

SR SERIES GPS RECEIVER MODULE DATA GUIDE

DESCRIPTION

The SR Series GPS receiver module is a self-contained high-performance GPS receiver with an on-board antenna, LNA and SAW filter. Based on the SiRFstar III chipset, it provides exceptional sensitivity, even in dense foliage and urban canyons. The module's very low power consumption helps maximize runtimes in battery powered applications. With over 200,000 effective correlators, the SR Series receiver can acquire and track up to 20 satellites simultaneously in just seconds, even at the lowest signal levels. Housed in a compact reflowcompatible SMD package, the receiver requires no Figure 1: Package Dimensions

programming or additional RF components to form a complete GPS solution. These features, along with the module's standard NMEA data output, make the SR Series easy to integrate, even by engineers without previous RF or GPS experience.

FEATURES

- SiRF Star III chipset
- 200,000+ correlators
- Low power consumption (46mW)
- High sensitivity (-159dBm)
- 20 channels
- Fast TTFF at low signal levels
- Battery-backed SRAM
- No programming necessary
- No external RF components needed
- Integral antenna
- No production tuning
- Direct serial interface
- Power down feature
- Compact surface-mount package
- Manual or reflow compatible
- RoHS compliant

Reels are 250 pcs.

APPLICATIONS INCLUDE

- Positioning and Navigation
- Location and Tracking Security/Loss-Prevention
- Surveying
- Logistics
- Fleet Management

ORDERING INFORMATION PART# DESCRIPTION RXM-GPS-SR-x **GPS Receiver Module** MDEV-GPS-SR Master Development System x = "T" for Tape and Reel, "B" for Bulk

Quantities less than 250 pcs. are supplied in bulk

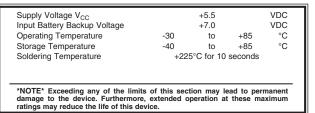
Revised 11/22/10

ELECTRICAL SPECIFICATIONS

Parameter	Designation	Min.	Typical	Max.	Units	Notes
POWER SUPPLY						
Supply Voltage	V _{cc}	3.0	_	4.3	VDC	-
Supply Current:	I _{CC}					1
Peak		_	31	49	mA	_
Sleep		-	<0.1	-	mA	-
Backup Battery Voltage	V _{BAT}	1.3	_	6.0	VDC	-
Backup Battery Current	I _{BAT}	-	10	_	μA	-
Output Logic Low Voltage	V _{OL}	-	_	0.73	VDC	-
Output Logic High Voltage	V _{OH}	2.0	_	-	VDC	-
Output Logic Low Current	IOI	-	2	-	mA	-
Output Logic High Current	I _{OH}	_	2	_	mA	_
Input Logic Low Voltage	V _{II}	-0.3	_	0.8	VDC	_
Input Logic High Voltage	VIH	2.1	_	3.6	VDC	_
Input Logic Low Current	III	-10	_	60	μA	_
Input Logic High Current	I _{IH}	-10	_	60	μA	_
ENABLE Logic Low Voltage	V _{II}	_	_	0.25	VDC	_
ENABLE Logic High Voltage	VIH	1.3	_	Vcc	VDC	_
ENABLE Logic Low Current	I _{II}	-0.2	_	1	μA	_
ENABLE Logic High Current	I _{IH}	-0.2	_	10	μA	_
ENVIRONMENTAL	'IH	0.2			μ, τ	
Operating Temperature Range	_	-30	_	+85	°C	_
Storage Temperature Range	_	-40	25	+85	°C	_
RECEIVER SECTION			25	100		
Acquisition Time						
Hot Start (Open Sky)		_	_	2	s	_
Cold Start		-	35	-	S	-
Position Accuracy						
Autonomous		-	-	10	m	-
SBAS		-	-	5	m	-
Altitude		-	-	60,000	ft	-
Velocity	0:05	-		1,000	Knots	_
Chipset Firmware Version	SiRF Star III, GSC3f/LPx 7990 GSW3.5.0 3.5.00.00-SDK-3EP2.01A					
Frequency	_					
Channels	L1 1575.42MHz, C/A Code					
Update Rate	1Hz					
Protocol Support	NMEA		.0, SiRF Bina	ry		

Table 1: SR Series Receiver Specifications

Notes:


1. $V_{CC} = 3.3V$

CAUTION

This product incorporates numerous static-sensitive components. Always wear an ESD wrist strap and observe proper ESD handling procedures when working with this device. Failure to observe this precaution may result in module damage or failure.

ABSOLUTE MAXIMUM RATINGS

PIN ASSIGNMENTS

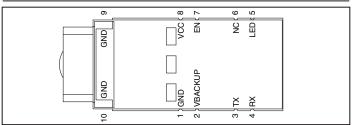


Figure 2: SR Series Receiver Pinout (Top View)

PIN DESCRIPTIONS

Pin #	Name	I/O	Description
1	GND	Р	Ground
2	VBACKUP	Р	Backup battery supply voltage. This line must be powered to enable the module.
3	TX	0	Serial Data Output (default NMEA)
4	RX	I	Serial Data Input (default NMEA)
5	LED	0	LED Indicator (100kΩ internal pull-down)
6	NC		No Electrical Connection
7	EN	I	Enable (active high, internal pull-down)
8	VCC	Р	Supply Voltage
9	GND	Р	Ground
10	GND	Р	Ground

Page 2 Page 3

A BRIEF OVERVIEW OF GPS

The Global Positioning System (GPS) is a U.S.-owned utility that freely and continuously provides positioning, navigation, and timing (PNT) information. Originally created by the U.S. Department of Defense for military applications, the system was made available without charge to civilians in the early 1980s. The global positioning system consists of a nominal constellation of 24 satellites orbiting the earth at about 12,000 nautical miles in height. The pattern and spacing of the satellites allow at least four to be visible above the horizon from any point on the Earth. Each satellite transmits low power radio signals which contain three different bits of information; a pseudorandom code identifying the satellite, ephemeris data which contains the current date and time as well as the satellite's health, and the almanac data which tells where each satellite should be at any time throughout the day.

A GPS receiver such as the Linx SR Series GPS module receives and times the signals sent by multiple satellites and calculates the distance to each satellite. If the position of each satellite is known, the receiver can use triangulation to determine its position anywhere on the earth. The receiver uses four satellites to solve for four unknowns; latitude, longitude, altitude, and time. If any of these factors is already known to the system, an accurate position (Fix) can be obtained with fewer satellites in view. Tracking more satellites improves calculation accuracy. In essence, the GPS system provides a unique address for every square meter on the planet.

A faster Time To First Fix (TTFF) is also possible if the satellite information is already stored in the receiver. If the receiver knows some of this information, then it can accurately predict its position before acquiring an updated position fix. For example, aircraft or marine navigation equipment may have other means of determining altitude, so the GPS receiver would only have to lock on to three satellites and calculate three equations to provide the first position fix after power-up.

TTFF is often broken down into three parts:

Cold: A cold start is when the receiver has no accurate knowledge of its position or time. This happens when the receiver's internal Real Time Clock (RTC) has not been running or it has no valid ephemeris or almanac data. In a cold start, the receiver takes 35 to 40 seconds to acquire its position. If new almanac data is required, this may take up to 15 minutes (see page 7 for more details).

Warm or Normal: A typical warm start is when the receiver has valid almanac and time data and has not significantly moved since its last valid position calculation. This happens when the receiver has been shut down for more than 2 hours, but still has its last position, time, and almanac saved in memory, and its RTC has been running. The receiver can predict the location of the current visible satellites and its location; however, it needs to wait for an ephemeris broadcast (every 30 seconds) before it can accurately calculate its position.

Hot or Standby: A hot start is when the receiver has valid ephemeris, time, and almanac data. This happens when the receiver has been shut down for less than 2 hours and has the necessary data stored in memory with the RTC running. In a hot start, the receiver takes 1 to 2 seconds to acquire its position. The time to calculate a fix in this state is sometimes referred to as Time to Subsequent Fix or TTSF.

MODULE DESCRIPTION

The SR Series is a high performance self-contained GPS receiver in a compact RoHS compliant surface mount package. The module is based on the SiRFstar III low power chipset, which consumes significantly less power than competitive products while providing exceptional performance even in dense foliage and urban canyons. The module features an integral antenna, LNA and SAW filter, so no external RF components are needed. The simple serial interface and industry standard NMEA protocol make integration of the SR Series receiver into an end product or system extremely straightforward.

The module's high-performance RF architecture allows it to receive GPS signals that are as low as -159dBm. With over 200,000 effective correlators, the SR Series can track up to 20 satellites at the same time. Once locked onto the visible satellites, the receiver calculates the range to the satellites and determines its position and the precise time. It then outputs the data through a standard serial port using several standard NMEA protocol formats.

The GPS core handles all of the necessary initialization, tracking, and calculations autonomously, so no programming is required. The RF section is optimized for low level signals, and requires no production tuning of any type.

BACKUP BATTERY

The SR Series module is designed to work with a backup battery that keeps the SRAM memory and the RTC powered when the RF section and the main GPS core are powered down. This enables the module to have a faster Time To First Fix (TTFF) when the module is powered back on. The memory and clock pull about 10µA. This means that a small lithium battery is sufficient to power these sections. This significantly reduces the power consumption and extends the main battery life while allowing for fast position fixes when the module is powered back on.

POWER SUPPLY REQUIREMENTS

The module requires a clean, well-regulated power source. While it is preferable to power the unit from a battery, it can operate from a power supply as long as noise is less than 20mV. Power supply noise can significantly affect the receiver's sensitivity, therefore providing clean power to the module should be a high priority during design.

Bypass capacitors should be placed as close as possible to the module. The values should be adjusted depending on the amount and type of noise present on the supply line.

THE LED OUTPUT

When a position fix is available, this line outputs a single 50mS pulse every second. If no fix is available, then it is low. This is suitable for connection to an LED or other indicator to tell the user that a valid fix has been acquired. When the module is in sleep mode, this line is an input with an internal $100 k\Omega$ pull-down resistor.

Page 4 Page 5

POWER CONTROL

By default, the SR Series will operate in full power mode. However, it also has a built-in power control mode called Adaptive Trickle Power mode. In this mode, the receiver will power on at full power to acquire and track satellites and obtain satellite data. It then powers off the RF stage and only uses its processor stage (CPU) to determine a position fix (which takes about 160mS). Once the fix is obtained, the receiver goes into a low power standby state. After a user-defined period of time, the receiver wakes up to track the satellites for a user-defined period of time, updates its position using the CPU only, and then resumes standby. The initial acquisition time is variable, depending on whether it is a cold start or assisted, but a maximum acquisition time is definable. This cycling of power is ideal for battery-powered applications since it significantly reduces the amount of power consumed by the receiver while still providing similar performance to the full power mode.

In normal conditions, this mode provides a fixed power savings, but under poor signal conditions, the receiver returns to full power to improve performance. The receiver sorts the satellites according to signal strength and if the fourth satellite is below 26dB-Hz, then the receiver switches to full power. Once the fourth satellite is above 30dB-Hz, the receiver returns to Adaptive Trickle Power mode.

For optimum performance, SiRF recommends cycle times of 300mS track to 1S interval or 400mS track to 2S interval. CPU time is about 160mS to compute the navigation solution and empty the UART. There are some situations in which the receiver stays in full power mode. These are: to collect periodic ephemeris data, to collect periodic ionospheric data, to perform RTC convergence, and to improve the navigation result. Depending on states of the power management, the receiver will be in one of three system states:

Full Power State

All RF and baseband circuitry are fully powered. There is a difference in power consumption during acquisition mode and tracking mode. Acquisition requires more processing, so it consumes more power. This is the initial state of the receiver and it stays in this state until a reliable position solution is achieved.

CPU Only State

This state is entered when the satellite measurements have been collected but the navigation solution still needs to be computed. The RF and DSP processing are no longer needed and can be turned off.

Stand-By State

In this state, the RF section is completely powered off and the clock to the baseband is stopped. About 1mA of current is drawn in this state for the internal core regulator, RTC and battery-backed RAM. The receiver enters this state when a position fix has been computed and reported.

TYPICAL APPLICATIONS

Figure 4 shows a typical application for the module.

Figure 3: SR Series Module Typical Application

SLOW START TIME

The most critical factors in start time are current ephemeris data, signal strength, and sky view. The ephemeris data describes the path of each satellite as they orbit the earth. This is used to calculate the position of a satellite at a particular time. This data is only usable for a short period of time, so if it has been more than a few hours since the last fix or if the location has significantly changed (a few hundred miles), then the receiver may need to wait for a new ephemeris transmission before a position can be calculated. The GPS satellites transmit the ephemeris data every 30 seconds. Transmissions with a low signal strength may not be received correctly or be corrupted by ambient noise. The view of the sky is important because the more satellites the receiver can see, the faster the fix and the more accurate the position will be when the fix is obtained.

If the receiver is in a very poor location, such as inside a building, urban canyon, or dense foliage, then the time to first fix can be slowed. In very poor locations with poor signal strength and a limited view of the sky with outdated ephemeris data, this could be on the order of several minutes. In the worst cases, the receiver may need to receive almanac data, which describes the health and course data for every satellite in the constellation. This data is transmitted every 15 minutes. If a lock is taking a long time, try to find a location with a better view of the sky and fewer obstructions. Once locked, it is easier for the receiver to maintain the position fix.

Page 6 Page 7

PROTOCOLS

LINX GPS modules use the SiRFstar III chipset. This chipset allows two protocols to be used, NMEA-0183 and SiRF Binary. Switching between the two is handled using a single serial command. The NMEA protocol uses ASCII characters for the input and output messages and provides the most common features of GPS development in a small command set. The SiRF Binary protocol uses BYTE data types and allows more detailed control over the GPS receiver and its functionality using a much larger command set. Although both protocols have selectable baud rates, it's recommended that SiRF Binary use baud rates of 38,400bps or higher. For a detailed description of the SiRF Binary protocol, see the SiRF Binary Protocol Reference Manual, available from SiRF Technology, Inc. Although SiRF Binary protocol may be used with the module, Linx only offers tech support for the NMEA protocol.

INTERFACING WITH NMEA MESSAGES

Linx modules default to the NMEA protocol. Output messages are sent from the receiver on the TX pin and input messages are sent to the receiver on the RX pin. By default, output messages are sent once every second. Details of each message are described in the following sections.

The NMEA message format is as follows: <Message-ID + Data Payload + Checksum + End Sequence>. The serial data structure defaults to 9,600bps, 8 data bits, 1 stop bit, and no parity bits. Each message starts with a \$ character and ends with a <CR> <LF>. All fields within each message are separated by a comma. The checksum follows the * character and is the last two characters, not including the <CR> <LF>. It consists of two hex digits representing the exclusive or (XOR) of all characters between, but not including, the \$ and * characters. When reading NMEA output messages, if a field has no value assigned to it, the comma will still be placed following the previous comma. For example, {0.4,...,2.0,} shows four empty fields between values 04 and 2.0. When writing NMEA input messages, all fields are required, none are optional. An empty field will invalidate the message and it will be ignored.

Reading NMEA output messages:

- Initialize a serial interface to match the serial data structure of the GPS receiver.
- · Read the NMEA data from the TX pin into a receive buffer.
- Separate it into six buffers, one for each message type. Use the characters (\$) and <CR> <LF> as end points for each message.
- For each message, calculate the checksum as mentioned above to compare with the checksum received.
- Parse the data from each message using commas as field separators.
- · Update the application with the parsed field values.
- Clear the receive buffer and be ready for the next set of NMEA messages.
 Writing NMEA input messages:
- Initialize a serial interface to match the serial data structure of the GPS receiver.
- Assemble the message to be sent with the calculated checksum.
- · Transmit the message to the receiver on the RX pin.

NMEA OUTPUT MESSAGES

The following sections outline the data structures of the various NMEA protocols that are supported by the module. By default, the NMEA commands are output at 9,600bps, 8 data bits, no parity, and 1 stop bit.

GGA - Global Positioning System Fixed Data

The table below contains the values for the following example: \$GPGGA,053740.000,2503.6319,N,12136.0099,E,1,08,1.1,63.8,M,15.2,M,,0000*64

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	053740		hhmmss.sss
Latitude	2503.6319		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W Indicator	E		E=east or W=west
Position Fix Indicator	1		See Table 4
Satellites Used	08		Range 0 to 12
HDOP	1.1		Horizontal Dilution of Precision
MSL Altitude	63.8	meters	
Units	М	meters	
Geoid Separation	15.2	meters	
Units	М	meters	
Age of Diff. Corr.		second	Null fields when DGPS is not used
Diff. Ref. Station	ID 0000		
Checksum	*64		
<cr> <lf></lf></cr>			End of message termination

Table 2: Global Positioning System Fixed Data Example

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3-5	Not supported
6	Dead Reckoning Mode, fix valid

Table 3: Position Indicator Values

GLL - Geographic Position - Latitude / Longitude

The table below contains the values for the following example: \$GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A*52

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	2503.6319		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W indicator	E		E=east or W=west
UTC Time	053740		hhmmss.sss
Status	А		A=data valid or V=data not valid
Mode	А		A=autonomous, D=DGPS
Checksum	*52		
<cr> <lf></lf></cr>			End of message termination

Table 4: Geographic Position – Latitude / Longitude Example

GSA - GNSS DOP and Active Satellites

The table below contains the values for the following example: \$GPGSA.A.3.24.07.17.11.28.08.20.04.....2.0.1.1.1.7*35

Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode1	А		See Table 7
Mode 2	3		1=No Fix, 2=2D, 3=3D
ID of satellite used	24		Sv on Channel 1
ID of satellite used	7		Sv on Channel 2
ID of satellite used			Sv on Channel 12
PDOP	2		Position Dilution of Precision
HDOP	1.1		Horizontal Dilution of Precision
VDOP	1.7		Vertical Dilution of Precision
Checksum	*35		
<cr> <lf></lf></cr>			End of message termination

Table 5: GNSS DOP and Active Satellites Example

Value	Description
М	Manual - forced to operate in 2D or 3D mode
Α	Automatic - allowed to automatically switch 2D/3D

Table 6: Mode1 Values

Page 10 Page 11

GSV - GNSS Satellites in View

The table below contains the values for the following example: \$GPGSV,3,1,12,28,81,285,42,24,67,302,46,31,54,354,,20,51,077,46*73 \$GPGSV,3,2,12,17,41,328,45,07,32,315,45,04,31,250,40,11,25,046,41*75 \$GPGSV,3,3,12,08,22,214,38,27,08,190,16,19,05,092,33,23,04,127,*7B

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Total number of messages ¹	3		Range 1 to 3
Message number ¹	1		Range 1 to 3
Satellites in view	12		
Satellite ID	28		Channel 1 (Range 01 to 32)
Elevation	81	degrees	Channel 1 (Range 00 to 90)
Azimuth	285	degrees	Channel 1 (Range 000 to 359)
SNR (C/No)	42	dB-Hz	Channel 1 (Range 00 to 99, null when not tracking)
Satellite ID	20		Channel 4 (Range 01 to 32)
Elevation	51	degrees	Channel 4 (Range 00 to 90)
Azimuth	77	degrees	Channel 4 (Range 000 to 359)
SNR (C/No)	46	dB-Hz	Channel 4 (Range 00 to 99, null when not tracking)
Checksum	*73		
<cr> <lf></lf></cr>			End of message termination

Table 7: GNSS Satellites in View Example

Depending on the number of satellites tracked, multiple messages of GSV data may be required.

RMC - Recommended Minimum Specific GNSS Data

The table below contains the values for the following example: \$GPRMC.053740.000.A.2503.6319.N.12136.0099.E.2.69.79.65.100106...A*53

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Time	53740		hhmmss.sss
Status	А		A=data valid or V=data not valid
Latitude	2503.632		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12136.01		dddmm.mmmm
E/W Indicator	E		E=east or W=west
Speed over ground	2.69	knots	TRUE
Course over ground	79.65	degrees	
Date	100106		ddmmyy
Magnetic Variation		degrees	Not Available, Null Field
Variation Sense			E=east or W=west (Not shown)
Mode	Α		A=autonomous, D=DGPS, E=DR
Checksum	*53		
<cr> <lf></lf></cr>			End of message termination

Table 8: Recommended Minimum Specific GNSS Data Example

VTG - Course Over Ground and Ground Speed

The table below contains the values for the following example:

\$GPVTG,79.65,T,,M,2.69,N,5.0,K,A*38

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course over ground	79.65	degrees	Measured heading
Reference	Т		TRUE
Course over ground		degrees	Measured heading (N/A, Null Field)
Reference	М		Magnetic
Speed over ground	2.69	knots	Measured speed
Units	N		Knots
Speed over ground	5	km/hr	Measured speed
Units	K		Kilometer per hour
Mode	А		A=autonomous, E=DR
Checksum	*38		
<cr> <lf></lf></cr>			End of message termination

Table 9: Course Over Ground and Ground Speed Example

Page 12

NMEA INPUT MESSAGES

The following outlines the serial commands input into the module for configuration. By default, the commands are input at 9,600bps, 8 data bits, no parity, and 1 stop bit. SiRF binary commands are input at 38,400bps, 8 data bits, no parity, and 1 stop bit.

Name	Example	Description
Start Sequence	\$PSRF	
Message ID	<mid></mid>	Message Identifier consisting of three numeric characters. Input messages begin at MID 100.
Payload	DATA	Message specific data.
Checksum	CKSUM	CKSUM is a two-hex character checksum as defined in the NMEA specification, NMEA-0183 Standard For Interfacing Marine Electronic Devices. Checksums are required on all input messages.
End Sequence	<cr><lf></lf></cr>	Each message must be terminated using Carriage Return (CR) Line Feed (LF) (\(\r\\)\n, 0x0D0A\) to cause the receiver to process the input message. They are not printable ASCII characters, so are omitted from the examples.

Table 10: Serial Data Structure

All fields in all proprietary NMEA messages are required; none are optional. All NMEA messages are comma delimited.

The table below outlines the message identifiers supported by the module.

Message	MID	Description
SetSerialPort	100	Set PORT A parameters and protocol
NavigationInitialization	101	Reset the modules
Query/Rate Control	103	Query standard NMEA message and/or set output rate
LLANavigationInitialization	104	Reset the modules
Development Data On/Off	105	Development Data messages On/Off
PowerManagement	200	Sets the power performance of the receiver
StaticNavigation	202	Sets static navigation On/Off

Table 11: Message ID Values

100 - SetSerialPort

This command message is used to set the protocol (SiRF binary or NMEA) and/or the communication parameters (baud rate). Generally, this command is used to switch the module back to SiRF binary protocol mode where a more extensive command message set is available. When a valid message is received, the parameters are stored in battery-backed SRAM and the receiver restarts using the saved parameters.

The table below contains the values for the following example:

Switch to SiRF binary protocol at 9600,8,N,1

\$PSRF100,0,9600,8,1,0*0C

Name	Example	Description
Message ID	\$PSRF100	PSRF100 protocol header
Protocol	0	0=SiRF binary, 1=NMEA
Baud	9600	4800, 9600, 19200, 38400, 57600
DataBits	8	81
StopBits	1	1 ¹
Parity	0	0=None ¹
Checksum	*0C	
<cr><lf></lf></cr>		End of message termination

Table 12: SetSerialPort Example 2

- 1. SIRF protocol is only valid for 8 data bits, 1 stop bit, and no parity.
 2. Default settings are NMEA protocol using 9,600 baud, 8 data bits, 1 stop bit, and no parity.

For details on the SiRF binary protocol, please refer to SiRF's Binary Protocol Reference Manual.

101 - NavigationInitialization

This command was used to initialize the receiver with the current position (in X, Y, Z coordinates), clock offset, and time, enabling a faster fix. Increased receiver sensitivity and the removal of Selective Availability (SA) have made this unneccessary. The command is retained for its ability to reset the module, but the initialization fields are no longer supported.

The table below contains the values for the following example:

\$PSRF101,0,0,0,96000,0,0,12,4*1F

Name	Example	Units	Description
Message ID	\$PSRF101		PSRF101 protocol header
ECEF X	0		
ECEF Y	0		
ECEF Z	0		
ClkOffset	96000		
TimeOfWeek	0		
WeekNo	0		
ChannelCount	12		
ResetCfg	4		See Table 15
Checksum	*1F		
<cr><lf></lf></cr>			End of message termination

Table 13: NavigationInitialization Example

Hex	Description		
0x01	Hot Start – All data valid		
0x02	Warm Start – Ephemeris cleared		
0x04	Cold Start – Clears all data in memory		
0x08	Clear Memory – Clears all data in memory and resets the receiver back to factory defaults		

Table 14: ResetCfg Values

Page 14 Page 15

103 - Query/Rate Control

This command is used to control the output of standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG. Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted.

The table below contains the values for the following example:

- 1. Query the GGA message with checksum enabled
 - \$PSRF103,00,01,00,01*25
- 2. Enable VTG message for a 1 Hz constant output with checksum enabled \$PSRF103,05,00,01,01*20
- 3. Disable VTG message

\$PSRF103,05,00,00,01*21

Name	Example	Units	Description
Message ID	\$PSRF103		PSRF103 protocol header
Msg	0		See Table 17
Mode	1		0=SetRate, 1=Query
Rate	0	seconds	Output - off=0, max=255
CksumEnable	1		0=Disable, 1=Enable Checksum
Checksum	*25		
<cr><lf></lf></cr>			End of message termination

Table 15: Query/Rate Control Example

Value	Description
0	GGA
1	GLL
2	GSA
3	GSV
4	RMC
5	VTG
6	MSS (Not Supported)
7	Not defined
8	ZDA
9	Not defined

Table 16: MSG Values

104 - LLANavigationInitialization

This command was used to initialize the receiver with the current position (in lattitude, longitude and altitude coordinates), clock offset, and time, enabling a faster fix. Increased receiver sensitivity and the removal of Selective Availability (SA) have made this unneccessary. The command is retained for its ability to reset the module, but the initialization fields are no longer supported.

The table below contains the values for the following example:

\$PSRF104,0,0,0,96000,0,0,12,4*1A

Name	Example	Units	Description
Message ID	\$PSRF104		PSRF104 protocol header
Latitude	0		
Longitude	0		
Altitude	0		
ClkOffset	96000		
TimeOfWeek	0		
WeekNo	0		
ChannelCount	12		
ResetCfg	4		See Table 19
Checksum	*1A		
<cr><lf></lf></cr>			End of message termination

Table 17: LLANavigationInitialization Example

	Hex	Description		
0>	x01	Hot Start – All data valid		
0>	x02	Warm Start – Ephemeris cleared		
0>	x04	Cold Start - Clears all data in memory		
0>	x08	Clear Memory – Clears all data in memory and resets receiver back factory defaults		

Table 18: ResetCfg Values

Page 16 Page 17

105 - Development Data On/Off

Use this command to enable development data information if you are having trouble getting commands accepted. Invalid commands generate debug information that enables you to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range.

The table below contains the values for the following example:

1. Debug On

\$PSRF105,1*3E

2. Debug Off

Page 18

\$PSRF105,0*3F

Name	Example	Units	Description
Message ID	\$PSRF105		PSRF105 protocol header
Debug	1		0=Off, 1=On
Checksum	*3E		
<cr><lf></lf></cr>			End of message termination

Table 19: Development Data On/Off Example

200 - PowerManagement

The table below contains the values for the following example to set the receiver to Adaptive Trickle Power mode:

\$PLSC,200,2,300,1000,300000,30000*0E

, , , , ,			
Name	Example	Units	Description
MID	\$PLSC,200		Message ID
Mode	2		See Table 23
OnTime	300 (200 - 900)	mS	Must be \geq 200mS and a multiple of 100 (if not, it is rounded up to the nearest multiple of 100).
LP Interval	1000 (1000 - 10000)	mS	Must be an integer value ≥ 1000 and ≤10000.
MaxAcqTime	300000 (1000 - 2147483000)	mS	When Adaptive Trickle Power is enabled, this is the maximum allowable time from the start of a power cycle to the time a valid position fix is obtained. If no fix is obtained in this time, the receiver is deactivated for up to MaxOfTTime, and a hot start is commanded when the receiver reactivates. The integer must be in multiples of 1000mS.
MaxOffTime	30000 (1000 - 1800000)	mS	The longest period (in mS) for which the receiver deactivates due to the MaxAcqTime timeout. The actual deactivated period may be less if the userspecified duty cycle (OnTime / LpInterval) can be maintained.
Checksum	*0E		
<cr> <lf></lf></cr>			End of message termination

Table 20: Power Management Command Example¹

The table below lists the possible values for the Mode section of this command.

Value	Description	
0	Ask receiver to send current power mode	
1	Set receiver to Full power mode	
2	Set receiver to Adaptive Trickle Power mode	

Table 21: Mode Values

Total ON time = OnTime + 160mS + time to process each active NMEA message at the programmed baud rate (default 9600)

1. Default setting is full power; trickle power disabled.

The receiver outputs a response to this command. The table below contains the response for the above command:

\$PLSR,200,1,2,300,1000,300000,30000*02

Name	Example	Units	Description
MID	\$PLSR,200		Message ID
Valid	1		0: command invalid, 1: command valid
Mode	2		See Table 22
OnTime	300		Display when mode = 2
LP Interval	1000		Display when mode = 2
MaxAcqTime	300000		Display when mode = 2
MaxOffTime	30000		Display when mode = 2
Checksum	*02		
<cr> <lf></lf></cr>			End of message termination

Table 22: Power Management Response Example

For some further examples of this command:

Query the power management mode Input command: \$PLSC,200,0*0E Output response: \$PLSR,200,1,1*03

202 - StaticNavigation

This command is used to query, enable, and disable static navigation. The table below contains the values for the following example to disable static navigation: \$PLSC,202,2*0E

Name	Example	Units	Description
MID	\$PLSR,202		Message ID
Command	1		0: Query, 1: Enable (default), 2: Disable
Checksum	*02		
<cr> <lf></lf></cr>			End of message termination

Table 23: StaticNavigation Example

The table below contains the response for the above command:

Name	Example	Units	Description
MID	\$PLSR,202		Message ID
Valid	1		0: command invalid, 1: command valid
Result	2		0: command failed, 1: static navigation enabled, 2: static navigation disabled
Checksum	*1E		
<cr> <lf></lf></cr>			End of message termination

Table 24: StaticNavigation Response Example

MASTER DEVELOPMENT SYSTEM

The SR Series Master Development System provides all of the tools necessary to evaluate the SR Series GPS receiver module. The system includes a fully assembled development board, development software, and full documentation.

Figure 4: The SR Series Master Development System

The development board includes a power supply, a prototyping area for custom circuit development, and an OLED display that shows the GPS data without the need for a computer. A USB interface is also included for use with a PC running custom software or the included development software.

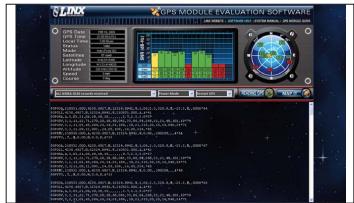


Figure 5: The SR Series Master Development System Software

The Master Development System software enables configuration of the receiver and displays the satellite data output by the receiver. The software can select from among all of the supported NMEA protocols for display of the data.

Full documentation for the board and software is included in the development system, making integration of the module straightforward.

Page 20 Page 21

BOARD LAYOUT GUIDELINES

The module's design makes integration straightforward; however, it is still critical to exercise care in PCB layout. Failure to observe good layout techniques can result in degradation of the module's performance. Grounding, filtering, decoupling, routing and layer order are important considerations for any RF design. The following section provides some basic design guidelines which may be helpful.

During prototyping, the module should be soldered to a properly laid-out circuit board. The use of prototyping or "perf" boards will result in poor performance and is strongly discouraged.

The module should, as much as reasonably possible, be isolated from other components on your PCB, especially high-frequency circuitry such as crystal oscillators, switching power supplies, and high-speed bus lines.

When possible, separate RF and digital circuits into different PCB regions. Make sure internal wiring is routed away from the module and antenna, and is secured to prevent displacement.

Do not route PCB traces directly under the module. There should not be any copper or traces under the module on the same layer as the module, just bare PCB. The underside of the module has traces and vias that could short or couple to traces on the product's circuit board.

The Pad Layout section shows a typical PCB footprint for the module. A ground plane (as large and uninterrupted as possible) should be placed on a lower layer of your PC board opposite the module.

Vias are acceptable for tying together ground layers and should be used in multiples.

Each of the module's ground pins should have short traces tying immediately to the ground plane through a via.

Bypass caps should be low ESR ceramic types and located directly adjacent to the pin they are serving.

The integral antenna is susceptible to external influences. Please carefully read and follow the guidelines listed in the section titled Antenna Considerations.

In some instances, a designer may wish to encapsulate or "pot" the product. There is a wide variety of potting compounds with varying dielectric properties. Since such compounds can considerably impact RF performance and the ability to rework or service the product, it is the responsibility of the designer to evaluate and qualify the impact and suitability of such materials. UNDER NO CONDITION SHOULD THE ANTENNA ELEMENT BE POTTED OR ENCAPSULATED IN ANY MANNER.

ANTENNA CONSIDERATIONS

The SR Series module has an integral ceramic patch antenna. This eliminates the need for any external RF components and, in some respects, simplifies the design process. While convenient, an on-board antenna makes factors such as layout, placement and product packaging much more critical. The antenna's performance plays a major role in determining realized sensitivity. In order for the module to perform correctly it is essential that the antenna be given proper consideration. Due to the compact size of the antenna, it may be necessary for the antenna to be tuned specifically in the end product environment. If this is the case, Linx can assist with layout and obtaining a custom tuned antenna. Following these guidelines will help to achieve the best antenna performance.

The antenna element should be inside the product or covered to prevent damage to it. The center frequency of the antenna will be affected by materials in close proximity to it. The product's housing should not come within approximately 0.25" of any antenna surface. The housing must also be RF transparent, i.e. non-metallic, no metal paint, fillers or compositions which would impede RF at the frequencies of interest. The antenna should never be encapsulated, coated, or sprayed with any compound.

Ideally, the antenna will sit at the edge of the PCB and have no other components to the top or sides as illustrated below. If it is necessary to place components adjacent to the antenna, try to maintain a 0.25" or greater setback and recognize performance may be adversely affected. It is a good idea to test your design's performance against a benchmark. This will help to identify any performance issues and the impact of design tradeoffs. A GPS module placed on an optimized PCB with no external housing, or the Linx MDEV GPS evaluation system, can be used as a helpful point of reference.

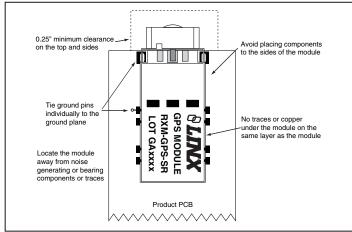


Figure 6: Antenna Considerations

PAD LAYOUT

The following pad layout diagram is designed to facilitate both hand and automated assembly.

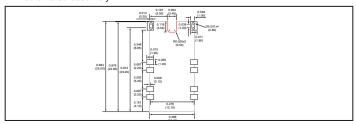


Figure 7: Recommended PCB Layout

PRODUCTION GUIDELINES

The modules are housed in a hybrid SMD package that supports hand and automated assembly techniques. Since the modules contain discrete components internally, the assembly procedures are critical to ensuring the reliable function of the modules. The following procedures should be reviewed with and practiced by all assembly personnel.

HAND ASSEMBLY

Pads located on the bottom of the module are the primary mounting surface. Since these pads are inaccessible during mounting, castellations that run up the side of the module have been provided to facilitate solder wicking to the module's underside. This allows for very quick hand soldering for prototyping and small volume production.

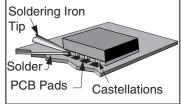


Figure 8: Soldering Technique

If the recommended pad guidelines have been followed, the pads will protrude slightly past the edge of the module. Use a fine soldering tip to heat the board pad and the castellation, then introduce solder to the pad at the module's edge. The solder will wick underneath the module, providing reliable attachment. Tack one module corner first and then work around the device, taking care not to exceed the times listed below.

Absolute Maximum Solder Times

Hand-Solder Temp. TX +225°C for 10 Seconds Hand-Solder Temp. RX +225°C for 10 Seconds Recommended Solder Melting Point +180°C Reflow Oven: +240°C Max. (See adjoining diagram)

Page 24

AUTOMATED ASSEMBLY

For high-volume assembly, most users will want to auto-place the modules. The modules have been designed to maintain compatibility with reflow processing techniques; however, due to their hybrid nature, certain aspects of the assembly process are far more critical than for other component types.

Following are brief discussions of the three primary areas where caution must be observed.

Reflow Temperature Profile

The single most critical stage in the automated assembly process is the reflow stage. The reflow profile below should not be exceeded, since excessive temperatures or transport times during reflow will irreparably damage the modules. Assembly personnel will need to pay careful attention to the oven's profile to ensure that it meets the requirements necessary to successfully reflow all components while still remaining within the limits mandated by the modules. The figure below shows the recommended reflow oven profile for the modules.

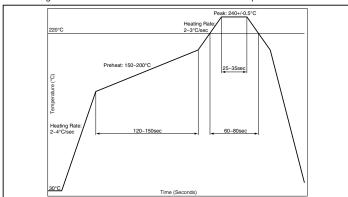


Figure 9: Maximum Reflow Profile

Shock During Reflow Transport

Since some internal module components may reflow along with the components placed on the board being assembled, it is imperative that the modules not be subjected to shock or vibration during the time solder is liquid. Should a shock be applied, some internal components could be lifted from their pads, causing the module to not function properly.

Washability

The modules are not hermetically sealed. Linx recommends wash-free manufacturing; however, the modules can be subjected to a wash cycle provided that a drying time is allowed prior to applying electrical power to the modules. The drying time should be sufficient to allow any moisture that may have migrated into the module to evaporate, thus eliminating the potential for shorting damage during power-up or testing. If the wash contains contaminants, the performance may be adversely affected, even after drying.

Page 25

Downloaded from Elcodis.com electronic components distributor

ONLINE RESOURCES

www.linxtechnologies.com

- Latest News
- Data Guides
- Application Notes
- Knowledgebase
- Software Updates

If you have questions regarding any Linx product and have Internet access, make www.linxtechnologies.com your first stop. Our website is organized in an intuitive format to immediately give you the answers you need. Day or night, the Linx website gives you instant access to the latest information regarding the products and services of Linx. It's all here: manual and software updates, application notes, a comprehensive knowledgebase, FCC information, and much more. Be sure to visit often!

PACTOR

www.antennafactor.com

The Antenna Factor division of Linx offers a diverse array of antenna styles, many of which are optimized for use with our RF modules. From innovative embeddable antennas to low-cost whips, domes to Yagis, and even GPS, Antenna Factor likely has an antenna for you, or can design one to meet your requirements.

www.connectorcity.com

Through its Connector City division, Linx offers a wide selection of high-quality RF connectors, including FCC-compliant types such as RP-SMAs that are an ideal match for our modules and antennas. Connector City focuses on high-volume OEM requirements, which allows standard and custom RF connectors to be offered at a remarkably low cost.

Page 26 Page 27

U.S. CORPORATE HEADQUARTERS

LINX TECHNOLOGIES, INC. 159 ORT LANE MERLIN, OR 97532

PHONE: (541) 471-6256 FAX: (541) 471-6251 www.linxtechnologies.com

Disclaimer

Linx Technologies is continually striving to improve the quality and function of its products. For this reason, we reserve the right to make changes to our products without notice. The information contained in this Data Guide is believed to be accurate as of the time of publication. Specifications are based on representative lot samples. Values may vary from lot-to-lot and are not guaranteed. Typical parameters can and do vary over lots and application. Linx Technologies makes no guarantee, warranty, or representation regarding the suitability of any product for use in any specific application. It is the customer's responsibility to verify the suitability of the part for the intended application. NO LINX PRODUCT IS INTENDED FOR USE IN ANY APPLICATION WHERE THE SAFETY OF LIFE OR PROPERTY IS AT RISK.

Linx Technologies DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LINX TECHNOLOGIES BE LIABLE FOR ANY OF CUSTOMER'S INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY FROM ANY DEFECTIVE OR NON-CONFORMING PRODUCTS OR FOR ANY OTHER BREACH OF CONTRACT BY LINX TECHNOLOGIES. The limitations on Linx Technologies' liability are applicable to any and all claims or theories of recovery asserted by Customer, including, without limitation, breach of contract, breach of warranty, strict liability, or negligence. Customer assumes all liability (including, without limitation, liability for injury to person or property, economic loss, or business interruption) for all claims, including claims from third parties, arising from the use of the Products. The Customer will indemnify, defend, protect, and hold harmless Linx Technologies and its officers, employees, subsidiaries, affiliates, distributors, and representatives from and against all claims, damages, actions, suits, proceedings, demands, assessments, adjustments, costs, and expenses incurred by Linx Technologies as a result of or arising from any Products sold by Linx Technologies to Customer. Under no conditions will Linx Technologies be responsible for losses arising from the use or failure of the device in any application, other than the repair, replacement, or refund limited to the original product purchase price. Devices described in this publication may contain proprietary, patented, or copyrighted techniques, components, or materials. Under no circumstances shall any user be conveyed any license or right to the use or ownership of such items.

© 2010 by Linx Technologies, Inc. The stylized Linx logo, Linx, "Wireless Made Simple", CipherLinx, and the stylized CL logo are the trademarks of Linx Technologies, Inc. Printed in U.S.A.