America, Inc., cannot be held responsible for errors or omissions, and reserves the right to make changes without prior notice. "Flash-Over-USB" is a trademark of Renesas Technology America, Inc. All other trademarks are the properties of their respective owners. # 4.0 System Connectivity The following lists the hardware and software products required for using the RZB-CC16C-ZDK ZigBee Demonstration Kit. - Host Computer (supplied by user) - Three RZB-CC16C-ZDK Boards - Three battery packs with AA batteries - RF Sniffer Board - RF Sniffer Interface (RFSI) - Mini USB cable for RFSI - 2×5 header target cable for RFSI - RF Sniffer software and USB driver Figure 4-1: ZigBee Demo Kit Setup Optional (only required if you want to update firmware and/or develop code). - In-Circuit Debugger and Programmer (ICD) - Mini USB cable for ICD - 2×5 header target cable for ICD - Software Tools (HEW IDE, NC30 Compiler/Linker, FoUSB Programmer) Figure 4-2 shows an ICD unit connected to a PC via USB and to a ZDK board via 2×5-pin ribbon cable. Figure 4-2 ZDK Development System Connectivity #### 4.1. Host Computer Requirements The minimum requirement to be able to use the software that comes with the RZB-CC16C-ZDK is a PC with a USB port and Microsoft Windows 98, ME, 2000, or XP. #### 4.2. RZB-CC16C-ZDK Boards The three RZB-CC16C-ZDK boards are pre-programmed with ZigBee demo firmware to provide a demo and evaluation environment for wireless ZigBee connectivity based on Renesas MCUs. See section "5.0 Hardware" for more details. #### 4.3. RF Sniffer Board The RF Sniffer board is based on the same hardware as the ZDK demo boards, but is pre-programmed with a different firmware to function as a ZigBee RF Sniffer. See section "5.0 Hardware" for more details on the board hardware, and the RF Sniffer User's Manual for more information on RF Sniffer usage and features. #### 4.4. RF Sniffer Interface (RFSI) The RF Sniffer interface is an RTA-FoUSB-MON unit that comes pre-programmed with firmware to allow the RF Sniffer software running on the Host PC to take control of the RF Sniffer board. The RFSI connects to the PC's USB port via the included mini USB cable, and to the RF Sniffer board via the included 2×5-header ribbon cable. The USB port also provides power to the RF Sniffer board and RFSI, thereby eliminating the need for an external power supply. #### 4.5. RF Sniffer Software and USB Driver The installer program offers you the option to install the ZDK demo software tools and the RF Sniffer software. For details on installation, see the QuickStart Guide or instructions in the Appendix A of this manual. #### 4.6. In-Circuit Debugger and Programmer (ICD) The ICD provides a plug-and-play debugging and programming interface to the ZDK board via the host computer's Universal Serial Bus (USB). The USB port also provides power to the ZDK boards and ICD, thereby eliminating the need for an external power supply. Use of the ICD is required only if you need to update the firmware of the kit's boards, or if you intend to develop and debug your own software. If not powered by the ICD, the kit's ZDK boards can be powered by the included battery packs. #### 4.7. Software Development Tools The installer program offers you the option to install all the development tools. For details on installation, see the QuickStart Guide or instructions in Appendix A of this manual. A brief description of all the included tools follows. Please refer to the individual tool manuals for detailed information. #### 4.7.1. HEW (High-performance Embedded Workshop) HEW provides a Graphical User Interface (GUI) that integrates the software development tools and includes the C-compiler, assembler, linker, debugger and editor. #### 4.7.2. NC30WA Evaluation Version C Compiler The evaluation version of the M3T-NC30WA C-compiler is provided with the same functionality as the commercial version except that link size will be restricted to 64 Kbytes after 60 days from when you begin using the compiler. Contact your local sales representative if you wish to purchase a full license. #### 4.7.3. HEW Debug Interface HEW communicates with a kernel (i.e. a ROM monitor program) on the target MCU through the ICD. This debug interface provides a highly efficient evaluation environment. Features include: - Source-level debugging for assembly and C language - Single-step command (unlimited breakpoints) - Run command with 6 breakpoints* for the M16C/28 - · RAM monitor function - C variable "watch" window *Note: The number of breakpoints will vary depending on the M16C flash MCU used. #### 4.7.4. FoUSB (Flash-over-USB™) Programmer The Flash Over USB Programmer application provides In-System Programming capability for the starter kit or any target board using an M16C family flash MCU (e.g. R8C, M16C, M32C). Please see the RTA-FoUSB-MON User's Manual for more details. ### 5.0 Hardware #### 5.1. ZDK Board (RZB-CC16C-ZDK) Note: The RZB-CC16C-ZDK board is referred to as RZB-CC28-BRD on the board's silkscreen and schematic drawing. Figure 5-1 shows the RZB-CC16C-ZDK Board with major components identified. Figure 5-1: RZB-CC16C-ZDK Board #### 5.2. RZB-CC16C-ZDK Board Block Diagram The RZB-CC16C-ZDK board incorporates an M30280FAHP (80-pin QFP) from the M16C/28 group of microcontrollers designated as U4. Figure 5-2 shows the RZB-CC16C-ZDK block diagram. Figure 5-2: RZB-CC16C-ZDK Block Diagram #### 5.3. M16C/28 Group of MCUs The M3028x group of 16-bit single-chip, flash microcontrollers (MCU) is part of the M16C/60 series CPU core. The hardware and software manuals for the M16C/28 group of microcontrollers can be found under C:\Renesas\RZB_CC16C_ZDK\Docs folder on your PC or from the Start menu (Start > Programs > Renesas > RZB CC16C ZDK > All Manuals and Documents) after ZDK software installation. #### 5.4. RZB-CC16C-ZDK Board Jumper Configuration #### 5.4.1. JP1: MCU (U4) Power JP1 is used to connect the Vcc pins of the M16C/28 MCU to the 3.3V supply of the board. It can be used to measure current/power consumption of the MCU during various modes of operation. For normal operations, JP1 must be shorted. JP1 is shorted by default. #### 5.4.2. JP2: Power LED (D4) and RS232 (U7) Transceiver Power JP2 is used to connect the Vcc pin of the RS232 transceiver chip (U7) to the 3.3V supply of the board. It also connects the red Power LED (D4) to the board's supply. It can be used to reduce the board's power consumption by disconnecting the RS232 transceiver and Power LED. For normal operations, JP2 must be shorted. JP2 is shorted by default. #### 5.4.3. Default Jumper Settings Table 5-1: Default Jumper Settings | | · | |--------------------------------|--------------------| | Jumper | Default
Setting | | JP1: MCU Power | Shorted | | JP2: Power LED and RS232 Power | Shorted | #### 5.5. LCD (Liquid Crystal Display) The LCD is a 2-line by 8-character display with a KS0066 controller IC. #### 5.6. ZigBee RF The ZigBee RF circuit utilizes a Chipcon CC2420, 2.4GHz, IEEE 802.15.4 compliant transceiver IC. ### 6.0 System Operation & Limitations The RZB-CC16C-ZDK provides sophisticated debugging features at a low cost, but it does have some limitations when used with the debugger and ICD. Section 6.1 introduces the kernel (ROM monitor) program and its purpose. The limitations when this kernel is running with the user program are listed in Table 6-1. Table 6-1: System Limitations when Debugging | Item | Please Refer To | |----------------------|---| | User Limitations | 6.2 Pin and Peripheral Limitations | | | 6.3 Memory Map | | | 6.4 Register Operation Limitations | | | 6.5 Limitations on Interrupts - Vectors that Reside in the Hardware | | | Vector Table | | Debugger Limitations | 6.6 Stop or Wait Mode Limitations | | | 6.7 User Program's Real-Time Capability | #### 6.1. Kernel (ROM Monitor) Introduction During debug, a small program called a kernel is uploaded to the M16C/28. The kernel communicates with HEW through the ICD regarding MCU status during user code debugging operations. There are no special steps required in the user program to make use of the ICD. The operation of the kernel is transparent to the user, but there are some limitations. These are discussed from section 6.2 onward. After starting a HEW debug session, the ICD uploads the kernel to the M16C/28 if it does not exist (e.g. a blank device or a device that was programmed with the FoUSB Programmer). After downloading the kernel, the M16C/28 is ready to download user code. Connecting the ICD without starting HEW will not affect the signal lines connected between the ICD and the M16C/28; the ICD keeps the signal lines in high-impedance state. The ICD only drives the pins after HEW or the FoUSB Programmer attempts to connect. After completing program debug and verification with HEW, you can create an image of your code in Intel (.hex) or Motorola (.mot) file formats. This image can be programmed into the M16C/28 using the FoUSB Programmer. This procedure erases the kernel and leaves only the user program. #### 6.2. Pin and Peripheral Limitations SIO/UART1 pins are used for communication between the M16C/28 kernel on the RZB-CC16C-ZDK board and HEW through the ICD. Do not connect these pins to any other circuit, as UART1 cannot be used in the user program while using the Debugger. For details, please see the RTA-FoUSB-MON (ICD) User's Manual on Target M16C ROM Monitor Resources or related ICD application notes. #### 6.3. Memory Map The amount and locations of memory used by the kernel on the RZB-CC16C-ZDK board's M16C/28 MCU are shown in Figure 6-1. Figure 6-1: M30280FAHP Memory Map with the Kernel Program Note: The kernel occupies memory associated with special-page vector numbers 18-19 and 192-255. The user reset vector is re-mapped to address FFFD8h by the kernel. #### 6.4. Register Operation Limitations Table 6-2 lists the limitations on register operation. The registers are inhibited from any modification. If register contents are modified in any way, kernel operation cannot be guaranteed. Table 6-2: Limitations on Register Operation | Register Name | Restriction | |---|--| | User and Interrupt Stack Pointers | RAM memory range 02380H – 023FFH is used | | | by the kernel. Do not set stacks in this area. | | UART1 Transmit/Receive Mode Register | Do not change. | | UART1 Transmit/Receive Control Register 0 | | | UART1 Transmit/Receive Control Register 1 | | | UART1 Interrupt Control Register 0 | Do not change. | | UART Transmit/Receive Control Register 2 | Do not change bits 0 and 2. | | UART1 Transmit Buffer Register | Do not write to this register. | | UART1 Receive Buffer Register | Do not read this register. | | Port 6 and Port 6 DDR | To prevent changes on P6_4 data and direction, | | | use read-modify-write only instructions (BSET, | | | BCLR, AND, OR, etc.). | #### 6.5. Limitations on Interrupts - Vectors that Reside in the Hardware Vector Table Table 6-3 lists the limitations on hardware interrupt (i.e. fixed) vector addresses. | Table 6-3: | Interrupt | Vector | Addresses | |-------------------|-----------|--------|------------------| |-------------------|-----------|--------|------------------| | Interrupt Cause | M16C/28 Vector Address | Kit Specification | |-----------------|------------------------|-------------------------| | Undefined | FFFDCh ~ FFFDFh | User available | | Overflow | FFFE0h ~ FFFE3h | User available | | BRK Instruction | FFFE4h ~ FFFE7h | User inhibited | | Address Match | FFFE8h ~ FFFEBh | User inhibited | | Single-step | FFFECh ~ FFFEFh | User inhibited | | Watchdog Timer | FFFF0h ~ FFFF3h | User available (Note 1) | | DBC | FFFF4h ~ FFFF7h | User inhibited | | NMI | FFFF8h ~ FFFFBh | User available | | RESET | FFFFCh ~ FFFFFh | Reset vector (Note 2) | #### NOTES: #### 6.6. Stop or Wait Mode Limitations While running the kernel with an application that uses "STOP" or "WAIT" modes, care must be taken not to communicate with the MCU while "STOP" or "WAIT" is active (avoid RAM monitor or memory window refreshes, for example). Breakpoints (if used) should be set at points in the code where it is known that the BCLK is running at a frequency greater than 250 kHz. #### 6.7. User Program's Real-Time Capability Please be aware that while the kernel is in a "STOP" state, the hardware peripherals will continue to run. Therefore, interrupts may not be serviced properly. In addition, the watchdog timer will not be serviced and will likely time out if active. While the kernel is in a "RUN" state, there is no overhead on the application code **unless** a RAM monitor window is open. This window requires periodic communication with the MCU. This communication suspends normal application operation while servicing the request (approximately 2000 BCLK cycles for each 16 bytes of data displayed in the window are used per window update). The user must determine whether this behavior is acceptable. #### 6.8. Performing Debug Using Symbols Normally when a new project is created using HEW, debugging symbols are enabled. If you are unable to view the source properly during debug, add the debug option [-g] in HEW before compiling the programs. To enable the [-g] option, perform the following: - Open the workspace and project in HEW. - Select [Renesas M16C Standard Toolchain] from the Options pull-down menu. - Click on the [Link] tab. - Select [Output] under the [Category] list box. - Click on the checkbox for [-g] 'Outputs source debug information...' - Click on the [OK] button For more information, see the HEW user's manual. ⁽¹⁾ The Watchdog Timer vector is shared with the oscillation stop and voltage detection interrupts. The vector is available for oscillation stop and voltage detection interrupts, but you must avoid using the vector for watchdog timer interrupts. ⁽²⁾ The kernel transparently relocates the Reset vector to FFFD8H. ## 7.0 RZB-CC16C-ZDK Board Specifications #### 7.1. Hardware Specifications Table 7-1 lists the specifications of the RZB-CC16C-ZDK Board. Table 7-1: RZB-CC16C-ZDK Board Specifications | Item | Specification | |------------|---| | MCU | M30280FAHP | | Clocks | Main Clock: crystal 10 MHz, PLL, or ring oscillator | | | Sub Clock: 32.768 kHz crystal | | Memory | RAM: 8kB (8064 Bytes user available due to kernel) | | (ICD) | High E/W Data Block: 2kB × 2 (4096 Bytes) | | | Flash ROM: 96kB (94kB user available due to kernel) | | Connectors | [J1-J4]: Four 2×10-pin measurement test points connected to the MCU | | | pins. Can also be used to connect your own expansion boards via 2×10 | | | headers. | | | [J7]: In-Circuit Debug connector (UART1 for FoUSB-ICD) | | | [P1]: 9-Sub-D RS232 connected via RS232 transceiver to UART2 | | Jumpers | [JP1]: MCU Power for Icc Measurements | | | [JP2]: Power LED and RS232 Power connect | | Switches | [S1]: pushbutton (connected to P10_4) | | | [S2]: pushbutton (connected to P10_5) | | | [S3]: pushbutton (connected to P10_6) | | | [S4]: pushbutton (connected to Reset) | | | [SW1]: Power source select switch. If set toward the ICD connector: power | | | provided by ICD. If set toward the power connector: power provided via | | LED- | power connector. | | LEDs | [D1] (Red): User output (connected to P3_4) | | | [D2] (Yellow): User output (connected to P3_5) | | | [D3] (Green): User output (connected to P3_6) | | LOD | [D4] (Red): Power On (if jumper JP2 shorted) | | LCD | 2-line × 8-character LCD with KS0066 controller IC | #### 7.2. Power Supply Requirements The RZB-CC16C-ZDK Board will draw about 35mA with no LEDs on. With the ICD powered from the board, the current draw will be about 85mA. The board has a 3.3V low dropout voltage regulator with an input voltage range from 3.4V to 16V. #### 7.3. Operating Environment Table 7-2 lists the environmental conditions for using and storing the RZB-CC16C-ZDK board. Store the board in a conductive bag inside the original factory packaging box. Table 7-2: Operating Environment | Environmental Condition | Ambient Temperature | Ambient Humidity | | |--------------------------------|----------------------------|----------------------------|--| | Operating | 0 - 55°C | 30 to 80% (non-condensing) | | | | (No corrosive gas allowed) | , | | | Storage | -30 to 75°C | 30 to 80% (non-condensing) | | | | (No corrosive gas allowed) | | | ### Appendix A. Troubleshooting Guide This section discusses possible problems you may encounter while installing the development tool software, USB drivers, or running the HEW debugger and FoUSB Programmer applications. This section also discusses the countermeasures and solutions to resolve these problems. For troubleshooting information on the RF Sniffer Interface and RF Sniffer board, see the RF Sniffer User's Manual. If, for any reason, you cannot resolve the problem, please contact your Renesas representative for assistance. #### A.1 Manual Installation Before connecting the In-Circuit Debugger to your PC, the driver files (.inf and .sys) and executables must be copied to the C:\Renesas\FoUSB directory. To do this, run FoUSB_Vx.xx.exe in the \Tools\FoUSB directory of the CD. After the FoUSB Programmer install, assuming the default directory was used, a C:\Renesas\FoUSB subfolder should have been created. The Windows USB drivers can be found under the USB Drivers folder, i.e. fousb.inf, fousb.sys (driver files to run FoUSB Programmer), usbmon.inf, and usbmon.sys (driver files to run HEW). #### A.2 USB Driver Problems This part discusses how to fix common problems that may occur with USB driver installation. The most common problem is that Windows did not properly install the USB drivers, so that the ICD is not recognized. An indication of this problem is the faster blink rate of the ICD's yellow Status LED of about 2-3 times per second. When the driver is installed properly, the yellow Status LED only blinks every second. Before trying the following steps, try re-starting your PC to see if this resolves the problem. You can check the USB Driver status using the Windows Device Manager (Start > Control Panel > System Properties > Hardware > Device Manager > Universal Serial Bus controllers). If the "Renesas FoUSB ICD" appears under the Universal Serial Bus controllers with **no** red X or yellow exclamation point, the driver was installed properly. NOTE: If you are using Windows 2000 or XP, you will need Administrator privileges to be able to install the drivers. For cases where "Renesas FoUSB ICD" appears with a red X or yellow exclamation point in the Windows Device Manager, please try the following: - Open the Windows Device Manager (Start > Control Panel > System Properties > Hardware > Device Manager > Universal Serial Bus controllers). - 2. Double-click on 'Renesas FoUSB ICD'. A Renesas FoUSB ICD Properties dialog box appears. - 3. Click on the 'Driver' tab and click the 'Update Driver' button. - 4. Select 'Display a list...' and click on the 'Have Disk' button. - Browse to the C:\Renesas\FoUSB\USB Drivers directory and install the usbmon.sys driver. 6. If this process does not work, please follow the instructions below. If you encounter problems on installing the drivers, you can try the following: #### Windows 2000 - a. Copy the fousb.inf and usbmon.inf files from the C:\Renesas\FoUSB\USB Drivers folder to the \WINNT\INF folder. - b. Copy the fousb.sys and usbmon.sys files from the C:\Renesas\FoUSB\USB Drivers folder to the \WINNT\SYSTEM32\drivers folder. #### Windows 98 or XP - a. Copy the fousb.inf and usbmon.inf files from the C:\Renesas\FoUSB\USB Drivers folder to the \WINDOWS\INF folder. - b. Copy the fousb.sys and usbmon.sys files from the C:\Renesas\FoUSB\USB Drivers folder to the \WINDOWS\SYSTEM32\drivers folder. #### A.3 Debugging Problems This section discusses the cause of the problem and countermeasures to resolve it. The common problems encountered with debugging are: - Erratic debug behavior - Cannot connect to target - Issues that may come up during debug operations #### A.3.1 Erratic Debug Behavior HEW allows you to launch multiple instances of itself. However, if more that one instance of HEW is open during a debug session, erratic behavior can result. Running the FoUSB Programmer at the same time as HEW can also result in erratic debug behavior. Lastly, having more than one ICD installed can also cause erratic problems or cause HEW to crash. #### A.3.2 Cannot Connect to Target When the message "Can't connect with the target" is displayed when attempting to connect, there are several reasons that may have caused this message to appear. Each cause and its corresponding countermeasure is discussed below. The ZDK board or the ICD are not connected correctly. Unplug the ICD from the USB cable. First connect the ZDK target board to the ICD via the supplied 2×5-header ribbon cable, then connect the ICD back to your PC's USB port via the supplied mini USB cable. Please see section "4.0 System Connectivity". The ICD has no power (Power LED of the ICD is off). Please ensure that the Power Mode switch on the ICD is set to 'USB', and that the power switch on the ZDK board is set toward the ICD connector, if you want to power the board from the ICD unit. If you want to power the ICD from the ZDK target board, the ICD power mode switch must be in the 'Target' position. The target board then must be provided with its own power supply and the target board's power switch must be on in the correct position (toward the power connector). USB was not selected on the HEW Init dialog box. Please select 'USB' from the Init dialog box that is displayed right after you start a debug session. The selected MCU on the ICD board and the actual target MCU (M16C/28) do not match. Close the error message by clicking on the 'OK' button, then click on the 'Cancel' button of the Init window. Make sure you select 'M30280FA.mcu'. If the MCU loaded on the ICD is different, HEW will re-program the ICD to match it. The target MCU is damaged. Try a different target board and see if the HEW will connect. You may have a damaged board or MCU. #### A.3.3 Issues that May Arise During Debug Operations While debugging user code, some issues may come up because the limitations discussed in section "6.0 System Operation & Limitations" were not satisfied. The common issues are listed in Table A.3, including the countermeasures. Table A.3 | Problem | Possible Cause/s and Solution | |--|---| | After stepping a few instructions, HEW cannot "stop" | Changes were made to the UART1 Special Function
Registers (SFRs). Do not change UART1 SFRs in your
code. | | Breakpoints do not seem to work | System is in "FreeRun" mode. Change the RUN mode to
"Sampling" from the "Init" window (Emulator System icon). | | HEW locks up (cannot stop program) or Communication | Changes were made to the UART1 SFRs. Do not change
UART1 SFRs in your code. | | error message is displayed. | Ensure that no limitations in Section 6 were violated. Re-initialize the system without closing debug session. See note below. Do a hardware reset. User-program runaway may be corrupting the kernel (RAM, interrupt vectors, flags, etc.). Close the debug session, hit the reset button on the ZDK board to reset the board, then restart. | | Download problems | Filenames or directory names contain spaces or special characters. HEW project was not properly set up (startup files missing or out of order, files added to wrong member, etc.). Try creating a new project and adding your source files to it. For details, please see the HEW User's Manual. | To re-initialize the system without closing a debug session, try the following: - Click the [OK] button on the error dialog box to close it. - When an Exit dialog box appears, click the [Cancel] button to close it. - Press the reset button on the ZDK board. - Click the HEW Reset icon. After initialization, debugging can resume. However, it is recommended that you download your program again before debugging. # Appendix B. Reference Manuals | Item | Title | Description | |------|---|---| | | Renesas ZigBee Demonstration Kit | Document that will help you get started on using the | | 1. | (ZDK)Quick Start Guide | ZigBee Demonstration Kit. | | 2. | RZB-CC16C-ZDK User's Manual | This document. | | 3. | RF Sniffer User's Manual | Document describing the ZigBee RF Sniffer hardware and software in more detail. | | 4. | ZDK Board Schematic | Schematic diagram for the RF Sniffer and ZDK boards. | | 5. | ZDK Board BOM Bill of materials for the ZDK board. | | | 6. | M16C/20/60 Series C-Language | ANSI C-language programming guide for the | | | Programming Manual | M16C/20/60 series MCU. | | 7. | M16C/20/60 Series Assembler | Assembly language programming guide for the | | | Language Programming Manual | M16C/20/60 series MCUs. | | 8. | HEW User's Manual | This document describes installation and operation | | | | of this Integrated Development Environment for | | | | Renesas' Tools. | | 9. | AS30 User's Manual Guide for AS30 assembler. | | | 10. | NC30 User's Manual Guide for NC30WA C-compiler. | | | 11. | RTA-FoUSB-MON User's Manual In-Circuit Debugger and Programmer User's | | | | | Manual. | #### NOTE: The installer will copy all these manuals during installation. They can be accessed using the Document Descriptions file by clicking on Start > Programs > Renesas > RZB_CC16C_ZDK > Document Descriptions. ## Appendix C. Expansion Headers The M30280FA MCU on the RZB-CC16C-ZDK target board is housed in an 80-pin QFP package. Pin 1 of the package is identified by a little white circle on the board's top silkscreen. Connectors J1 to J4, located around the MCU, provide access to almost all of the MCU's pins. You can use J1-J4 as test points to check MCU signals or, by mounting your own headers, connect your own expansion board. The silkscreen identifying the connectors is at the bottom of the ZDK board. The following table shows the mapping of J1-J4 pins to MCU pins and signal names. | J1
Pin | MCU
Pin | MCU Function | |-----------|------------|---| | 1 | 1 | P9 ₅ /AN ₂₅ /CLK ₄ | | 2 | 2 | P9 ₃ /AN ₂₄ | | 3 | 3 | P9 ₂ /TB _{2in} | | 4 | 4 | P9 ₁ /TB _{1in} | | 5 | 5 | P9 ₀ /TB _{0in} | | 6 | | | | 7 | | | | 8 | | | | 9 | | | | 10 | | | | 11 | 11 | Vss | | 12 | | | | 13 | 13 | Vcc | | 14 | 14 | P8 ₅ / NMI / SD | | 15 | 15 | P8 ₄ /INT ₂ /Zphase | | 16 | 16 | P8 ₃ /INT ₁ | | 17 | 17 | P8 ₂ /INT ₀ | | 18 | 18 | P8 ₁ /TA _{4in} / \overline{U} | | 19 | 19 | P8 ₀ /TA _{4out} /U | | 20 | 20 | P7 ₇ /TA _{3in} | | J2
Pin | MCU
Pin | MCU Function | |-----------|------------|--| | 1 | 21 | P7 ₆ /TA _{3out} | | 2 | 22 | $P7_5/TA_{2in}/\overline{W}$ | | 3 | 23 | P7 ₄ /TA _{2out} /W | | 4 | 24 | $P7_3/\overline{CTS_2}/\overline{RTS_2}/TA_{1in}/\overline{V}$ $/TXD_1$ | | 5 | 25 | P7 ₂ /CLK ₂ /TA _{1out} /V/RXD ₁ | | 6 | 26 | P7 ₁ /RxD ₂ /SCL/TA _{0in} /CLK ₁ | | 7 | 27 | P7 ₀ /TxD ₂ /SDA/TA _{0out} | | 8 | 28 | P6 ₇ /TxD ₁ | | 9 | 29 | P6 ₆ /RxD ₁ | | 10 | 30 | P6 ₅ /CLK ₁ | | 11 | 31 | P6 ₄ / CTS ₁ / RTS ₁ / CTS ₀ | | 12 | 32 | P3 ₇ | | 13 | 33 | P3 ₆ | | 14 | 34 | P3 ₅ | | 15 | 35 | P3 ₄ | | 16 | 36 | P3 ₃ | | 17 | 37 | P3 ₂ /S _{OUT3} | | 18 | 38 | P3 ₁ /S _{IN3} | | 19 | 39 | P3 ₀ /CLK ₃ | | 20 | 40 | P6 ₃ /TxD ₀ | | J3
Pin | MCU
Pin | MCU Function | |-----------|------------|--| | 1 | 41 | P6 ₂ /RxD ₀ | | 2 | 42 | P6 ₁ /CLK ₀ | | 3 | 43 | P6 ₀ /CTS ₀ /RTS ₀ | | 4 | 44 | P2 ₇ /OUTC1 ₇ /INPC1 ₇ | | 5 | 45 | P2 ₆ /OUTC1 ₆ /INPC1 ₆ | | 6 | 46 | P2 ₅ /OUTC1 ₅ /INPC1 ₅ | | 7 | 47 | P2 ₄ /OUTC1 ₄ /INPC1 ₄ | | 8 | 48 | P2 ₃ /OUTC1 ₃ /INPC1 ₃ | | 9 | 49 | P2 ₂ /OUTC1 ₂ /INPC1 ₂ | | 10 | 50 | P2 ₁ /OUTC1 ₁ /INPC1 ₁ /SCL _{MM} | | 11 | 51 | P2 ₀ /OUTC1 ₀ /INPC1 ₀ /SDA _{MM} | | 12 | 52 | P1 ₇ /INT ₅ /INPC1 ₇ /IDU | | 13 | 53 | P1 ₆ /INT ₄ /IDW | | 14 | 54 | P1 ₅ /INT ₃ /AD _{TRG} /IDV | | 15 | 55 | P1 ₄ | | 16 | 56 | P1 ₃ /AN ₂₃ | | 17 | 57 | P1 ₂ /AN ₂₂ | | 18 | 58 | P1 ₁ /AN ₂₁ | | 19 | 59 | P1 ₀ /AN ₂₀ | | 20 | 60 | P0 ₇ /AN ₀₇ | | J4
Pin | MCU
Pin | MCU Function | |-----------|------------|--| | 1 | 61 | P0 ₆ /AN ₀₆ | | 3 | 62 | P0 ₅ /AN ₀₅ | | 3 | 63 | P0 ₄ /AN ₀₄ | | 4 | 64 | P0 ₃ /AN ₀₃ | | 5 | 65 | P0 ₂ /AN ₀₂ | | 6 | 66 | P0 ₁ /AN ₀₁ | | 7 | 67 | P0 ₀ /AN ₀₀ | | 8 | 68 | P10 ₇ /AN ₇ / KI ₃ | | 9 | 69 | P10 ₆ /AN ₆ /KI ₂ | | 10 | 70 | P10 ₅ /AN ₅ /KI ₁ | | 11 | 71 | P10 ₄ /AN ₄ /KI ₀ | | 12 | 72 | P10 ₃ /AN ₃ | | 13 | 73 | P10 ₂ /AN ₂ | | 14 | 74 | P10 ₁ /AN ₁ | | 15 | 75 | AVss | | 16 | 76 | P10 ₀ /AN ₀ | | 17 | | | | 18 | 78 | AVcc | | 19 | 79 | P9 ₇ /AN ₂₇ /S _{IN4} | | 20 | 80 | P9 ₆ /AN ₂₆ /S _{OUT4} | # Appendix D. Board Schematic & BOM Note: The RZB-CC16C-ZDK board is referred to as RZB-CC28-BRD on the board's silkscreen and schematic drawing. The circuit board schematic and Bill-Of-Materials (BOM) are available as separate PDF documents. They can be accessed through Start > Programs > Renesas > RZB_CC16C_ZDK > Board Hardware, or by browsing to the folder C:\Renesas\RZB_CC16C_ZDK\Docs and opening the files: RZB_CC28_BRD_BOM.pdf RZB_CC28_BRD_Schematic.pdf # Appendix E. RZB-CC16C-ZDK Printed Circuit Board Figure E-1: PCB Top View Figure E-2: PCB Bottom View # Appendix F. Other Resources - 1. For details on how to use the In-Circuit Debugger and Programmer, please see the RTA-FoUSB-MON User's Manual (Start > (All) Programs > Renesas > RZB_CC16C_ZDK > RTA-FoUSB-Mon Manual). - 2. For updates and other evaluation tools and sample programs for the RZB-CC16C-ZDK Kit, see: http://america.renesas.com/ZigBee.