
wireless semiconductor solutions

EM260
ZigBee/802.15.4 Network Processor

 Integrated 2.4GHz, IEEE 802.15.4-compliant trans-
ceiver:

• Robust RX filtering allows co-existence with
IEEE 802.11g and Bluetooth devices

• - 97dBm RX sensitivity (1% PER, 20byte packet)

• + 3dBm nominal output power

• Increased radio performance mode (boost
mode) gives – 98dbm sensitivity and + 5dBm
transmit power

• Integrated VCO and loop filter

• Secondary TX-only RF port for applications re-
quiring external PA.

 Integrated IEEE 802.15.4 PHY and MAC

 Ember ZigBee-compliant stack running on the
dedicated network processor

 Controlled by the Host using the EmberZNet Serial
Protocol (EZSP)

• Standard Serial Interface (allows for
connection to a variety of Host mi-
crocontrollers)

 Non-intrusive debug interface (SIF)

 Integrated hardware and software support
for InSight Development Environment

 Dedicated peripherals and integrated
memory

 Provides integrated RC oscillator for low
power operation

 Three sleep modes:

• Processor idle (automatic)

• Deep sleep—1.0µA

• Power down—1.0µA

 Watchdog timer and power-on-reset
circuitry

 Integrated AES encryption accelerator

 Integrated 1.8V voltage regulator

Always
powered

PacketTrace

 ADCRF_P,N

Integrated Flash and RAM

SIF_MISO

HF OSC

SIF

Internal
RC-OSC

IO ControllerChip
manager

Regulator

Bias

Interrupt
Controller

RF_TX_ALT_P,N

OSCA

OSCB

SIF_MOSI

SIF_CLK

nSIF_LOAD

Encryption acclerator

IF

Network
Processor
(XAP2b)

VREG_OUT Watchdog

PA select

LNA

PA

PA
DAC

MAC
+

Baseband

TX_ACTIVE

Sleep
timer

BIAS_R

POR

Network Processor
Peripherals

Serial
Controller

SYNTH

S
C

LK

M
IS

O

M
O

SI

nS
SE

L

LI
N

K
_A

C
TI

V
IT

Y

nH
O

S
T_

IN
T

nW
AK

E

nRESET

nS
SE

L_
IN

T

PT
I_

E
N

PT
I_

D
AT

A

S
D

BG

Ember Corporation
343 Congress Street
Boston MA 02210 USA
+1 617.951.0200
www.ember.com

120-1003-000D
July 21, 2006

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

2 120-1003-000D

General Description

The EM260 integrates a 2.4GHz, IEEE 802.15.4-compliant transceiver with a 16-bit network processor (XAP2b
core) to run EmberZNet, the Ember ZigBee-compliant network stack. The EM260 exposes access to the
EmberZNet API across a standard SPI module, allowing application development on a Host processor. This
means that the EM260 can be viewed as a ZigBee peripheral connected over a SPI. The XAP2b microprocessor
is a power-optimized core integrated in the EM260. It contains integrated Flash and RAM memory along with
an optimized peripheral set to enhance the operation of the network stack.

The transceiver utilizes an efficient architecture that exceeds the dynamic range requirements imposed by
the IEEE 802.15.4-2003 standard by over 15dB. The integrated receive channel filtering allows for co-existence
with other communication standards in the 2.4GHz spectrum such as IEEE 802.11g and Bluetooth. The inte-
grated regulator, VCO, loop filter, and power amplifier keep the external component count low. An optional
high-performance radio mode (boost mode) is software selectable to boost dynamic range by a further 3dB.

The EM260 contains embedded Flash and integrated RAM for program and data storage. By employing an
effective wear-leveling algorithm, the stack optimizes the lifetime of the embedded Flash, and affords the
application the ability to configure stack and application tokens within the EM260.

To maintain the strict timing requirements imposed by ZigBee and the IEEE 802.15.4-2003 standard, the EM260
integrates a number of MAC functions into the hardware. The MAC hardware handles automatic ACK transmis-
sion and reception, automatic backoff delay, and clear channel assessment for transmission, as well as auto-
matic filtering of received packets. In addition, the EM260 allows for true MAC level debugging by integrating
the Packet Trace Interface.

An integrated voltage regulator, power-on-reset circuitry, sleep timer, and low-power sleep modes are avail-
able. The deep sleep mode draws less than 1µA, allowing products to achieve long battery life.

Finally, the EM260 utilizes the non-intrusive SIF module for powerful software debugging and programming of
the XAP2b microcontroller.

Target applications for the EM260 include:

 Building automation and control

 Home automation and control

 Home entertainment control

 Asset tracking

The EM260 can only be purchased with the EmberZNet stack. This technical datasheet details the EM260
features available to customers using it with the EmberZNet stack.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 3

Contents

1 Pin Assignment 5
2 Top-Level Functional Description 8
3 Electrical Characteristics 10

3.1 Absolute Maximum Ratings 10
3.2 Recommended Operating Conditions 10
3.3 Environmental Characteristics 10
3.4 DC Electrical Characteristics 11
3.5 Digital I/O Specifications 12
3.6 RF Electrical Characteristics 12

3.6.1 Receive 12
3.6.2 Transmit 13
3.6.3 Synthesizer 14

4 Functional Description 15
4.1 Receive (RX) Path 15

4.1.1 RX Baseband 15
4.1.2 RSSI and CCA 15

4.2 Transmit (TX) Path 15
4.2.1 TX Baseband 16

4.3 Integrated MAC Module 16
4.4 Packet Trace Interface (PTI) 16
4.5 XAP2b Microprocessor 16
4.6 Embedded Memory 17

4.6.1 Flash Memory 17
4.6.2 Simulated EEPROM 17
4.6.3 Flash Information Area (FIA) 18
4.6.4 RAM 18
4.6.5 Registers 18

4.7 Encryption Accelerator 18
4.8 Reset Detection 18
4.9 Power-on-Reset (POR) 18
4.10 Clock Sources 19

4.10.1 High-Frequency Crystal Oscillator
 19

4.10.2 Internal RC Oscillator 20
4.11 Random Number Generator 20
4.12 Watchdog Timer 20
4.13 Sleep Timer 21
4.14 Power Management 21

4.14.1 Integrated Voltage Regulator 21
5 SPI Protocol (Version Number 1) 23

5.1 Physical Interface Configuration 23
5.2 SPI Transaction 23

5.2.1 Command Section 23

5.2.2 Wait Section 24
5.2.3 Response Section 24
5.2.4 Asynchronous Signaling 24
5.2.5 Spacing 24
5.2.6 Waking the EM260 from Sleep 25
5.2.7 Error Conditions 25

5.3 SPI Protocol Timing 26
5.4 Data Format 27
5.5 SPI Byte 27

5.5.1 Primary SPI Bytes 28
5.5.2 Special Response Bytes 28

5.6 Powering On, Power Cycling, and
Rebooting 29

5.6.1 Unexpected Resets 29
5.7 Transaction Examples 30

5.7.1 Obtaining the SPI Protocol Version
 30

5.7.2 EmberZNet Serial Protocol
Frame—NOP Command 30

5.7.3 EM260 Reset 31
5.7.4 Three-Part Transaction: Wake,

Get Version, Stack Status
Callback 32

6 EmberZNet Serial Protocol 34
6.1 Byte Order 34
6.2 Conceptual Overview 34

6.2.1 Stack Configuration 34
6.2.2 Policy Settings 37
6.2.3 Datagram Replies 37
6.2.4 Callbacks 37
6.2.5 Power Management 37
6.2.6 Tokens 38
6.2.7 RAM 38
6.2.8 EM260 Status 38
6.2.9 Random Number Generator 38
6.2.10 Radio Channel Calibration 38

6.3 Protocol Format 38
6.3.1 Type Definitions 40
6.3.2 Structure Definitions 41
6.3.3 Named Values 41
6.3.4 Configuration Frames 53
6.3.5 Utilities Frames 55
6.3.6 Networking Frames 60
6.3.7 Binding Frames 69
6.3.8 Messaging Frames 72
6.3.9 Alphabetical List of Frames 82

6.4 Sample Transactions 84
6.4.1 Joining 84

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

4 120-1003-000D

6.4.2 Binding 85
6.4.3 Sending 85
6.4.4 Receiving 86

7 SIF Module Programming and Debug
Interface 87

8 Typical Application 88

9 Mechanical Details 90
10 Ordering Information 91
11 Abbreviations and Acronyms 92
12 References 94

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 5

1 Pin Assignment

VDD_VCO

RF_P

VDD_RF

RF_N

RF_TX_ALT_P

RF_TX_ALT_N

VDD_IF

BIAS_R

VDD_PADSA

TX_ACTIVE

nSIF_LOAD

SIF_MOSI

SIF_MISO

SIF_CLK

nHOST_INT

RES

VDD_PADS

PTI_DATA

PTI_EN

nSSEL
G

N
D

V
D

D
_F

LA
S

H

S
D

B
G

LI
N

K
_A

C
TI

V
IT

Y

nW
A

K
E

V
D

D
_C

O
R

E

V
D

D
_S

Y
N

TH
_P

R
E

O
S

C
B

O
S

C
A

V
D

D
_2

4M
H

Z

S
C

LK

M
IS

O

M
O

SI

nS
SE

L_
IN

T

V
D

D
_C

O
R

E

V
D

D
_P

A
D

S

nR
E

S
E

T

V
D

D
_P

A
D

S

V
R

E
G

_O
U

T

R
E

S

11 12 13 14 15 16 17 18 19 20

10

9

8

7

6

5

4

3

2

1

21

22

23

24

25

26

27

28

29

30

40 39 38 37 36 35 34 33 32 31

41
GND

EM260

Figure 1. EM260 Pin Assignment

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

6 120-1003-000D

Table 1. Pin Descriptions

Pin # Signal Direction Description

1 VDD_VCO Power 1.8V VCO supply

2 RF_P I/O Differential (with RF_N) receiver input/transmitter output

3 RF_N I/O Differential (with RF_P) receiver input/transmitter output

4 VDD_RF Power 1.8V RF supply (LNA and PA)

5 RF_TX_ALT_P O Differential (with RF_TX_ALT_N) transmitter output (optional)

6 RF_TX_ALT_N O Differential (with RF_TX_ALT_P) transmitter output (optional)

7 VDD_IF Power 1.8V IF supply (mixers and filters)

8 BIAS_R I Bias setting resistor

9 VDD_PADSA Power Analog pad supply (1.8V)

10 TX_ACTIVE O Logic-level control for external RX/TX switch (Active High when
in TX Mode)

11 nRESET I Active low chip reset (internal pull-up)

12 VREG_OUT Power Regulator output (1.8V)

13 VDD_PADS Power Pads supply (2.1 – 3.6V)

14 VDD_CORE Power 1.8V digital core supply

15 nSSEL_INT I SPI Slave Select (Active Low) from Host to EM260. This signal
must be connected to nSSEL (Pin 21)

16 RES Reserved for future use, do not connect to any signal.

17 MOSI I SPI Data, Master Out / Slave In (from Host to EM260)

18 MISO O SPI Data, Master In / Slave Out (from EM260 to Host)

19 VDD_PADS Power Pads supply (2.1 – 3.6V)

20 SCLK I SPI Clock

21 nSSEL I SPI Slave Select (from Host to EM260)

22 PTI_EN O Frame Signal of Packet Trace Interface (PTI)

23 PTI_DATA O Data Signal of Packet Trace Interface (PTI)

24 VDD_PADS Power Pads supply (2.1 – 3.6V)

25 RES Reserved for future use, do not connect to any signal.

26 nHOST_INT O Host Interrupt Signal (from EM260 to Host)

27 SIF_CLK I Serial Interface, Clock (internal pull down)

28 SIF_MISO O Serial Interface, Master In/Slave Out

29 SIF_MOSI I Serial Interface, Master Out / Slave In

30 nSIF_LOAD I/O Serial Interface, load strobe (Open Collector with internal pull
up)

31 GND Power Ground Supply

32 VDD_FLASH Power 1.8V Flash memory supply

33 SDBG O Spare Debug Signal

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 7

Pin # Signal Direction Description

34 LINK_ACTIVITY O Link and Activity Signal

35 nWAKE I Wake Interrupt Signal from Host to EM260

36 VDD_CORE Power 1.8V digital core supply

37 VDD_SYNTH_PRE Power 1.8V Synthesizer and Prescalar supply

38 OSCB I/O 24MHz crystal oscillator or left open for when using an external
clock input on OSCA

39 OSCA I/O 24MHz crystal oscillator or external clock input

40 VDD_24MHZ Power 1.8V high-frequency oscillator supply

41 GND Ground Ground supply pad in the bottom center of the package forms Pin
41 (see the EM260 Reference Design for PCB considerations)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

8 120-1003-000D

2 Top-Level Functional Description
Figure 2 shows a detailed block diagram of the EM260.

Always
powered

PacketTrace

 ADCRF_P,N

Integrated Flash and RAM

SIF_MISO

HF OSC

SIF

Internal
RC-OSC

IO ControllerChip
manager

Regulator

Bias

Interrupt
Controller

RF_TX_ALT_P,N

OSCA

OSCB

SIF_MOSI

SIF_CLK

nSIF_LOAD

Encryption acclerator

IF

Network
Processor
(XAP2b)

VREG_OUT Watchdog

PA select

LNA

PA

PA
DAC

MAC
+

Baseband

TX_ACTIVE

Sleep
timer

BIAS_R

POR

Network Processor
Peripherals

Serial
Controller

SYNTH

S
C

LK

M
IS

O

M
O

SI

nS
S

EL

LI
N

K_
A

C
TI

V
IT

Y

nH
O

ST
_I

N
T

nW
A

KE
nRESET

nS
SE

L_
IN

T

PT
I_

EN

PT
I_

D
AT

A

S
D

BG

Figure 2. EM260 Block Diagram

The radio receiver is a low-IF, super-heterodyne receiver. It utilizes differential signal paths to minimize noise
interference, and its architecture has been chosen to optimize co-existence with other devices within the
2.4GHz band (namely, IEEE 802.11g and Bluetooth). After amplification and mixing, the signal is filtered and
combined prior to being sampled by an ADC.

The digital receiver implements a coherent demodulator to generate a chip stream for the hardware-based
MAC. In addition, the digital receiver contains the analog radio calibration routines and control of the gain
within the receiver path.

The radio transmitter utilizes an efficient architecture in which the data stream directly modulates the VCO.
An integrated PA boosts the output power. The calibration of the TX path as well as the output power is
controlled by digital logic.

The integrated 4.8 GHz VCO and loop filter minimize off-chip circuitry. Only a 24MHz crystal with its loading
capacitors is required to properly establish the PLL reference signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 9

The MAC interfaces the data memory to the RX and TX baseband modules. The MAC provides hardware-based
IEEE 802.15.4 packet-level filtering. It supplies an accurate symbol time base that minimizes the synchroniza-
tion effort of the software stack and meets the protocol timing requirements.

The EM260 integrates hardware support for a Packet Trace module, which acts as an integrated packet sniffer.
This element allows InSight Desktop, the Ember software IDE, to measure which nodes heard which messages
in network debug operation. The integrated Packet Trace module offloads this functionality from the XAP2b
processor so that tracing is done with minimal impact.

The EM260 integrates a 16-bit XAP2b microprocessor developed by Cambridge Consultants Ltd. This power-
efficient, industry-proven core provides the appropriate level of processing power to meet the needs of the
Ember ZigBee-compliant stack, EmberZNet. The EM260 employs a configurable memory protection scheme
usually found on larger microcontrollers. In addition, the SIF module provides a non-intrusive programming and
debug interface allowing for real-time application debugging.

The EM260 exposes the Ember Serial API over the SPI, which allows application development to occur on a
Host microcontroller of choice. In addition to the SPI, two additional signals, nHOST_INT and nWAKE, provide
an easy-to-use handshake mechanism between the Host and the EM260.

The integrated voltage regulator generates a regulated 1.8V reference voltage from an unregulated supply
voltage. This voltage is decoupled and routed externally to supply the 1.8V to the core logic. In addition, an
integrated POR module allows for the proper cold start of the EM260.

The EM260 contains one high-frequency (24MHz) crystal oscillator and, for low-power operation, a second low-
frequency internal 10 kHz oscillator.

The EM260 contains two power domains. The always-powered High Voltage Supply is used for powering the
GPIO pads and critical chip functions. The rest of the chip is powered by a regulated Low Voltage Supply,
which can be disabled during deep sleep to reduce the power consumption.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

10 120-1003-000D

3 Electrical Characteristics

3.1 Absolute Maximum Ratings

Table 2 lists the absolute maximum ratings for the EM260.

Table 2. Absolute Maximum Ratings

Parameter Test Conditions Min. Max. Unit

Regulator voltage (VDD_PADS) - 0.3 3.6 V

Core voltage (VDD_24MHZ, VDD_VCO,
VDD_RF, VDD_IF, VDD_PADSA, VDD_FLASH,
VDD_SYNTH_PRE, VDD_CORE)

 - 0.3 2.0 V

Voltage on RF_P,N; RF_TX_ALT_P,N - 0.3 3.6 V

Voltage on SIF_CLK, SIF_MISO, SIF_MOSI,
nSIF_LOAD, nRESET, VREG_OUT

 - 0.3 VDD_PADS+0.3 V

Voltage on TX_ACTIVE, BIAS_R, OSCA, OSCB - 0.3 VDD_CORE+0.3 V

Storage temperature - 40 + 140 °C

3.2 Recommended Operating Conditions

Table 3 lists the rated operating conditions of the EM260.

Table 3. Operating Conditions

Parameter Test Conditions Min. Typ. Max. Unit

Regulator input voltage (VDD_PADS) 2.1 3.6 V

Core input voltage (VDD_24MHZ, VDD_VCO,
VDD_RF, VDD_IF, VDD_PADSA, VDD_FLASH,
VDD_SYNTH_PRE, VDD_CORE)

 1.7 1.8 1.9 V

Temperature range - 40 + 85 °C

3.3 Environmental Characteristics

Table 4 lists the environmental characteristics of the EM260.

Table 4. Environmental Characteristics

Parameter Test Conditions Min. Typ. Max. Unit

ESD (human body model) On any Pin - 2 + 2 kV

ESD (charged device model) Non-RF Pins - 400 + 400 V

ESD (charged device model) RF Pins - 225 + 225 V

Moisture Sensitivity Level (MSL) TBD

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 11

3.4 DC Electrical Characteristics

Table 5 lists the DC electrical characteristics of the EM260.

Table 5. DC Characteristics

Parameter Test Conditions Min. Typ. Max. Unit

Regulator input voltage (VDD_PADS) 2.1 3.6 V

Power supply range (VDD_CORE) Regulator output or external
input

1.7 1.8 1.9 V

Deep Sleep Current

Quiescent current, including internal
RC oscillator

At 25° C 1.0 µA

RX Current

Radio receiver, MAC, and baseband
(boost mode)

 29.0 mA

Radio receiver, MAC, and baseband 27.0 mA

CPU, RAM, and Flash memory At 25° C and 1.8V core 8.5 mA

Total RX current

(= IRadio receiver, MAC and baseband, CPU +
IRAM, and Flash memory)

At 25° C, VDD_PADS = 3.0V 35.5 mA

TX Current

Radio transmitter, MAC, and baseband
(boost mode)

At max. TX power (+ 4.5dBm
typical)

 33.0 mA

Radio transmitter, MAC, and baseband At max. TX power (+ 2dBm
typical)

 27.0 mA

 At 0 dBm typical 24.3 mA

 At min. TX power (- 32dBm
typical)

 19.5 mA

CPU, RAM, and Flash memory At 25° C, VDD_PADS = 3.0V 8.5 mA

Total TX current

(= IRadio transmitter, MAC and baseband, CPU +
IRAM, and Flash memory)

At 25° C and 1.8V core; max.
power out

 35.5 mA

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

12 120-1003-000D

3.5 Digital I/O Specifications

Table 6 contains the digital I/O specifications for the EM260. The digital I/O power (named VDD_PADS) comes
from three dedicated pins (pins 13, 19, and 24). The voltage applied to these pins sets the I/O voltage.

Table 6. Digital I/O Specifications

Parameter Name Min. Typ. Max Unit

Voltage supply VDD_PADS 2.1 3.6 V

Input voltage for logic 0 VIL 0 0.2 x VDD_PADS V

Input voltage for logic 1 VIH 0.8 x VDD_PADS VDD_PADS V

Input current for logic 0 IIL -0.5 µA

Input current for logic 1 IIH 0.5 µA

Input pull-up resistor value RIPU 30 kΩ

Input pull-down resistor value RIPD 30 kΩ

Output voltage for logic 0 VOL 0 0.18 x VDD_PADS V

Output voltage for logic 1 VOH 0.82 x VDD_PADS VDD_PADS V

Output source current (standard
current pad)

IOHS 4 mA

Output sink current (standard
current pad)

IOLS 4 mA

Output source current (high current
pad: pins 33, 34, and 35)

IOHH 8 mA

Output sink current (high current
pad: pins 33, 34, and 35)

IOLH 8 mA

Total output current (for I/O pads) IOH + IOL 40 mA

Input voltage threshold (OSCA) 0.2 0.8 x VDD_PADS V

Output voltage level (TX_ACTIVE) 0.18 x VDD_CORE 0.82 x VDD_CORE V

Output source current (TX_ACTIVE) 1 mA

3.6 RF Electrical Characteristics

3.6.1 Receive

Table 7 lists the key parameters of the integrated IEEE 802.15.4 receiver on the EM260.

Note: All measurements data was collected with Ember’s Reference Design at 2440 MHz. The Typical
number indicates one standard deviation above the mean.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 13

Table 7. Receive Characteristics

Parameter Test Conditions Min. Typ. Max. Unit

Frequency range 2400 2500 MHz

Sensitivity (boost mode) 1% PER, 20byte packet defined
by IEEE 802.15.4

- 93 - 98.5 dBm

Sensitivity 1% PER, 20byte packet defined
by IEEE 802.15.4

- 92 - 97.5 dBm

High-side adjacent channel
rejection

IEEE 802.15.4 signal at - 82dBm 35 dB

Low-side adjacent channel
rejection

IEEE 802.15.4 signal at - 82dBm 35 dB

2nd high-side adjacent
channel rejection

IEEE 802.15.4 signal at - 82dBm 40 dB

2nd low-side adjacent
channel rejection

IEEE 802.15.4 signal at - 82dBm 40 dB

Channel rejection for all
other channels

IEEE 802.15.4 signal at - 82dBm 40 dB

802.11g rejection centered
at + 12MHz or - 13MHz

IEEE 802.15.4 signal at - 82dBm 40 dB

Maximum input signal level
for correct operation (low
gain)

 0 dBm

Image suppression 30 dB

Co-channel rejection IEEE 802.15.4 signal at - 82dBm - 6 dBc

Relative frequency error

(2 x 40 ppm required by
IEEE 802.15.4)

 - 120 + 120 ppm

Relative timing error

(2 x 40 ppm required by
IEEE 802.15.4)

 - 120 + 120 ppm

Linear RSSI range 40 dB

3.6.2 Transmit

Table 8 lists the key parameters of the integrated IEEE 802.15.4 transmitter on the EM260.

Note: All measurements data was collected with Ember’s Reference Design at 2440 MHz. The Typical
number indicates one standard deviation below the mean.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

14 120-1003-000D

Table 8. Transmit Characteristics

Parameter Test Conditions Min. Typ. Max. Unit

Maximum output power (boost
mode)

At highest power setting 5 dBm

Maximum output power At highest power setting; 25C 0 3 dBm

Minimum output power At lowest power setting - 32 dBm

Error vector magnitude As defined by IEEE 802.15.4,
which sets a 35% maximum

 15 25 %

Carrier frequency error - 40 + 40 ppm

Load impedance 200 Ω

PSD mask relative 3.5MHz away - 20 dB

PSD mask absolute 3.5MHz away - 30 dBm

3.6.3 Synthesizer

Table 9 lists the key parameters of the integrated synthesizer on the EM260.

Table 9. Synthesizer Characteristics

Parameter Test Conditions Min. Typ. Max. Unit

Frequency range 2400 2500 MHz

Frequency resolution 11.7 kHz

Lock time From off, with correct VCO DAC
setting

 100 µs

Relock time Channel change or RX/TX turnaround
(IEEE 802.15.4 defines 192µs turn-
around time)

 100 µs

Phase noise at 100kHz - 71 dBc/Hz

Phase noise at 1MHz - 91 dBc/Hz

Phase noise at 4MHz - 103 dBc/Hz

Phase noise at 10MHz - 111 dBc/Hz

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 15

4 Functional Description
The EM260 connects to a Host microcontroller through a standard SPI interface. The Ember ZigBee Serial
Protocol (EZSP) has been defined to allow an Application to be written on the Host microcontroller of choice.
Therefore, the EM260 comes with a license to EmberZNet, the Ember ZigBee-compliant software stack. The
following brief description of the hardware modules provides the necessary background on the operation of
the EM260. For more information, contact www.ember.com/support.

4.1 Receive (RX) Path

The EM260 RX path spans the analog and digital domains. The RX architecture is based on a low-IF, super-
heterodyne receiver. It utilizes differential signal paths to minimize noise interference. The input RF signal is
mixed down to the IF frequency of 4MHz by I and Q mixers. The output of the mixers is filtered and combined
prior to being sampled by a 12Msps ADC. The RX filtering within the RX path has been designed to optimize the
co-existence of the EM260 with other 2.4GHz transceivers, such as the IEEE 802.11g and Bluetooth®.

4.1.1 RX Baseband

The EM260 RX baseband (within the digital domain) implements a coherent demodulator for optimal perform-
ance. The baseband demodulates the O-QPSK signal at the chip level and synchronizes with the IEEE 802.15.4-
2003 preamble. Once a packet preamble is detected, it de-spreads the demodulated data into 4-bit symbols.
These symbols are buffered and passed to the hardware-based MAC module for filtering.

In addition, the RX baseband provides the calibration and control interface to the analog RX modules, includ-
ing the LNA, RX Baseband Filter, and modulation modules. The EmberZNet software includes calibration
algorithms which use this interface to reduce the effects of process and temperature variation.

4.1.2 RSSI and CCA

The EM260 calculates the RSSI over an 8-symbol period as well as at the end of a received packet. It utilizes
the RX gain settings and the output level of the ADC within its algorithm.

The EM260 RX baseband provides support for the IEEE 802.15.4-2003 required CCA methods summarized in
Table 10. Modes 1, 2, and 3 are defined by the 802.15.4-2003 standard; Mode 0 is a proprietary mode.

Table 10. CCA Mode Behavior

CCA Mode Mode Behavior

0 Clear channel reports busy medium if either carrier sense OR RSSI exceeds their thresholds.

1 Clear channel reports busy medium if RSSI exceeds its threshold.

2 Clear channel reports busy medium if carrier sense exceeds its threshold.

3 Clear channel reports busy medium if both RSSI and carrier sense exceed their thresholds.

4.2 Transmit (TX) Path

The EM260 transmitter utilizes both analog circuitry and digital logic to produce the O-QPSK modulated signal.
The area-efficient TX architecture directly modulates the spread symbols prior to transmission. The differen-
tial signal paths increase noise immunity and provide a common interface for the external balun.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

16 120-1003-000D

4.2.1 TX Baseband

The EM260 TX baseband (within the digital domain) performs the spreading of the 4-bit symbol into its IEEE
802.15.4-2003-defined, 32-chip I and Q sequence. In addition, it provides the interface for software to per-
form the calibration of the TX module in order to reduce process, temperature, and voltage variations.

4.3 Integrated MAC Module

The EM260 integrates critical portions of the IEEE 802.15.4-2003 MAC requirements in hardware. This allows
the EM260 to provide greater bandwidth to application and network operations. In addition, the hardware acts
as a first-line filter for non-intended packets. The EM260 MAC utilizes a DMA interface to RAM memory to
further reduce the overall microcontroller interaction when transmitting or receiving packets.

When a packet is ready for transmission, the software configures the TX MAC DMA by indicating the packet
buffer RAM location. The MAC waits for the backoff period, then transitions the baseband to TX mode and
performs channel assessment. When the channel is clear, the MAC reads data from the RAM buffer, calculates
the CRC, and provides 4-bit symbols to the baseband. When the final byte has been read and sent to the
baseband, the CRC remainder is read and transmitted.

The MAC resides in RX mode most of the time, and different format and address filters keep non-intended
packets from using excessive RAM buffers, as well as preventing the EM260 CPU from being interrupted. When
the reception of a packet begins, the MAC reads 4-bit symbols from the baseband and calculates the CRC. It
assembles the received data for storage in a RAM buffer. A RX MAC DMA provides direct access to the RAM
memory. Once the packet has been received, additional data is appended to the end of the packet in the RAM
buffer space. The appended data provides statistical information on the packet for the software stack.

The primary features of the MAC are:

 CRC generation, appending, and checking

 Hardware timers and interrupts to achieve the MAC symbol timing

 Automatic preamble, and SFD pre-pended to a TX packet

 Address recognition and packet filtering on received packets

 Automatic acknowledgement transmission

 Automatic transmission of packets from memory

 Automatic transmission after backoff time if channel is clear (CCA)

 Automatic acknowledgement checking

 Time stamping of received and transmitted messages

 Attaching packet information to received packets (LQI, RSSI, gain, time stamp, and packet status)

 IEEE 802.15.4-2003 timing and slotted/unslotted timing

4.4 Packet Trace Interface (PTI)

The EM260 integrates a true PHY-level PTI for effective network-level debugging. This two-signal interface
monitors all the PHY TX and RX packets (in a non-intrusive manner) between the MAC and baseband modules.
It is an asynchronous 500kbps interface and cannot be used to inject packets into the PHY/MAC interface. The
two signals from the EM260 are the frame signal (PTI_EN) and the data signal (PTI_DATA). The PTI is supported
by InSight Desktop.

4.5 XAP2b Microprocessor

The EM260 integrates the XAP2b microprocessor developed by Cambridge Consultants Ltd., making it a true
network processor solution. The XAP2b is a 16-bit Harvard architecture processor with separate program and
data address spaces. The word width is 16 bits for both the program and data sides.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 17

The standard XAP2 microprocessor and accompanying software tools have been enhanced to create the XAP2b
microprocessor used in the EM260. The XAP2b adds data-side byte addressing support to the XAP2 by utilizing
the 15th bit of the data-side address bus to indicate byte or word accesses. This allows for more productive
usage of RAM, optimized code, and a more familiar architecture when compared to the standard XAP2.

The XAP2b clock speed is 12MHz. When used with the EmberZNet stack, code is loaded into Flash memory over
the air or by a serial link using a built-in bootloader in a reserved area of the Flash. Alternatively, code may
be loaded via the SIF interface with the assistance of RAM-based utility routines also loaded via SIF.

The XAP2b in the EM260 has also been enhanced to support two separate protection levels. The EmberZNet
stack runs in System Mode, which allows full, unrestricted access to all areas of the chip, while the SPI Proto-
col and stack interface code runs in Application Mode using the EZSP. When running in Application Mode,
writing to certain areas of memory and registers is restricted to prevent common software bugs from interfer-
ing with the operation of the EmberZNet stack. These errant writes are captured and details are reported to
the developer to assist in tracking down and fixing these issues.

4.6 Embedded Memory

The EM260 contains embedded Flash and RAM memory. In addition it partitions a portion of the Flash for
Simulated EEPROM and token storage.

4.6.1 Flash Memory

The Flash cell has been qualified for a data retention time of >100 years at room temperature. Each Flash
page size is 1024 bytes and is rated to have a guaranteed 1,000 write/erase cycles. The Flash memory has
mappings to both the program and data side address spaces.

On the program side, the Flash is always read as whole words. On the data side, the Flash memory is divided
into 16kB sections, which can be separately mapped into a Flash window for the storage of constant data and
the Simulated EEPROM. On the data side, the Flash may be read as bytes, but can only be written to one word
at a time.

4.6.2 Simulated EEPROM

The Ember stack reserves a section of Flash memory to provide Simulated EEPROM storage area for stack and
customer tokens. Therefore, the EM260 utilizes 8kB of upper Flash storage. This section of Flash is only acces-
sible when mapped to the Flash window in the data-side address space. Because the Flash cells are qualified
for up to 1,000 write cycles, the Simulated EEPROM implements an effective wear-leveling algorithm which
effectively extends the number of write cycles for individual tokens.

The number of set-token operations is finite due to the write cycle limitation of the Flash. It is not possible to
guarantee an exact number of set-token operations because the life of the Simulated EEPROM depends on
which tokens are written and how often.

The EM260 stores non-volatile information necessary for network operation as well as 8 tokens available to the
Host (see section 6.2.6, Tokens). The majority of internal tokens is only written when the EM260 performs a
network join or leave operation. With security turned on, a 32-bit nonce counter token is set for every 4,096
messages sent. As a simple ballpark estimate of possible set-token operations, consider an EM260 in a stable
network (no joins or leaves) not sending any messages and the Host is using only one of the 8-byte tokens
available to it. Therefore, a very rough estimate results in approximately 330,000 possible set-token opera-
tions.

The number of possible set-token calls depends on which tokens are being set, so the ratios of set-token calls
for each token plays a large factor. For example, if for every 9 times the Host sets a single App token the
nonce counter token is set (4,096 messages have been sent). A very rough estimate for the total number of
times the App token can bet set is approximately 320,000.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

18 120-1003-000D

Conversely, if for every 9 times the nonce counter is set (36,864 messages have been sent) an App token is set
once. A very rough estimate for the total number of times the App token can bet set is approximately 80,000.

These estimates would typically increase if the EM260 is kept closer to room temperature, since the 1,000
guaranteed write cycles of the Flash is for across temperature.

4.6.3 Flash Information Area (FIA)

The EM260 also includes a separate 1024-byte FIA that can be used for storage of data during manufacturing,
including serial numbers and calibration values. This area is mapped to the data side of the address space.
While this area can be read as individual bytes, it can only be written to one word at a time, and may only be
erased as a whole. Programming of this special Flash page can only be enabled using the SIF interface to
prevent accidental corruption or erasure. The EmberZNet stack reserves a small portion of this space for its
own use, but the rest is available to the application. See section 6.2.6, Tokens, for more information.

4.6.4 RAM

Like the Flash memory, this RAM is also mapped to both the program and data-side address spaces. The EM260
supports a protection mechanism to prevent application code from overwriting system data stored in the RAM.
To enable this, the RAM is segmented into 32-byte sections, each with a configurable bit that allows or denies
write access when the EM260 is running in Application Mode. Read access is always allowed to the entire RAM,
and full access is always allowed when the EM260 is running in System Mode. The EmberZNet stack intelli-
gently manages this protection mechanism to assist in tracking down many common application errors.

4.6.5 Registers

The registers are mapped to the data-side address space. These registers allow for the control and configura-
tion of the various peripherals and modules. There are additional registers used by the EmberZNet stack when
the EM260 is running in System Mode, allowing for control of the MAC, baseband, and other internal modules.
These system registers are protected from being modified when the EM260 is running in Application Mode.

4.7 Encryption Accelerator

The EM260 contains a hardware AES encryption engine that is attached to the CPU using a memory-mapped
interface. NIST-based CCM, CCM*, CBC-MAC, and CTR modes are implemented in hardware. These modes are
described in the IEEE 802.15.4-2003 specification, with the exception of CCM*, which is described in the
ZigBee Security Services Specification 1.0. The EmberZNet stack implements a security API for applications
that require security at the application level.

4.8 Reset Detection

The EM260 contains multiple reset sources. The reset event is logged into the reset source register, which lets
the CPU determine the cause of the last reset. The following reset causes are detected:

 Power-on-Reset

 Watchdog

 PC rollover

 Software reset

 Core Power Dip

4.9 Power-on-Reset (POR)

Each voltage domain (1.8V Digital Core Supply VDD_CORE and Pads Supply VDD_PADS) has a power-on-reset
(POR) cell.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 19

The VDD_PADS POR cell holds the always-powered high-voltage domain in reset until the following conditions
have been met:

 The high-voltage Pads Supply VDD_PADS voltage rises above a threshold.

 The internal RC clock starts and generates three clock pulses.

 The 1.8V POR cell holds the main digital core in reset until the regulator output voltage rises above a
threshold.

Additionally, the digital domain counts 1,024 clock edges on the 24MHz crystal before releasing the reset to
the main digital core.

Table 11 lists the features of the EM260 POR circuitry.

Table 11. POR Specifications

Parameter Min. Typ. Max. Unit

VDD_PADS POR release 1.0 1.2 1.4 V

VDD_PADS POR assert 0.5 0.6 0.7 V

1.8V POR release 1.35 1.5 1.65 V

1.8V POR hysteresis 0.08 0.1 0.12 V

4.10 Clock Sources

The EM260 integrates two oscillators: a high-frequency 24MHz crystal oscillator and a low-frequency internal
10kHz RC oscillator.

4.10.1 High-Frequency Crystal Oscillator

The integrated high-frequency crystal oscillator requires an external 24MHz crystal with an accuracy of +/-
40ppm. Based upon the application Bill of Materials and current consumption requirements, the external
crystal can cover a range of ESR requirements. For a lower ESR, the cost of the crystal increases but the
overall current consumption decreases. Likewise, for higher ESR, the cost decreases but the current consump-
tion increases. Therefore, the designer can choose a crystal to fit the needs of the application.

Table 12 lists the specifications for the high-frequency crystal.

Table 12. High-Frequency Crystal Specifications

Parameter Test Conditions Min. Typ. Max. Unit

Frequency 24 MHz

Duty cycle 40 60 %

Phase noise from 1kHz to
100kHz

 - 120 dBc/H
z

Accuracy Initial, temperature, and aging - 40 + 40 ppm

Crystal ESR Load capacitance of 10pF 100 Ω

Crystal ESR Load capacitance of 18pF 60 Ω

Start-up time to stable clock 1 ms

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

20 120-1003-000D

Parameter Test Conditions Min. Typ. Max. Unit
(max. bias)

Start-up time to stable clock
(optimum bias)

 2 ms

Current consumption Good crystal: 20Ω ESR, 10pF load 0.2 0.3 mA

Current consumption Worst-case crystals (60Ω, 18pF or
100Ω, 10pF)

 0.5 mA

Current consumption At maximum bias 1 mA

4.10.2 Internal RC Oscillator

The EM260 has a low-power, low-frequency RC oscillator that runs all the time. Its nominal frequency is
10kHz.

The RC oscillator has a coarse analog trim control, which is first adjusted to get the frequency as close to
10kHz as possible. This raw clock is used by the chip management block. It is also divided down to 1kHz using
a variable divider to allow software to accurately calibrate it. This calibrated clock is available to the sleep
timer.

Timekeeping accuracy depends on temperature fluctuations the chip is exposed to, power supply impedance,
and the calibration interval, but in general it will be better than 150ppm (including crystal error of 40ppm).

Table 13 lists the specifications of the RC oscillator.

Table 13. RC Oscillator Specifications

Parameter Test Conditions Min. Typ. Max. Unit

Frequency 10 kHz

Analog trim steps 1 kHz

Frequency variation with supply For a voltage drop from 3.6V to 3.1V
or 2.6V to 2.1V

 0.75 1.5 %

4.11 Random Number Generator

The EM260 allows for the generation of random numbers by exposing a randomly generated bit from the RX
ADC. Analog noise current is passed through the RX path, sampled by the receive ADC, and stored in a regis-
ter. The value contained in this register could be used to seed a software-generated random number. The
EmberZNet stack utilizes these random numbers to seed the Random MAC Backoff and Encryption Key Genera-
tors.

4.12 Watchdog Timer

The EM260 contains a watchdog timer clocked from the internal oscillator. If the timer reaches its time-out
value of approximately 2 seconds, it will generate a reset signal to the chip. The watchdog will generate a low
watermark interrupt in advance of actually resetting the chip. This low watermark interrupt occurs approxi-
mately 1.75 seconds after the timer has been restarted. This interrupt can be used to assist during application
debug.

The EM260 firmware will periodically restart the watchdog timer while the firmware is running normally. The
Host cannot effect or configure the watchdog timer.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 21

4.13 Sleep Timer

The 16-bit sleep timer is contained in the always-powered digital block. The clock source for the sleep timer
is a calibrated 1kHz clock. The frequency is slowed down with a 2N prescaler to generate a final timer resolu-
tion of 1ms. With a 1ms tick and a 16-bit timer, the timer wraps about every 65.5 seconds. The EmberZNet
stack appropriately handles timer wraps allowing the Host to order a theoretical maximum sleep delay of 4
million seconds.

4.14 Power Management

The EM260 supports three different power modes: processor ACTIVE, processor IDLE, and DEEP SLEEP.

The IDLE power mode stops code execution of the XAP2b until any interrupt occurs or an external SIF wakeup
command is seen. All peripherals of the EM260 including the radio continue to operate normally. The Em-
berZNet stack automatically invokes IDLE mode as appropriate.

The DEEP SLEEP power mode powers off most of the EM260 but leaves the critical chip functions, such as the
GPIO pads and RAM powered by the High Voltage Supply (VDD_PADS). The EM260 can be woken by configuring
the sleep timer to generate an interrupt after a period of time, using an external interrupt, or with the SIF
interface. Activity on a serial interface may also be configured to wake the EM260, though actual reception of
data is not re-enabled until the EM260 has finished waking up. Depending on the speed of the serial data, it is
possible to finish waking up in the middle of a byte. Care must be taken to reset the serial interface between
bytes and discard any garbage data before the rest.

When in DEEP SLEEP, the internal regulator is disabled and VREG_OUT is turned off. All GPIO output signals
are maintained in a frozen state. The operation of DEEP SLEEP is controlled by EmberZNet APIs which auto-
matically preserve the state of necessary system peripherals. The internal XAP2b CPU registers are automati-
cally saved and restored to RAM by hardware when entering and leaving the DEEP SLEEP mode, allowing code
execution to continue from where it left off. The event that caused the wakeup and any additional events
that occurred while waking up are reported to the application via the EmberZNet APIs. Upon waking from
DEEP SLEEP, the internal regulator is re-enabled.

4.14.1 Integrated Voltage Regulator

The EM260 integrates a low dropout regulator to provide an accurate core voltage at a low quiescent current.
Table 14 lists the specifications for the integrated voltage regulator. With the regulator enabled, the pads
supply voltage VDD_PADS is stepped down to the 1.8V regulator output VREG_OUT. The VREG_OUT signal must
be externally decoupled and routed to the 1.8V core supply pins VDD_24MHZ, VDD_VCO, VDD_RF, VDD_IF,
VDD_SYNTH_PRE, VDD_PADSA, VDD_CORE, and VDD_FLASH.

In addition, the regulator can be operated with several configurations of external load capacitors and decoup-
ling capacitors. The EM260 Reference Design details the different configurations recommended by Ember.

Table 14. Integrated Voltage Regulator Specifications

Spec Point Min. Typ. Max. Units Comments

Supply range for regulator 2.1 3.6 V VDD_PADS

Regulated output 1.7 1.8 1.9 V

PSRR - 40 dB @100KHz

Supplied current 0 50 mA

Current 200 µA No load current (bandgap, regulator,
feedback)

Quiescent current 10 nA

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

22 120-1003-000D

Instead of using the internal regulator, an external regulator may be used. The external regulator must be
controlled by a GPIO from the Host microcontroller.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 23

5 SPI Protocol (Version Number 1)
The EM260 Low Level Protocol centers on the SPI interface for communication with a pair of GPIO for hand-
shake signaling. The following are the primary design goals for the Low Level Protocol:

 The EM260 looks like a hardware peripheral.

 The EM260 is the slave device and all transactions are initiated by the Host (the master).

 The EM260 supports a reasonably high data rate.

5.1 Physical Interface Configuration

The EM260 supports both SPI Slave Mode 0 (clock is idle low, sample on rising edge) and SPI Slave Mode 3
(clock is idle high, sample on rising edge) at a maximum SPI clock rate of 5MHz, as illustrated in Figure 3. The
convention for the waveforms in this document is to show Mode 0.

 MSB LSB

 MSB LSB

EM260 – Slave (MISO)

Host – Master (MOSI)

Clock (SCLK)

Figure 3. SPI Transfer Format, Mode 0 and Mode 3

The nHOST_INT signal and the nWAKE signal are both active low. The Host must supply a pull-up resistor on
the nHOST_INT signal to prevent errant interruptions during undefined events such as the EM260 resetting.
The EM260 supplies an internal pull-up on the nWAKE signal to prevent errant interruptions during undefined
events such as the Host resetting.

5.2 SPI Transaction

The basic EM260 SPI transaction is half-duplex to ensure proper framing and to give the EM260 adequate
response time. The basic transaction, as shown in Figure 4, is composed of three sections: Command, Wait,
and Response. The transaction can be considered analogous to a function call. The Command section is the
function call, and the Response section is the return value.

Figure 4. General Timing Diagram for a SPI Transaction

5.2.1 Command Section

The Host begins the transaction by asserting the Slave Select and then sending a command to the EM260. This
command can be of any length from 2 to 128 bytes and must not begin with 0xFF. During the Command
section, the EM260 will respond with only 0xFF. The Host should ignore data on MISO during the Command
section. Once the Host has completed transmission of the entire message, the transaction moves to the Wait
section.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

24 120-1003-000D

5.2.2 Wait Section

The Wait section is a period of time during which the EM260 may be processing the command or performing
other operations. Note that this section can be any length of time up to 200 milliseconds. Because of the
variable size of the Wait section, an interrupt-driven or polling-driven method is suggested for clocking the SPI
as opposed to a DMA method. Since the EM260 can require up to 200 milliseconds to respond, as long as the
Host keeps Slave Select active, the Host can perform other tasks while waiting for a Response.

To determine when a Response is ready, use one of two methods:

 Clock the SPI until the EM260 transmits a byte other than 0xFF.

 Interrupt on the falling edge of nHOST_INT.

The first method, clocking the SPI, is recommended due to simplicity in implementing. During the Wait
section, the EM260 will transmit only 0xFF and will ignore all incoming data until the Response is ready. When
the EM260 transmits a byte other than 0xFF, the transaction has officially moved into the Response section.
Therefore, the Host can poll for a Response by continuing to clock the SPI by transmitting 0xFF and waiting for
the EM260 to transmit a byte other than 0xFF. The EM260 will also indicate that a Response is ready by
asserting the nHOST_INT signal. The falling edge of nHOST_INT is the indication that a Response is ready. Once
the nHOST_INT signal asserts, nHOST_INT will return to idle after the Host begins to clock data.

5.2.3 Response Section

When the EM260 transmits a byte other than 0xFF, the transaction has officially moved into the Response
section. The data format is the same format used in the Command section. The response can be of any length
from 2 to 128 bytes and will not begin with 0xFF. Depending on the actual response, the length of the re-
sponse is known from the first or second byte and this length should be used by the Host to clock out exactly
the correct number of bytes. Once all bytes have been clocked, it is allowable for the Host to deassert chip
select. Since the Host is in control of clocking the SPI, there are no ACKs or similar signals needed back from
the Host because the EM260 will assume the Host could accept the bytes being clocked on the SPI. After every
transaction, the Host must hold the Slave Select high for a minimum of 1ms. This timing requirement is called
the inter-command spacing and is necessary to allow the EM260 to process a command and become ready to
accept a new command.

5.2.4 Asynchronous Signaling

When the EM260 has data to send to the Host, it will assert the nHOST_INT signal. The nHOST_INT signal is
designed to be an edge-triggered signal as opposed to a level-triggered signal; therefore, the falling edge of
nHOST_INT is the true indicator of data availability. The Host then has the responsibility to initiate a transac-
tion to ask the EM260 for its output. The Host should initiate this transaction as soon as possible to prevent
possible backup of data in the EM260. The EM260 will deassert the nHOST_INT signal after receiving a byte on
the SPI. Due to inherent latency in the EM260, the timing of when the nHOST_INT signal returns to idle can
vary between transactions. nHOST_INT will always return to idle for a minimum of 10us before asserting again.
If the EM260 has more output available after the transaction has completed, the nHOST_INT signal will assert
again after Slave Select is deasserted and the Host must make another request.

5.2.5 Spacing

To ensure that the EM260 is always able to deal with incoming commands, a minimum inter-command spacing
is defined at 1ms. After every transaction, the Host must hold the Slave Select high for a minimum of 1ms.
The Host must respect the inter-command spacing requirement, or the EM260 will not have time to operate on
the command; additional commands could result in error conditions or undesired behavior. If the nHOST_INT
signal is not already asserted, the Host is allowed to use the Wake handshake instead of the inter-command
spacing to determine if the EM260 is ready to accept a command.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 25

5.2.6 Waking the EM260 from Sleep

Waking up the EM260 involves a simple handshaking routine as illustrated in Figure 5. This handshaking insures
that the Host will wait until the EM260 is fully awake and ready to accept commands from the Host. If the
EM260 is already awake when the handshake is performed (such as when the Host resets and the EM260 is
already operating), the handshake will proceed as described below with no ill effects.

Figure 5. EM260 Wake Sequence

Waking the EM260 involves the following steps:

1. Host asserts nWAKE.

2. EM260 interrupts on nWAKE and exits sleep.

3. EM260 performs all operations it needs to and will not respond until it is ready to accept commands.

4. EM260 asserts nHOST_INT within 10ms of nWAKE asserting. If the EM260 does not assert nHOST_INT within
10ms of nWAKE, it is valid for the Host to consider the EM260 unresponsive and to reset the EM260.

5. Host detects nHOST_INT assertion. Since the assertion of nHOST_INT indicates the EM260 can accept SPI
transactions, the Host does not need to hold Slave Select high for the normally required minimum 1ms of
inter-command spacing.

6. Host deasserts nWAKE after detecting nHOST_INT assertion.

7. EM260 will deassert nHOST_INT within 25µs of nWAKE deasserting.

8. After 25µs, any change on nHOST_INT will be an indication of a normal asynchronous (callback) event.

5.2.7 Error Conditions

If two or more different error conditions occur back to back, only the first error condition will be reported to
the Host (if it is possible to report the error). The following are error conditions that might occur with the
EM260.

 Oversized EZSP Frame: If the transaction includes an EZSP Frame, the Length Byte cannot be a value
greater than 125. If the EM260 detects a length byte greater than 125, it will drop the incoming Command
and abort the entire transaction. The EM260 will then assert nHOST_INT after Slave Select returns to Idle
to inform the Host through an error code in the Response section what has happened. Not only is the
Command in the problematic transaction dropped by the EM260, but the next Command is also dropped,
because it is responded to with the Oversized EZSP Frame Error Response.

 Aborted Transaction: An aborted transaction is any transaction where Slave Select returns to Idle prema-
turely and the SPI Protocol dropped the transaction. The most common reason for Slave Select returning to
Idle prematurely is the Host unexpectedly resetting. If a transaction is aborted, the EM260 will assert
nHOST_INT to inform the Host through an error code in the Response section what has happened. When a
transaction is aborted, not only does the Command in the problematic transaction get dropped by the
EM260, but the next Command also gets dropped since it is responded to with the Aborted Transaction Er-
ror Response.

HOST _ INT

WAKE

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

26 120-1003-000D

 Missing Frame Terminator: Every Command and Response must be terminated with the Frame Terminator
byte. The EM260 will drop any Command that is missing the Frame Terminator. The EM260 will then imme-
diately provide the Missing Frame Terminator Error Response.

 Long Transaction: A Long Transaction error occurs when the Host clocks too many bytes. As long as the
inter-command spacing requirement is met, this error condition should not cause a problem, since the
EM260 will send only 0xFF outside of the Response section as well as ignore incoming bytes outside of the
Command section.

 Unresponsive: Unresponsive can mean the EM260 is not powered, not fully booted yet, incorrectly con-
nected to the Host, or busy performing other tasks. The Host must wait the maximum length of the Wait
section before it can consider the EM260 unresponsive to the Command section. This maximum length is
200 milliseconds, measured from the end of the last byte sent in the Command Section. If the EM260 ever
fails to respond during the Wait section, it is valid for the Host to consider the EM260 unresponsive and to
reset the EM260. Additionally, if nHOST_INT does not assert within 10ms of nWAKE asserting during the
wake handshake, the Host can consider the EM260 unresponsive and reset the EM260.

5.3 SPI Protocol Timing

Figure 6 illustrates all critical timing parameters in the SPI Protocol. These timing parameters are a result of
the EM260’s internal operation and both constrain Host behavior and characterize EM260 operation. The
parameters shown are discussed elsewhere in this document. Note that Figure 6 is not drawn to scale, but is
instead drawn only to illustrate where the parameters are measured.

Figure 6. SPI Protocol Timing Waveform

Table 15 lists the timing parameters of the SPI Protocol. These parameters are illustrated in Figure 6.

Table 15. SPI Protocol Timing Parameters

Parameter Description Min. Typ. Max. Unit

t1 (a) Wake handshake, while 260 is awake 132 133 140 µs

t1 (b) Wake handshake, while 260 is asleep 7.2 7.3 7.5 ms

t2 Wake handshake finish 1.1 1.2 25 µs

t3 Reset pulse width 8 µs

t4 Startup time 250 1090 ms

t5 nHOST_INT deasserting after Command 13 35 75 µs

t6 Clock rate 200 ns

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 27

Parameter Description Min. Typ. Max. Unit

t7 Wait section 25 755 200000 µs

t8 nHOST_INT deasserting after Response 20 130 800 µs

t9 nHOST_INT asserting after transaction 25 70 800 µs

t10 Inter-command spacing 1 ms

5.4 Data Format

The data format, also referred to as a command, is the same for both the Command section and the Response
section. The data format of the SPI Protocol is straightforward, as illustrated in Figure 7.

SPI Byte Length or
Error EZSP Frame (Variable Length) Frame

Terminator

Figure 7. SPI Level Data Format

The total length of a command must not exceed 128 bytes.

All commands must begin with the SPI Byte. Some commands are only two bytes—that is, they contain the SPI
Byte and Frame Terminator only.

The Length Byte is only included if there is information in the EZSP Frame (EmberZNet Serial Protocol Frame)
and the Length Byte defines the length of just the EZSP Frame. Therefore, if a command includes an EZSP
Frame, the Length Byte can have a value from 2 through 125 and the overall command size will be 5 through
128. The SPI Byte can be a specific value indicating if there is an EZSP Frame or not, and if there is an EZSP
Frame, then the Length Byte can be expected.

The Error Byte is used by the error responses to provide additional information about the error. This addi-
tional information is described in the following sections.

The EZSP Frame contains the data needed for operating the networking stack. The EZSP Frame and its format
are explained in Chapter 6, EmberZNet Serial Protocol.

The Frame Terminator is a special control byte used to mark the end of a command. The Frame Terminator
byte is defined as 0xA7 and is appended to all Commands and Responses immediately after the final data
byte. The purpose of the Frame Terminator is to provide a known byte the SPI Protocol can use to detect a
corrupt command. For example, if the EM260 resets during the Response Section, the Host will still clock out
the correct number of bytes. But when the host attempts to verify the value 0xA7 at the end of the Response,
it will see either the value 0x00 or 0xFF and know that the EM260 just reset and the corrupt Response should
be discarded.

Note: The Length Byte only specifies the length of the EZSP Frame. It does not include the Frame Termina-
tor.

5.5 SPI Byte

Table 16 lists the possible commands and their responses in the SPI Byte.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

28 120-1003-000D

Table 16. SPI Commands & Reponses

Command
Value

Command Response
Value

Response

Any Any 0x00 EM260 reset occurred—This is never used in
another Response; it always indicates an EM260
Reset.

Any Any 0x01 Oversized EZSP Frame received—This is never used
in another Response; it always indicates an
overflow occurred.

Any Any 0x02 Aborted Transaction occurred—This is never used
in another Response; it always indicates an
aborted transaction occurred.

Any Any 0x03 Missing Frame Terminator—This is never used in
another Response; it always indicates a Missing
Frame Terminator in the Command.

Any Any 0x04 Reserved

0x00 – 0x0F Reserved None [none]

0x0A SPI Protocol Version 0x81 – 0xBF bit[7] is always set. bit[6] is always cleared.
bit[5:0] is a number from 1–63.

0x0B SPI Status 0xC0 – 0xC1 bit[7] is always set. bit[6] is always set. bit[0]—
Set if Alive.

0xF0 – 0xFD Reserved None [none]

0xFE EZSP Frame 0xFE EZSP Frame

0xFF Invalid 0xFF Invalid

5.5.1 Primary SPI Bytes

There are three primary SPI Bytes: SPI Protocol Version, SPI Status, and EZSP Frame.

 SPI Protocol Version [0x0A]: Sending this command requests the SPI Protocol Version number from the SPI
Interface. The response will always have bit 7 set and bit 6 cleared. In this current version, the response
will be [0x81], since the version number corresponding to this set of Command-Response values is version
number 1. The version number can be a value from 1 to 63 [0x81–0xBF].

 SPI Status [0x0B]: Sending this command asks for the EM260 status. The response status byte will always
have the upper 2 bits set. In this current version, the status byte only has one status bit [0], which is set if
the EM260 is alive and ready for commands.

 EZSP Frame [0xFE]: This byte indicates that the current transaction is an EZSP transaction and there is
more data to follow. This SPI Byte, and only this SPI Byte, will cause the transaction to look like the full
data format illustrated in Figure 7. The byte immediately after this SPI Byte will be a Length Byte, and it is
used to identify the length of the EZSP Frame. The EZSP Frame is defined in section 6, EmberZNet Serial
Protocol. If the SPI Byte is 0xFE, it means the minimum transaction size is five bytes. All other SPI Bytes
mean the transaction size is two or three bytes.

5.5.2 Special Response Bytes

There are only five SPI Byte values, [0x00–0x04], ever used as error codes (see Table 17). When the error
condition occurs, any command sent to the EM260 will be ignored and responded to with one of these codes.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 29

These special SPI Bytes must be trapped and dealt with. In addition, for each error condition the Error Byte
(instead of the Length Byte) is also sent with the SPI Byte.

Table 17. Byte Values Used as Error Codes

SPI Byte Value Error Message Error Description Error Byte Description

[0x00] EM260 Reset See section 5.6, Powering On, Power Cycling,
and Rebooting.

The reset type. Refer to Ember’s API
documentation discussing
EmberResetType.

[0x01] Oversized EZSP
Frame

The command contained an EZSP frame with a
Length Byte greater than 125. The EM260 was
forced to drop the entire command.

Reserved

[0x02] Aborted Transaction The transaction was not completed properly
and the EM260 was forced to abort the trans-
action.

Reserved

[0x03] Missing Frame
Terminator

The command was missing the Frame Termina-
tor. The EM260 was forced to drop the entire
command.

Reserved

[0x04] Reserved [none] [none]

5.6 Powering On, Power Cycling, and Rebooting

When the Host powers on (or reboots), it cannot guarantee that the EM260 is awake and ready to receive
commands. Therefore, the Host should always perform the Wake EM260 handshake to guarantee that the
EM260 is awake. If the EM260 resets, it needs to inform the Host so that the Host can reconfigure the stack if
needed.

When the EM260 resets, it will assert the nHOST_INT signal, telling the Host that it has data. The Host should
request data from the EM260 as usual. The EM260 will ignore whatever command is sent to it and respond only
with two bytes. The first byte will always be 0x00 and the second byte will be the reset type as defined by
EmberResetType. This specialty SPI Byte is never used in another Response SPI Byte. If the Host sees 0x00
from the EM260, it knows that the EM260 has been reset. The EM260 will deassert the nHOST_INT signal
shortly after receiving a byte on the SPI and process all further commands in the usual manner. In addition to
the Host having control of the reset line of the EM260, the EmberZNet Serial Protocol also provides a mecha-
nism for a software reboot.

5.6.1 Unexpected Resets

The EM260 is designed to protect itself against undefined behavior due to unexpected resets. The protection is
based on the state of Slave Select since the inter-command spacing mandates that Slave Select must return to
idle. The EM260’s internal SPI Protocol uses Slave Select returning to idle as a trigger to reinitialize its SPI
Protocol. By always reinitializing, the EM260 is protected against the Host unexpectedly resetting or terminat-
ing a transaction. Additionally, if Slave Select is active when the EM260 powers on, the EM260 will ignore SPI
data until Slave Select returns to idle. By ignoring SPI traffic until idle, the EM260 will not begin receiving in
the middle of a transaction.

If the Host resets, in most cases it should reset the EM260 as well so that both devices are once again in the
same state: freshly booted. Alternately, the Host can attempt to recover from the reset by recovering its
previous state and resynchronizing with the state of the EM260.

If the EM260 resets during a transaction, the Host can expect either a Wait Section timeout or a missing Frame
Terminator indicating an invalid Response.

If the EM260 resets outside of a transaction, the Host should proceed normally.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

30 120-1003-000D

5.7 Transaction Examples

This section contains the following transaction examples:

 Obtaining the SPI Protocol Version

 EmberZNet Serial Protocol Frame—NOP Command

 EM260 Reset

 Three-Part Transaction: Wake, Get Version, Stack Status Callback

5.7.1 Obtaining the SPI Protocol Version

Figure 8. SPI Transaction Example (Get SPI Protocol Version)

1. Activate Slave Select (nSSEL).

2. Transmit the command 0x0A - SPI Protocol Version Request.

3. Transmit the Frame Terminator, 0xA7.

4. Wait for nHOST_INT to assert.

5. Transmit and receive 0xFF until a byte other than 0xFF is received.

6. Receive response 0x81 (a byte other than 0xFF), then receive the Frame Terminator, 0xA7.

7. Bit 7 is always set and bit 6 is always cleared in the Version Response, so this is Version 1.

8. Deactivate Slave Select.

5.7.2 EmberZNet Serial Protocol Frame—NOP Command

Figure 9. EmberZNet Serial Protocol Frame - NOP Command Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 31

1. Activate Slave Select (nSSEL).

2. Transmit the appropriate command:

• 0xFE - SPI Byte indicating an EZSP Frame

• 0x02 - Length Byte showing the EZSP Frame is 2 bytes long

• 0x00 - EZSP Frame Control Byte indicating a command with no sleeping

• 0x05 - EZSP Frame Type Byte indicating the NOP command

• 0xA7 - Frame Terminator

3. Wait for nHOST_INT to assert.

4. Transmit and receive 0xFF until a byte other than 0xFF is received.

5. Receive response 0xFE (a byte other than 0xFF) and read the next byte for a length.

6. Stop transmitting after the number of bytes (length) is received plus the Frame Terminator.

7. Decode the response:

• 0xFE - SPI Byte indicating an EZSP Frame

• 0x02 - Length Byte showing the EZSP Frame is 2 bytes long

• 0x80 - EZSP Frame Control Byte indicating a response with no overflow

• 0x05 - EZSP Frame Type Byte indicating the NOP response

• 0xA7 - Frame Terminator

8. Deactivate Slave Select.

5.7.3 EM260 Reset

Figure 10. EM260 Reset Example

1. nHOST_INT asserts.

2. Activate Slave Select (nSSEL).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

32 120-1003-000D

3. Transmit the command:

0xFE SPI Byte indicating an EZSP Frame

0x02 Length Byte showing the EZSP Frame is 2 bytes long

0x00 EZSP Frame Control Byte indicating a command with no sleeping

0x06 EZSP Frame Type Byte indicating the callback command

0xA7 Frame Terminator

4. Wait for nHOST_INT to assert.

5. Transmit and receive 0xFF until a byte other than 0xFF is received.

6. Receive response 0x00 (a byte other than 0xFF).

7. Receive the Error Byte and decode (0x02 is enumerated as RESET_POWERON).

8. Receive the Frame Terminator (0xA7).

9. Response 0x00 indicates the EM260 has reset and the Host should respond appropriately.

10. Deactivate Slave Select.

11. Since nHOST_INT does not assert again, there is no more data for the Host.

5.7.4 Three-Part Transaction: Wake, Get Version, Stack Status Callback

Figure 11. Timing Diagram of the Three-Part Transaction

1. Activate nWAKE and activate timeout timer.

2. EM260 wakes up (if not already) and enables communication.

3. nHOST_INT asserts, indicating the EM260 can accept commands.

4. Host sees nHOST_INT activation within 3ms and deactivates nWAKE and timeout timer.

5. nHOST_INT deasserts immediately after nWAKE.

6. Activate Slave Select.

7. Transmit the Command 0x0A - SPI Protocol Version Request.

8. Transmit the Frame Terminator, 0xA7.

9. Wait for nHOST_INT to assert.

10. Transmit and receive 0xFF until a byte other than 0xFF is received.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 33

11. Receive response 0x81 (a byte other than 0xFF), then receive the Frame Terminator, 0xA7.

12. Bit 7 is always set and bit 6 is always cleared in the Version Response, so this is Version 1.

13. Deactivate Slave Select.

14. Host begins timing the inter-command spacing of 1ms in preparation for sending the next command.

15. nHOST_INT asserts shortly after deactivating Slave Select, indicating a callback.

16. Host sees nHOST_INT, but waits for the 1ms before responding.

17. Activate Slave Select.

18. Transmit the command:

0xFE SPI Byte indicating an EZSP Frame

0x02 Length Byte showing the EZSP Frame is 2 bytes long

0x00 EZSP Frame Control Byte indicating a command with no sleeping

0x06 EZSP Frame Type Byte indicating the callback command

0xA7 Frame Terminator

19. Wait for nHOST_INT to assert.

20. Transmit and receive 0xFF until a byte other than 0xFF is received.

21. Receive response 0xFE (a byte other than 0xFF), read the next byte for a length.

22. Stop transmitting after the number of bytes (length) is received plus the Frame Terminator.

23. Decode the response:

0xFE SPI Byte indicating an EZSP Frame

0x03 Length Byte showing the EZSP Frame is 3 bytes long

0x80 EZSP Frame Control Byte indicating a response with no overflow

0x19 EZSP Frame Type Byte indicating the emberStackStatusHandler response

0x91 EmberStatus EMBER_NETWORK_DOWN from emberStackStatusHandler

0xA7 Frame Terminator

24. Deactivate Slave Select.

25. Since nHOST_INT does not assert again, there is no more data for the Host.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

34 120-1003-000D

6 EmberZNet Serial Protocol
Ember designed the EmberZNet Serial Protocol (EZSP) to be very familiar to customers who have used the
EmberZNet 2.x stack API. The majority of the commands and responses are functionally identical to those
found in EmberZNet 2.x. The variations are due mainly to the timing differences of running the application on
a separate processor across a serial interface. Communication between the EM260 and the Host consists of a
two-message transaction. The Host sends a command message to the EM260 and then the EM260 sends a
response message to the Host. If the EM260 needs to communicate asynchronously with the Host, it will
indicate this by using the interrupt line and then waiting for the Host to send the callback command.

All EZSP frames begin with a Frame Control Byte followed by a Frame ID Byte. The format of the rest of the
frame depends on the frame ID. Section 6.3 Protocol Format defines the format for all the frame IDs. Most of
the frames have a fixed length. A few, such as those containing application messages, are of variable length.
The frame control indicates the direction of the message (command or response). For commands, the frame
control also contains power management information, and for responses it also contains status information.

When a command contains an application message, the Host must supply a one-byte tag. This tag is used in
future commands and responses to refer to the message. For example, when sending a message, the Host
provides both the message contents and a tag. The tag is then used to report the fate of the message in a
later response from the EM260.

6.1 Byte Order

All multiple octet fields are transmitted and received with the least significant octet first, also referred to as
little endian. This is the same byte order convention specified by 802.15.4 and ZigBee. Note that EUI64 fields
are treated as a 64-bit number and are therefore transmitted and received in little endian order. Each indi-
vidual octet is transmitted most significant bit first, as shown in section 5.1, Physical Interface Configuration.

6.2 Conceptual Overview

This section provides an overview of the concepts that are specific to the EM260 or that differ from the
EmberZNet 2.x stack API. The commands and responses mentioned in this overview are described in more
detail later in this document.

6.2.1 Stack Configuration

The Host can use the version command to obtain information about the firmware running on the EM260.
There are a number of configuration values that affect the behavior of the stack. The Host can read these
values at any time using the getConfigurationValue command. After the EM260 has reset, the Host can
modify any of the default values using the setConfigurationValue command. The Host must then provide
information about the application endpoints using the addEndpoint command.

Table 18 gives the minimum, default and maximum values for each of the configuration values. Also listed is
the RAM cost. This is the number of bytes of additional RAM required to increase the configuration value by
one. Since the total amount of RAM is fixed, the additional RAM required must be made available by reducing
one of the other configuration values.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 35

Table 18. Configuration Values

Value Min. Def. Max. Units RAM
Cost

Description

EZSP_CONFIG_PACKET_BUFFER_COUNT 5 24 packet
buffers

40 The number of packet buffers
available to the stack.

EZSP_CONFIG_NEIGHBOR_TABLE_SIZE 8 16 16 neighbor
s

18 The maximum number of
router neighbors the stack can
keep track of. A neighbor is a
node within radio range.

EZSP_CONFIG_TRANSPORT_PACKET_COUNT 0 10 messages 9 The maximum number of
datagram and sequenced
messages the stack can have
"in-flight" at any time. Here,
"in-flight" means "in the
process of being either trans-
mitted or received".

EZSP_CONFIG_BINDING_TABLE_SIZE (A) 0 8 32 +
(B)

entries 3 The maximum number of
bindings supported by the
stack. It includes the bindings
in EEPROM and in RAM.

EZSP_CONFIG_TEMPORARY_BINDING_ENTRIES (B) 0 8 (A) entries 11 The number of binding table
entries in RAM.

EZSP_CONFIG_TRANSPORT_CONNECTION_COUNT 0 0 entries 11 The number of binding table
entries that can concurrently
support an open sequenced
connection.

EZSP_CONFIG_ROUTE_TABLE_SIZE (C) 0 16 entries 5 The maximum number of
destinations to which a node
can route messages. This
include both messages origi-
nating at this node and those
relayed for others.

EZSP_CONFIG_DISCOVERY_TABLE_SIZE 0 8 entries 9 The number of simultaneous
route discoveries that a node
will support.

EZSP_CONFIG_DISCOVERY_CACHE_ENDPOINTS (D) 0 4 end-
points

0 End-device child endpoints
larger than this value will not
have their discovery informa-
tion cached by their router
parent.

EZSP_CONFIG_DISCOVERY_CACHE_ENTRY_SIZE 11 +
(D)

15 15 bytes 0 The size of an entry in the end
device discovery cache on a
router. Endpoint descriptions
longer than this will not be
cached.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

36 120-1003-000D

Value Min. Def. Max. Units RAM
Cost

Description

EZSP_CONFIG_DISCOVERY_CACHE_SIZE 0 35 35 entries 0 The number of entries in the
discovery cache on a router.
Each end device child requires
1 + (D) entries. The cache is
held in EEPROM.

EZSP_CONFIG_STACK_PROFILE 0 0 0 Specifies the stack profile.

EZSP_CONFIG_SECURITY_LEVEL 0 5 5 0 The security level used for
security at the MAC and
network layers. The supported
values are 0 (no security) and
5 (payload is encrypted and a
four-byte MIC is used for
authentication).

EZSP_CONFIG_MAX_TREE_DEPTH 0 Reserved.

EZSP_CONFIG_MAX_ROUTER_CHILDREN 0 Reserved.

EZSP_CONFIG_MAX_HOPS 0 10 hops 0 The maximum number of hops
for a message.

EZSP_CONFIG_MAX_END_DEVICE_CHILDREN (E) 0 6 32 children 4 The maximum number of end
device children that a router
will support.

EZSP_CONFIG_INDIRECT_TRANSMISSION_TIMEOUT 0 300
0

3000
0

milli-
seconds

0 The maximum amount of time
that the MAC will hold a
message for indirect transmis-
sion to a child.

EZSP_CONFIG_RESERVED_ROUTING_ENTRIES 0 0 (C) entries 0 The number of route table
entries that are reserved for
temporary aggregation routes
in the mesh stack.

EZSP_CONFIG_MOBILE_NODE_POLL_TIMEOUT 0 20 quarter
seconds

0 The maximum amount of time
that a mobile node can wait
between polls. If no poll is
heard within this timeout,
then the parent removes the
mobile node from its tables.

EZSP_CONFIG_RESERVED_MOBILE_CHILD_ENTRIES 0 0 (E) entries 0 The number of child table
entries reserved for use only
by mobile nodes.

EZSP_CONFIG_HOST_RAM 0 0 255 bytes 1 The amount of RAM available
for use by the Host.

EZSP_CONFIG_TX_POWER_MODE 0 0 3 0 Enables boost power mode
and/or the alternate transmit-
ter output.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 37

6.2.2 Policy Settings

There are some situations when the EM260 must make a decision but there isn’t enough time to consult with
the Host. The Host can control what decision is made by setting the policy in advance. The EM260 will then
make decisions according to the current policy. The Host is informed via callbacks each time a decision is
made, but by the time the news reaches the Host, it is too late to change that decision. You can change the
policies at any time by using the setPolicy command.

A policy is used for trust center behavior, external binding modification requests, datagram replies, generat-
ing pollHandler callbacks, and the contents of the unicastSent and messageSent callbacks.

6.2.3 Datagram Replies

The policy for datagram replies allows the Host to decide whether it wants to supply the EM260 with a reply
payload for every datagram received. If the Host sets the policy to not supply a reply, the EM260 will auto-
matically send an empty reply (containing no payload) for every datagram received. If the Host sets the policy
to supply the reply, then the EM260 will only send a reply when instructed by the Host.

If the reply does not reach the sender before the transport retry timeout expires, the sender will transmit the
datagram again. The Host must process the incoming message and supply the reply quickly enough to avoid
retransmission by the sender. Provided this timing constraint is met, multiple datagrams can be received
before the first reply is supplied and the replies can be supplied in any order.

6.2.4 Callbacks

Asynchronous callbacks from the EM260 are sent to the Host as the response to a callback command. The
EM260 uses the interrupt line to indicate that the Host should send a callback command. The EM260 will
queue multiple callbacks while it waits for the Host, and each response only delivers one callback. If the
EM260 receives the callback command when there are no pending callbacks, it will reply with the noCall-
backs response.

6.2.5 Power Management

The EM260 will always idle its processor whenever possible. To further reduce power consumption, the EM260
can be put to sleep by the Host. In power down mode, only an external interrupt will wake the EM260. In deep
sleep mode, the EM260 will use its internal timer to wake up for scheduled events. The EM260 provides two
independent timers that the Host can use for any purpose, including waking up the EM260 from deep sleep
mode. Timers are set using the setTimer command and generate timerHandler callbacks.

The initial Frame Control Byte of every command tells the EM260 which sleep mode to enter after it has
responded to the command. Including this information in every command (instead of having a separate power
management command) allows the EM260 to be put to sleep faster. If the Host needs to put the EM260 to
sleep without also performing another action, the nop command can be used.

In deep sleep mode, the EM260 will wake up for an internal event. If the event does not produce a callback for
the Host, the EM260 will go back to sleep once the event has been handled. If the event does produce a
callback, the EM260 will signal the Host and remain awake waiting for the callback command. If the Frame
Control Byte of the callback command specifies deep sleep mode, then the EM260 would normally go back to
sleep after responding with the callback. However, if there is a second callback pending, the EM260 will
remain awake waiting for another callback command.

To avoid disrupting the operation of the network, only put the EM260 to sleep when it is not joined to a
network or when it is joined as a sleeping end device. If the EM260 is joined as a sleeping end device, then it
must poll its parent in order to receive messages. The Host controls the polling behavior using the pollFor-
Data command. Polls are sent periodically with the interval set by the Host or a single poll can be sent. The
result of every poll attempt is optionally reported using the pollCompleteHandler callback.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

38 120-1003-000D

6.2.6 Tokens

Some of the non-volatile storage on the EM260 is made available for use by the Host. Up to 8 manufacturing
tokens stored in the Flash Information Area can be read using the getMfgToken command and up to 8 tokens
stored in the Simulated EEPROM can be read and written using the setToken and getToken commands. Each
token is 8 bytes. Tokens preserve their values between reboots. Refer to section 4.6.2 for a description of the
Simulated EEPROM and write cycle estimates.

6.2.7 RAM

Some of the RAM on the EM260 can be reserved by the Host for its own use. The amount of space reserved is
the EZSP_CONFIG_HOST_RAM configuration value (set using the setConfigurationValue command). The Host
can then read and write data using the setRam and getRam commands. If the Host chooses to reserve RAM, this
will reduce the number of messages and callbacks that the EM260 can buffer.

6.2.8 EM260 Status

The Frame Control Byte of every response sent by the EM260 contains two status bits:

 The overflow bit is set if the EM260 ran out of memory at any time since the previous response was sent. If
this bit is set, then messages may have been lost.

 The truncated bit is set if the EM260 truncated the current response. If this bit is set, the command from
the Host produced a response larger than the maximum EZSP frame length.

You can use the nop command to check the status of the EM260 without also performing another action.

6.2.9 Random Number Generator

The Host can obtain a random number from the EM260 using the getRandomNumber command. The random
number is generated from analog noise in the radio and can be used to seed a random number generator on
the Host.

6.2.10 Radio Channel Calibration

Calibration information is stored in non-volatile memory on the EM260 for each radio channel. A channel
must be calibrated before being used for the first time. The EM260 will return a status value of
EMBER_CHANNEL_NOT_CALIBRATED if the Host attempts to use a channel that has never been calibrated.
The channel calibration process can take several seconds to complete. The Host initiates this one-time
process using the startChannelCalibration command and must then wait until it receives the
calibrationCompleteHandler callback before sending the next command to the EM260.

6.3 Protocol Format

All EZSP frames begin with a Frame Control Byte. Table 19 describes the meaning of this byte for command
and response frames. Table 20 describes the sleep modes, Table 21 describes the overflow status bit and
Table 22 describes the truncated status bit. The second byte of all EZSP frames is the Frame ID Byte.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 39

Table 19. Frame Control Byte

Bit Command Response

7 (MSB) 0 1

6 0 (reserved) 0 (reserved)

5 0 (reserved) 0 (reserved)

4 0 (reserved) 0 (reserved)

3 0 (reserved) 0 (reserved)

2 0 (reserved) 0 (reserved)

1 sleepMode[1] truncated

0 (LSB) sleepMode[0] overflow

Table 20. Sleep Modes

sleepMode[1] sleepMode[0] Description

1 1 Reserved.

1 0 Power down.

0 1 Deep sleep.

0 0 Idle.

Table 21. Overflow Status

overflow Description

1 The EM260 ran out of memory since the previous response.

0 No memory shortage since the previous response.

Table 22. Truncated Status

truncated Description

1 The EM260 truncated the current response to avoid exceeding the maximum EZSP
frame length.

0 The current response was not truncated.

Section 6.3.1 defines all the types used by the EM260 and section 6.3.2 defines all the structures. Section
6.3.3 enumerates all the named values for the different types. The subsequent sections list all the frames
supported by the EM260, specifying the Frame ID, the command parameters and the response parameters. The
list is divided into five sections:

 Section 6.3.4 lists Configuration frames.

 Section 6.3.5 lists Utilities frames.

 Section 6.3.6 lists Networking frames.

 Section 6.3.7 lists Binding frames.

 Section 6.3.8 lists Messaging frames.

Finally, section 6.3.9 provides an alphabetical list of all the frames.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

40 120-1003-000D

6.3.1 Type Definitions

Type Alias Description

boolean int8u True or false.

EzspConfigId int8u Identifies a configuration value.

EzspConfigTxPowerMode int16u Values for EZSP_CONFIG_TX_POWER_MODE.

EzspConfigStatus int8u Return type for configuration commands.

EzspPolicyId int8u Identifies a policy.

EzspDecisionId int8u Identifies a policy decision.

EmberStatus int8u Return type for stack functions.

EmberEventUnits int8u Either marks an event as inactive or specifies the units for the
event execution time.

EmberNodeType int8u The type of the node.

EmberNetworkStatus int8u The possible join states for a node.

EmberIncomingMessageType int8u Incoming message types.

EmberBindingType int8u Binding types.

EmberUnicastOption int8u Options to use when sending a unicast message.

EmberNetworkScanType int8u Network scan types.

EmberJoinDecision int8u Decision made by the trust center when a node attempts to join.

EmberNodeId int16u 16-bit ZigBee network address.

EmberPanId int16u 802.15.4 PAN ID.

EmberEUI64 int8u[8] EUI 64-bit ID (an IEEE address).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 41

6.3.2 Structure Definitions

Structure Field Description

 Network parameters.

int16u panId The network's PAN identifier.

int8s radioTxPower A power setting, in dBm.

EmberNetworkParameters

int8u radioChannel A radio channel.

 ZigBee APS frame parameters.

int16u profileId The application profile ID that describes the
format of the message.

int8u clusterId The cluster ID for this message.

int8u sourceEndpoint The source endpoint.

int8u destinationEndpoint The destination endpoint.

EmberApsFrame

EmberUnicastOption options A bitmask of options.

 An entry in the binding table.

EmberBindingType type The type of binding.

int8u local The endpoint on the local node.

int8u remote The endpoint on the remote node (specified by
identifier).

int8u clusterId A cluster ID that matches one from the local
endpoint's simple descriptor. This cluster ID is set
by the provisioning application to indicate which
part an endpoint's functionality is bound to this
particular remote node and is used to distinguish
between unicast and multicast bindings.

A binding can be used to send messages with any
cluster ID, not just the one listed in the binding.

EmberBindingTableEntry

EmberEUI64 identifier A 64-bit identifier. This is either the destination
EUI64 (for unicasts) or the 64-bit group address
(for multicasts).

6.3.3 Named Values

boolean

FALSE 0x00 An alias for zero, used for clarity.

TRUE 0x01 An alias for one, used for clarity.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

42 120-1003-000D

EzspConfigId

EZSP_CONFIG_PACKET_BUFFER_COUNT 0x01 The number of packet buffers available to the
stack.

EZSP_CONFIG_NEIGHBOR_TABLE_SIZE 0x02 The maximum number of router neighbors the
stack can keep track of. A neighbor is a node
within radio range.

EZSP_CONFIG_TRANSPORT_PACKET_COUNT 0x03 The maximum number of datagram and se-
quenced messages the stack can have 'in-flight'
at any time. Here, 'in-flight' means 'in the proc-
ess of being either transmitted or received'.

EZSP_CONFIG_BINDING_TABLE_SIZE 0x04 The maximum number of bindings supported by
the stack. It includes the bindings in EEPROM and
in RAM.

EZSP_CONFIG_TEMPORARY_BINDING_ENTRIES 0x05 The number of binding table entries in RAM.

EZSP_CONFIG_TRANSPORT_CONNECTION_COUNT 0x06 The number of binding table entries that can
concurrently support an open sequenced connec-
tion.

EZSP_CONFIG_ROUTE_TABLE_SIZE 0x07 The maximum number of destinations to which a
node can route messages. This include both
messages originating at this node and those
relayed for others.

EZSP_CONFIG_DISCOVERY_TABLE_SIZE 0x08 The number of simultaneous route discoveries
that a node will support.

EZSP_CONFIG_DISCOVERY_CACHE_ENDPOINTS 0x09 End-device child endpoints larger than this value
will not have their discovery information cached
by their router parent.

EZSP_CONFIG_DISCOVERY_CACHE_ENTRY_SIZE 0x0A The size of an entry in the end device discovery
cache on a router. Endpoint descriptions longer
than this will not be cached.

EZSP_CONFIG_DISCOVERY_CACHE_SIZE 0x0B The number of entries in the discovery cache on
a router. Each end device child requires 1 +
EZSP_CONFIG_DISCOVERY_CACHE_ENDPOINTS
entries. The cache is held in EEPROM.

EZSP_CONFIG_STACK_PROFILE 0x0C Specifies the stack profile.

EZSP_CONFIG_SECURITY_LEVEL 0x0D The security level used for security at the MAC
and network layers. The supported values are 0
(no security) and 5 (payload is encrypted and a
four-byte MIC is used for authentication).

EZSP_CONFIG_MAX_TREE_DEPTH 0x0E Reserved.

EZSP_CONFIG_MAX_ROUTER_CHILDREN 0x0F Reserved.

EZSP_CONFIG_MAX_HOPS 0x10 The maximum number of hops for a message.

EZSP_CONFIG_MAX_END_DEVICE_CHILDREN 0x11 The maximum number of end device children
that a router will support.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 43

EzspConfigId

EZSP_CONFIG_INDIRECT_TRANSMISSION_TIMEOUT 0x12

The maximum amount of time that the MAC will
hold a message for indirect transmission to a
child.

EZSP_CONFIG_RESERVED_ROUTING_ENTRIES 0x13 The number of route table entries that are
reserved for temporary aggregation routes in the
mesh stack.

EZSP_CONFIG_MOBILE_NODE_POLL_TIMEOUT 0x14 The maximum amount of time that a mobile
node can wait between polls. If no poll is heard
within this timeout, then the parent removes the
mobile node from its tables.

EZSP_CONFIG_RESERVED_MOBILE_CHILD_ENTRIES 0x15 The number of child table entries reserved for
use only by mobile nodes.

EZSP_CONFIG_HOST_RAM 0x16 The amount of RAM available for use by the Host.

EZSP_CONFIG_TX_POWER_MODE 0x17 Enables boost power mode and/or the alternate
transmitter output.

EzspConfigTxPowerMode

EMBER_TX_POWER_MODE_DEFAULT 0x00 Normal power mode and bi-directional RF trans-
mitter output.

EMBER_TX_POWER_MODE_BOOST 0x01 Enable boost power mode. This is a high per-
formance radio mode which offers increased
receive sensitivity and transmit power at the cost
of an increase in power consumption.

EMBER_TX_POWER_MODE_ALTERNATE 0x02 Enable the alternate transmitter output. This
allows for simplified connection to an external
power amplifier via the RF_TX_ALT_P and
RF_TX_ALT_N pins.

EMBER_TX_POWER_MODE_BOOST_AND_ALTERNATE 0x03 Enable both boost mode and the alternate
transmitter output.

EzspConfigStatus

EZSP_CONFIG_SUCCESS 0x00 The command was successful.

EZSP_CONFIG_OUT_OF_MEMORY 0x01 Insufficient memory was available.

EZSP_CONFIG_INVALID_VALUE 0x02 The value was out of bounds.

EZSP_CONFIG_INVALID_TAG 0x03 The configuration tag was not recognized.

EZSP_CONFIG_INVALID_CALL 0x04 Configuration values can no longer be modified.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

44 120-1003-000D

EzspPolicyId

EZSP_TRUST_CENTER_POLICY 0x00 Controls trust center behavior.

EZSP_BINDING_MODIFICATION_POLICY 0x01 Controls how external binding modification
requests are handled.

EZSP_DATAGRAM_REPLIES_POLICY 0x02 Controls whether the Host supplies datagram
replies.

EZSP_POLL_HANDLER_POLICY 0x03 Controls whether pollHandler callbacks are
generated.

EZSP_MESSAGE_CONTENTS_IN_CALLBACK_POLICY 0x04 Controls whether the message contents are
included in unicastSent and messageSent
callbacks.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 45

EzspDecisionId

EZSP_ALLOW_SECURE_JOINS_ONLY 0x00

EZSP_TRUST_CENTER_POLICY default decision.
Only allow nodes that are joining securely using
the network key to join.

EZSP_ALLOW_ALL_JOINS 0x01 EZSP_TRUST_CENTER_POLICY decision. Allow all
nodes to join, sending the key to nodes that are
not joining securely.

EZSP_DISALLOW_ALL_JOINS 0x02 EZSP_TRUST_CENTER_POLICY decision. Reject all
join attempts.

EZSP_ASK_TRUST_CENTER 0x03 EZSP_TRUST_CENTER_POLICY decision. Forward
the request to the trust center (this value should
not be used for the trust center itself).

EZSP_DISALLOW_BINDING_MODIFICATION 0x10 EZSP_BINDING_MODIFICATION_POLICY default
decision. Do not allow the local binding table to
be changed by remote nodes.

EZSP_ALLOW_BINDING_MODIFICATION 0x11 EZSP_BINDING_MODIFICATION_POLICY decision.
Allow remote nodes to change the local binding
table.

EZSP_HOST_WILL_NOT_SUPPLY_REPLY 0x20 EZSP_DATAGRAM_REPLIES_POLICY default deci-
sion. The EM260 will automatically send an
empty reply (containing no payload) for every
datagram received.

EZSP_HOST_WILL_SUPPLY_REPLY 0x21 EZSP_DATAGRAM_REPLIES_POLICY decision. The
EM260 will only send a reply if it receives a
sendReply command from the Host.

EZSP_POLL_HANDLER_IGNORE 0x30 EZSP_POLL_HANDLER_POLICY default decision.
Do not inform the Host when a child polls.

EZSP_POLL_HANDLER_CALLBACK 0x31 EZSP_POLL_HANDLER_POLICY decision. Generate
a pollHandler callback when a child polls.

EZSP_MESSAGE_TAG_ONLY_IN_CALLBACK 0x40 EZSP_MESSAGE_CONTENTS_IN_CALLBACK_POLICY
default decision. Include only the message tag in
unicastSent and messageSent callbacks.

EZSP_MESSAGE_TAG_AND_CONTENTS_IN_CALLBACK 0x41 EZSP_MESSAGE_CONTENTS_IN_CALLBACK_POLICY
decision. Include both the message tag and the
message contents in unicastSent and message-
Sent callbacks.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

46 120-1003-000D

EmberStatus

EMBER_SUCCESS 0x00 The generic 'no error' message.

EMBER_ERR_FATAL 0x01 The generic 'fatal error' message.

EMBER_EEPROM_MFG_STACK_VERSION_MISMATCH 0x04 The manufacturing and stack token format in non-
volatile memory is different than what the stack
expects (returned at initialization).

EM-

BER_INCOMPATIBLE_STATIC_MEMORY_DEFINITION

S

0x05 The static memory definitions in ember-static-
memory.h are incompatible with this stack ver-
sion.

EMBER_EEPROM_MFG_VERSION_MISMATCH 0x06 The manufacturing token format in non-volatile
memory is different than what the stack expects
(returned at initialization).

EMBER_EEPROM_STACK_VERSION_MISMATCH 0x07 The stack token format in non-volatile memory is
different than what the stack expects (returned at
initialization).

EMBER_NO_BUFFERS 0x18 There are no more buffers.

EMBER_SERIAL_INVALID_BAUD_RATE 0x20 Specified an invalid baud rate.

EMBER_SERIAL_INVALID_PORT 0x21 Specified an invalid serial port.

EMBER_SERIAL_TX_OVERFLOW 0x22 Tried to send too much data.

EMBER_SERIAL_RX_OVERFLOW 0x23 There was not enough space to store a received
character and the character was dropped.

EMBER_SERIAL_RX_FRAME_ERROR 0x24 Detected a UART framing error.

EMBER_SERIAL_RX_PARITY_ERROR 0x25 Detected a UART parity error.

EMBER_SERIAL_RX_EMPTY 0x26 There is no received data to process.

EMBER_SERIAL_RX_OVERRUN_ERROR 0x27 The receive interrupt was not handled in time,
and a character was dropped.

EMBER_MAC_TRANSMIT_QUEUE_FULL 0x39 The MAC transmit queue is full.

EMBER_MAC_UNKNOWN_HEADER_TYPE 0x3A MAC header FCR error on receive.

EMBER_MAC_SCANNING 0x3D The MAC can't complete this task because it is
scanning.

EMBER_MAC_NO_DATA 0x31 No pending data exists for device doing a data
poll.

EMBER_MAC_JOINED_NETWORK 0x32 Attempt to scan when we are joined to a network.

EMBER_MAC_BAD_SCAN_DURATION 0x33 Scan duration must be 0 to 14 inclusive. Attempt
was made to scan with an incorrect duration
value.

EMBER_MAC_INCORRECT_SCAN_TYPE 0x34 emberStartScan was called with an incorrect scan
type.

EMBER_MAC_INVALID_CHANNEL_MASK 0x35 emberStartScan was called with an invalid channel
mask.

EMBER_MAC_COMMAND_TRANSMIT_FAILURE 0x36 Failed to scan current channel because we were
unable to transmit the relevant MAC command.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 47

EmberStatus

EMBER_MAC_NO_ACK_RECEIVED 0x40 We expected to receive an ACK following the
transmission, but the MAC level ACK was never
received.

EMBER_MAC_INDIRECT_TIMEOUT 0x42 Indirect data message timed out before polled.

EMBER_SIM_EEPROM_ERASE_PAGE_GREEN 0x43 The Simulated EEPROM is telling the application
that there is at least one flash page to be erased.
The GREEN status means the current page has not
filled above the ERASE_CRITICAL_THRESHOLD. The
application should call the function
halSimEepromErasePage() when it can to erase a
page.

EMBER_SIM_EEPROM_ERASE_PAGE_RED 0x44

The Simulated EEPROM is telling the application
that there is at least one flash page to be erased.
The RED status means the current page has filled
above the ERASE_CRITICAL_THRESHOLD. Due to
the shrinking availability of write space, there is a
danger of data loss. The application must call the
function halSimEepromErasePage() as soon as
possible to erase a page.

EMBER_SIM_EEPROM_FULL 0x45 The Simulated EEPROM has run out of room to
write any new data and the data trying to be set
has been lost. This error code is the result of
ignoring the SIM_EEPROM_ERASE_PAGE_RED error
code. The application must call the function
halSimEepromErasePage() to make room for any
further calls to set a token.

EMBER_SIM_EEPROM_FLASH_WRITE_FAILED 0x46 A fatal error has occurred while trying to write
data to the Flash and the write verification has
failed. The data in the flash cannot be trusted
after this error, and it is possible this error is the
result of exceeding the life cycles of the flash.

EMBER_SIM_EEPROM_INIT_1_FAILED 0x47 Attempt 1 to initialize the Simulated EEPROM has
failed. This failure means the information already
stored in Flash (or a lack thereof), is fatally
incompatible with the token information compiled
into the code image being run.

EMBER_SIM_EEPROM_INIT_2_FAILED 0x48

Attempt 2 to initialize the Simulated EEPROM has
failed. This failure means Attempt 1 failed, and
the token system failed to properly reload default
tokens and reset the Simulated EEPROM.

EMBER_SIM_EEPROM_INIT_3_FAILED

0x49 Attempt 3 to initialize the Simulated EEPROM has
failed. This failure means one or both of the
tokens TOKEN_MFG_NVDATA_VERSION or TO-
KEN_STACK_NVDATA_VERSION were incorrect and
the token system failed to properly reload default
tokens and reset the Simulated EEPROM.

EMBER_ERR_TOKEN_UNKNOWN 0x4B An unknown flash token was specified.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

48 120-1003-000D

EmberStatus

EMBER_ERR_TOKEN_EXISTS 0x4C Could not create new flash token because it
already exists.

EMBER_ERR_TOKEN_INVALID_SIZE 0x4D An incorrect size was specified when retrieving
token data.

EMBER_ERR_TOKEN_READ_ONLY 0x4E Couldn't write token because it is marked read-
only.

EMBER_ERR_BOOTLOADER_TRAP_TABLE_BAD 0x58 The bootloader received an invalid message
(failed attempt to go into bootloader).

EMBER_ERR_BOOTLOADER_TRAP_UNKNOWN 0x59 Bootloader received an invalid message (failed
attempt to go into bootloader).

EMBER_ERR_BOOTLOADER_NO_IMAGE 0x5A The bootloader cannot complete the bootload
operation because either an image was not found
or the image exceeded memory bounds.

EMBER_TOO_MANY_CONNECTIONS 0x60 The EMBER_TRANSPORT_CONNECTION_COUNT
limit has been reached.

EMBER_CONNECTION_OPEN 0x61 A connection has either been opened or is already
open.

EMBER_CONNECTION_FAILED 0x63 A connection experienced a catastrophic error.
The connection is now closed and messages may
have been lost.

EMBER_CONNECTION_CLOSED 0x64 The transport layer successfully closed a connec-
tion.

EMBER_CONNECTION_CLOSING 0x65 The transport layer is in process of closing a
connection (waiting for a response from the
remote device).

EMBER_DELIVERY_FAILED 0x66 The transport layer attempted to send or deliver a
message, but it failed.

EMBER_BINDING_INDEX_OUT_OF_RANGE 0x69 This binding index is out of range of the current
binding table.

EMBER_INVALID_BINDING_TERMINAL 0x6B Could not set or find a binding index given the
specified terminal.

EMBER_INVALID_BINDING_INDEX 0x6C An invalid binding table index was given to a
function.

EMBER_TERMINAL_HAS_MULTIPLE_BINDINGS 0x6F Multiple binding table entries were found for the
specified terminal.

EMBER_INVALID_CALL 0x70 The API call is not allowed given the current state
of the stack (for example, opening a connection
from a sleepy node.).

EMBER_COST_NOT_KNOWN 0x71 The link cost to a node is not known.

EMBER_MAX_MESSAGE_LIMIT_REACHED 0x72 The maximum number of in-flight messages (i.e.
EMBER_TRANSPORT_PACKET_COUNT) has been
reached.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 49

EmberStatus

EMBER_CONNECTION_NOT_YET_OPEN 0x73 A connection is not open yet.

EMBER_MESSAGE_TOO_LONG 0x74 The message to be transmitted is too big to fit
into a single over-the-air packet.

EMBER_BINDING_IS_ACTIVE 0x75 The application is trying to delete or overwrite a
binding that is in use.

EMBER_EUI64_NOT_AVAILABLE 0x76 The EUI64 is not available in the current packet.

EMBER_INCOMING_SEQUENCED_MESSAGES_LOST 0x77 One or more sequenced messages failed to be
received.

EMBER_ADC_CONVERSION_DONE 0x80 Conversion is complete.

EMBER_ADC_CONVERSION_BUSY 0x81 Conversion cannot be done because a request is
being processed.

EMBER_ADC_CONVERSION_DEFERRED 0x82 Conversion is deferred until the current request
has been processed.

EMBER_ADC_NO_CONVERSION_PENDING 0x84 No results are pending.

EMBER_SLEEP_INTERRUPTED 0x85 Sleeping (for a duration) has been abnormally
interrupted and exited prematurely.

EMBER_PHY_TX_UNDERFLOW 0x88 The transmit hardware buffer underflowed.

EMBER_PHY_TX_INCOMPLETE 0x89 The transmit hardware did not finish transmitting
a packet.

EMBER_PHY_INVALID_CHANNEL 0x8A An unsupported channel setting was specified.

EMBER_PHY_INVALID_POWER 0x8B An unsupported power setting was specified.

EMBER_PHY_TX_BUSY 0x8C The packet cannot be transmitted because the
physical MAC layer is currently transmitting a
packet. (This is used for the MAC backoff algo-
rithm.)

EMBER_PHY_UNKNOWN_RADIO_TYPE 0x8D The software installed on the hardware doesn't
recognize the hardware radio type.

EMBER_PHY_OSCILLATOR_CHECK_FAILED 0x8E The software installed on the hardware doesn't
recognize the hardware radio type.

EMBER_PHY_PARTIAL_PACKET 0x8F The PHY did not receive the entire packet it was
expecting from the radio.

EMBER_NETWORK_UP 0x90 The stack software has completed initialization
and is ready to send and receive packets over the
air.

EMBER_NETWORK_DOWN 0x91 The network is not operating.

EMBER_NETWORK_PENDING_ACTIVITY 0x92 The network has activity pending and should not
be shut down.

EMBER_NOT_JOINED 0x93 The node has not joined a network.

EMBER_JOIN_FAILED 0x94 An attempt to join a network failed.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

50 120-1003-000D

EmberStatus

EMBER_INVALID_SECURITY_LEVEL 0x95 The chosen security level (the value of EM-
BER_SECURITY_LEVEL) is not supported by the
stack.

EMBER_MOVE_FAILED 0x96 After moving, a mobile node's attempt to re-
establish contact with the network failed.

EMBER_ORPHAN_SCAN_FAILED 0x97 In the tree stack, an attempt to rejoin the net-
work using an orphan scan failed. The stack will
still come up but tree routing will not be possible
because this node's parent is not responding.

EMBER_NETWORK_BUSY 0xA1 A message cannot be sent because the network is
currently overloaded.

EMBER_NODEID_INVALID 0xA2 A Datagram was sent to a node and the EUI64
address in the datagram did not match the node's
EUI64 address. The NodeId was invalid.

EMBER_INVALID_ENDPOINT 0xA3 The application tried to send a message using an
endpoint that it has not defined.

EMBER_BINDING_HAS_CHANGED 0xA4 The application tried to use a binding that has
been remotely modified and the change has not
yet been reported to the application.

EMBER_CHANNEL_NOT_CALIBRATED 0xA5 The application tried to use a radio channel that
has not been calibrated.

EMBER_STACK_AND_HARDWARE_MISMATCH 0xB0 A critical and fatal error indicating that the
version of the stack trying to run does not match
with the chip it is running on. The software (stack)
on the chip must be replaced with software that is
compatible with the chip.

EmberEventUnits

EMBER_EVENT_INACTIVE 0x00 The event is not scheduled to run.

EMBER_EVENT_MS_TIME 0x01 The execution time is in approximate millisec-
onds.

EMBER_EVENT_QS_TIME 0x02 The execution time is in 'binary' quarter seconds
(256 approximate milliseconds each).

EMBER_EVENT_MINUTE_TIME 0x03 The execution time is in 'binary' minutes (65536
approximate milliseconds each).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 51

EmberNodeType

EMBER_COORDINATOR 0x01 Will relay messages and can act as a parent to
other nodes.

EMBER_ROUTER 0x02 Will relay messages and can act as a parent to
other nodes.

EMBER_END_DEVICE 0x03 Communicates only with its parent and will not
relay messages.

EMBER_SLEEPY_END_DEVICE 0x04 An end device whose radio can be turned off to
save power. The application must poll to receive
messages.

EMBER_MOBILE_END_DEVICE 0x05 A sleepy end device that can move through the
network.

EmberNetworkStatus

EMBER_NO_NETWORK 0x00 The node is not associated with a network in any
way.

EMBER_JOINING_NETWORK 0x01 The node is currently attempting to join a
network.

EMBER_JOINED_NETWORK 0x02 The node is joined to a network.

EMBER_JOINED_NETWORK_NO_PARENT 0x03 The node is an end device joined to a network
but its parent is not responding.

EMBER_LEAVING_NETWORK 0x04 The node is in the process of leaving its current
network.

EmberIncomingMessageType

EMBER_INCOMING_DATAGRAM 0x00 Datagram.

EMBER_INCOMING_DATAGRAM_REPLY 0x01 Datagram reply.

EMBER_INCOMING_SEQUENCED 0x02 Sequenced message.

EMBER_INCOMING_MULTICAST 0x03 Multicast.

EMBER_INCOMING_SHARED_MULTICAST 0x04 Shared multicast.

EMBER_INCOMING_MULTICAST_LOOPBACK 0x05 Multicast loopback.

EMBER_INCOMING_UNICAST 0x06 Unicast.

EMBER_INCOMING_BROADCAST 0x07 Broadcast.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

52 120-1003-000D

EmberBindingType

EMBER_UNUSED_BINDING 0x00 A binding that is currently not in use.

EMBER_UNICAST_BINDING 0x01 A unicast binding whose 64-bit identifier is the
destination EUI64.

EMBER_AGGREGATION_BINDING 0x02 A unicast binding whose 64-bit identifier is the
aggregator EUI64.

EMBER_MULTICAST_BINDING 0x03 A multicast binding whose 64-bit identifier is the
group address. A multicast binding can be used
to send messages to the group and to receive
messages sent to the group.

EmberUnicastOption

EMBER_UNICAST_OPTION_NONE 0x00 No options.

EMBER_UNICAST_OPTION_APS_INDIRECT 0x04 Reserved.

EMBER_UNICAST_OPTION_HAVE_SOURCE 0x10 Reserved.

EMBER_UNICAST_OPTION_APS_RETRY 0x40 Resend the message using the APS retry
mechanism.

EMBER_UNICAST_OPTION_ENABLE_ROUTE_DISCOVERY 0x80 Causes a route discovery to be initiated if no
route to the destination is known.

EMBER_UNICAST_OPTION_FORCE_ROUTE_DISCOVERY 0x20 Causes a route discovery to be initiated even if
one is known.

EMBER_UNICAST_OPTION_POLL_RESPONSE 0x01 Reserved.

EmberNetworkScanType

EMBER_ENERGY_SCAN 0x00 An energy scan scans each channel for its RSSI
value.

EMBER_ACTIVE_SCAN 0x01 An active scan scans each channel for available
networks.

EmberJoinDecision

EMBER_HAS_KEY 0x00 Allow the node to join. The node has the key.

EMBER_SEND_KEY 0x01 Allow the node to join. Send the key to the node.

EMBER_DENY_JOIN 0x02 Deny join.

EMBER_ASK_TRUST_CENTER 0x03 Ask the trust center.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 53

6.3.4 Configuration Frames

Name: version ID: 0x00

Description: The command allows the Host to specify the desired EZSP version. This document describes
version 1 of the protocol. The response provides information about the firmware running on the EM260.

Command Parameters:

int8u desiredProtocolVersion The EZSP version the Host wishes to use.

Response Parameters:

int8u protocolVersion The EZSP version the EM260 is using. If the EM260 does not
support the version requested by the Host, it will use the highest
version it does support.

int8u stackType The type of stack running on the EM260. The available EZSP
commands and their parameters depend on the stack type. The
mesh stack is type 2.

int16u stackVersion The version number of the stack.

Name: getConfigurationValue ID: 0x52

Description: Reads a configuration value from the EM260.

Command Parameters:

EzspConfigId configId Identifies which configuration value to read.

Response Parameters:

EzspConfigStatus status EZSP_CONFIG_SUCCESS if the value was read successfully,
EZSP_CONFIG_INVALID_ID if the EM260 does not recognize
configId.

int16u value The configuration value.

Name: setConfigurationValue ID: 0x53

Description: Writes a configuration value to the EM260. Configuration values can be modified by the Host
after the EM260 has reset. Sending any command other than version, getConfigurationValue, setConfigu-
rationValue or addEndpoint means that configuration values can no longer be modified and this command
will respond with EZSP_CONFIG_INVALID_CALL.

Command Parameters:

EzspConfigId configId Identifies which configuration value to change.

int16u value The new configuration value.

Response Parameters:

EzspConfigStatus status EZSP_CONFIG_SUCCESS if the configuration value was changed,
EZSP_CONFIG_OUT_OF_MEMORY if the new value exceeded the
available memory, EZSP_CONFIG_INVALID_VALUE if the new
value was out of bounds, EZSP_CONFIG_INVALID_ID if the EM260
does not recognize configId, EZSP_CONFIG_INVALID_CALL if
configuration values can no longer be modified.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

54 120-1003-000D

Name: addEndpoint ID: 0x02

Description: Configures endpoint information on the EM260. The EM260 does not remember these settings
after a reset. Endpoints can be added by the Host after the EM260 has reset. Sending any command other than
version, getConfigurationValue, setConfigurationValue or addEndpoint means that endpoints can no
longer be added and this command will respond with EZSP_CONFIG_INVALID_CALL.

Command Parameters:

int8u endpoint The application endpoint to be added.

int16u profileId The endpoint's application profile.

int16u deviceId The endpoint's device ID within the application profile.

int8u appFlags The device version and flags indicating description availability.

int8u inputClusterCount The number of input clusters.

int8u outputClusterCount The number of output clusters.

int8u[] inputClusterList Input cluster IDs the endpoint will accept.

int8u[] outputClusterList Output cluster IDs the endpoint may send.

Response Parameters:

EzspConfigStatus status EZSP_CONFIG_SUCCESS if the endpoint was added,
EZSP_CONFIG_OUT_OF_MEMORY if there is not enough memory
available to add the endpoint, EZSP_CONFIG_INVALID_VALUE if
the endpoint already exists, EZSP_CONFIG_INVALID_CALL if
endpoints can no longer be added.

Name: setPolicy ID: 0x55

Description: Allows the Host to change the policies used by the EM260 to make fast decisions.

Command Parameters:

EzspPolicyId policyId Identifies which policy to modify.

EzspDecisionId decisionId The new decision for the specified policy.

Response Parameters:

EzspConfigStatus status EZSP_CONFIG_SUCCESS if the policy was changed,
EZSP_CONFIG_INVALID_ID if the EM260 does not recognize
policyId.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 55

Name: getPolicy ID: 0x56

Description: Allows the Host to read the policies used by the EM260 to make fast decisions.

Command Parameters:

EzspPolicyId policyId Identifies which policy to read.

Response Parameters:

EzspConfigStatus status EZSP_CONFIG_SUCCESS if the policy was read successfully,
EZSP_CONFIG_INVALID_ID if the EM260 does not recognize
policyId.

EzspDecisionId decisionId The current decision for the specified policy.

6.3.5 Utilities Frames

Name: nop ID: 0x05

Description: A transaction which does nothing. The Host can use this to set the sleep mode or to check the
status of the EM260.

Command Parameters: None

Response Parameters: None

Name: invalidCommand ID: 0x58

Description: Indicates that the EM260 received a command containing an unsupported frame ID.

This frame is a response to an invalid command.

Response Parameters: None

Name: callback ID: 0x06

Description: Allows the EM260 to respond with a pending callback.

Command Parameters: None

The response to this command can be any of the callback responses.

Name: noCallbacks ID: 0x07

Description: Indicates that there are currently no pending callbacks.

This frame is a response to the callback command.

Response Parameters: None

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

56 120-1003-000D

Name: reset ID: 0x08

Description: Allows the Host to reset the EM260.

Command Parameters: None

Response Parameters: None

Name: setToken ID: 0x09

Description: Sets a token (8 bytes of non-volatile storage) in the Simulated EEPROM of the EM260.

Command Parameters:

int8u tokenId Which token to set (0 to 7).

int8u[8] tokenData The data to write to the token.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: getToken ID: 0x0A

Description: Retrieves a token (8 bytes of non-volatile storage) from the Simulated EEPROM of the EM260.

Command Parameters:

int8u tokenId Which token to read (0 to 7).

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

int8u[8] tokenData The contents of the token.

Name: getMfgToken ID: 0x0B

Description: Retrieves a manufacturing token (8 bytes of non-volatile storage) from the Flash Information
Area of the EM260.

Command Parameters:

int8u tokenId Which manufacturing token to read (0 to 7).

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

int8u[8] tokenData The contents of the manufacturing token.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 57

Name: setRam ID: 0x46

Description: Writes data supplied by the Host to RAM in the EM260. The amount of RAM available for use by
the Host must be set using the setConfigurationValue command.

Command Parameters:

int8u startIndex The location to start writing the data.

int8u dataLength The length of the data parameter in bytes.

int8u[] data The data to write to RAM.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: getRam ID: 0x47

Description: Reads data from RAM in the EM260 and returns it to the Host.

Command Parameters:

int8u startIndex The location to start reading the data.

int8u length The number of bytes to read.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

int8u dataLength The length of the data parameter in bytes.

int8u[] data The data read from RAM.

Name: getRandomNumber ID: 0x49

Description: Returns a random number, generated using noise from the radio.

Command Parameters: None

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

int16u value If status is EMBER_SUCCESS, a random number. Otherwise,
zero.

Name: getMillisecondTime ID: 0x0D

Description: Returns the current time in milliseconds according to the EM260's internal clock.

Command Parameters: None

Response Parameters:

int32u time The current time in milliseconds.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

58 120-1003-000D

Name: setTimer ID: 0x0E

Description: Sets a timer on the EM260. There are 2 independent timers available for use by the Host. A timer
can be cancelled by setting time to 0 or units to EMBER_EVENT_INACTIVE.

Command Parameters:

int8u timerId Which timer to set (0 or 1).

int16u time The delay before the timerHandler callback will be generated.
Note that the timer clock is free running and is not synchronized
with this command. This means that the actual delay will be
between time and (time - 1).

EmberEventUnits units The units for time.

boolean repeat If true, a timerHandler callback will be generated repeatedly. If
false, only a single timerHandler callback will be generated.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: getTimer ID: 0x4E

Description: Gets information about a timer. The Host can use this command to find out how much longer it
will be before a previously set timer will generate a callback.

Command Parameters:

int8u timerId Which timer to get information about (0 or 1).

Response Parameters:

int16u time The delay before the timerHandler callback will be generated.

EmberEventUnits units The units for time.

boolean repeat True if a timerHandler callback will be generated repeatedly.
False if only a single timerHandler callback will be generated.

Name: timerHandler ID: 0x0F

Description: A callback from the timer.

This frame is a response to the callback command.

Response Parameters:

int8u timerId Which timer generated the callback (0 or 1).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 59

Name: serialWrite ID: 0x10

Description: Sends a serial message from the Host to the InSight debug system via the EM260.

Command Parameters:

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The serial message.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: serialRead ID: 0x11

Description: Allows the Host to read a serial message from the InSight debug system via the EM260.

Command Parameters:

int8u length The maximum number of bytes to read.

Response Parameters:

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The serial message.

Name: debugWrite ID: 0x12

Description: Sends a debug message from the Host to the InSight debug system via the EM260.

Command Parameters:

boolean binaryMessage TRUE if the message should be interpreted as binary data, FALSE
if the message should be interpreted as ASCII text.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The binary message.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: debugHandler ID: 0x13

Description: Delivers a binary message from the InSight debug system to the Host via the EM260.

This frame is a response to the callback command.

Response Parameters:

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The binary message.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

60 120-1003-000D

6.3.6 Networking Frames

Name: channelCalibrated ID: 0x4B

Description: Tests whether the specified channel is calibrated.

Command Parameters:

int8u channel The channel number to test.

Response Parameters:

EmberStatus status EMBER_SUCCESS if the channel is calibrated, EM-
BER_CHANNEL_NOT_CALIBRATED if the channel is not calibrated
and EMBER_PHY_INVALID_CHANNEL if the channel is not a valid
802.15.4 channel.

Name: startChannelCalibration ID: 0x4C

Description: Start calibrating the specified channel. The calibration process takes several seconds to com-
plete and the EM260 will be unresponsive until it is complete. The Host must not send another command until
the EM260 indicates that calibration is complete, using the calibrationCompleteHandler callback.

Command Parameters:

int8u channel The channel to be calibrated.

Response Parameters:

EmberStatus status EMBER_SUCCESS. The Host must wait for the calibrationCom-
pleteHandler callback to report the result of the calibration.

Name: calibrationCompleteHandler ID: 0x4D

Description: Informs the Host that calibration is complete and reports the result of the calibration.

This frame is a response to the callback command.

Response Parameters:

int8u channel The channel that was calibrated.

EmberStatus status EMBER_SUCCESS if the channel was calibrated successfully and
EMBER_PHY_INVALID_CHANNEL if the channel was not a valid
802.15.4 channel.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 61

Name: setEncryptionKey ID: 0x14

Description: Sets the encryption key used to encrypt and decrypt radio messages. This function does not work
if the stack is already associated with a network.

Command Parameters:

int8u[16] key A pointer to a 16-byte encryption key.

int8u keySequenceNumber The sequence number associated with this key.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: setManufacturerCode ID: 0x15

Description: Sets the manufacturer code to the specified value. The manufacturer code is one of the fields of
the node descriptor.

Command Parameters:

int16u code The manufacturer code for the local node.

Response Parameters: None

Name: setPowerDescriptor ID: 0x16

Description: Sets the power descriptor to the specified value. The power descriptor is a dynamic value,
therefore you should call this function whenever the value changes.

Command Parameters:

int16u descriptor The new power descriptor for the local node.

Response Parameters: None

Name: networkInit ID: 0x17

Description: Resume network operation after a reboot. The node retains its original type. This should be
called on startup whether or not the node was previously part of a network. EMBER_NOT_JOINED is returned if
the node is not part of a network.

Command Parameters: None

Response Parameters:

EmberStatus status An EmberStatus value that indicates one of the following: suc-
cessful initialization, EMBER_NOT_JOINED if the node is not part
of a network, or the reason for failure.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

62 120-1003-000D

Name: networkState ID: 0x18

Description: Returns a value indicating whether the node is joining, joined to, or leaving a network.

Command Parameters: None

Response Parameters:

EmberNetworkStatus status An EmberNetworkStatus value indicating the current join status.

Name: stackStatusHandler ID: 0x19

Description: A callback invoked when the status of the stack changes. If the status parameter equals EM-
BER_NETWORK_UP, then the getNetworkParameters command can be called to obtain the new network
parameters. If any of the parameters are being stored in nonvolatile memory by the Host, the stored values
should be updated.

This frame is a response to the callback command.

Response Parameters:

EmberStatus status Stack status. One of the following: EMBER_NETWORK_UP, EM-
BER_NETWORK_DOWN, EMBER_JOIN_FAILED, EM-
BER_MOVE_FAILED, EMBER_ORPHAN_SCAN_FAILED (tree stack
only)

Name: startScan ID: 0x1A

Description: This function will start a scan.

Command Parameters:

EmberNetworkScanType scanType Indicates the type of scan to be performed. Possible values:
EMBER_ENERGY_SCAN, EMBER_ACTIVE_SCAN.

int32u channelMask Bits set as 1 indicate that this particular channel should be
scanned. Bits set to 0 indicate that this particular channel should
not be scanned. For example, a channelMask value of
0x00000001 would indicate that only channel 0 should be
scanned. Valid channels range from 11 to 26 inclusive. This
translates to a channel mask value of 0x07FFF800.

int8u duration Sets the exponent of the number of scan periods, where a scan
period is 960 symbols. The scan will occur for ((2^duration) + 1)
scan periods.

Response Parameters:

EmberStatus status EMBER_SUCCESS signals that the scan successfully started.
Possible error responses and their meanings: EM-
BER_MAC_SCANNING, we are already scanning; EM-
BER_MAC_JOINED_NETWORK, we are currently joined to a
network and can not begin a scan; EM-
BER_MAC_BAD_SCAN_DURATION, we have set a duration value
that is not 0..14 inclusive; EMBER_MAC_INCORRECT_SCAN_TYPE,
we have requested an undefined scanning type; EM-
BER_MAC_INVALID_CHANNEL_MASK, our channel mask did not
specify any valid channels.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 63

Name: energyScanResultHandler ID: 0x48

Description: Reports the result of an energy scan for a single channel. The scan is not complete until the
scanCompleteHandler callback is called.

This frame is a response to the callback command.

Response Parameters:

int8u channel The 802.15.4 channel number that was scanned.

int8u maxRssiValue The maximum RSSI value found on the channel.

Name: networkFoundHandler ID: 0x1B

Description: Reports that a network was found, and gives the network parameters useful for deciding which
network to join.

This frame is a response to the callback command.

Response Parameters:

int8u channel The 802.15.4 channel number on which the current network was
found.

int16u panId The PAN ID of the current network.

boolean expectingJoin Whether the node that generated this beacon is allowing addi-
tional children to join to its network.

int8u stackProfile The ZigBee profile number of the current network.

Name: scanCompleteHandler ID: 0x1C

Description: Returns the status of the current scan. EMBER_SUCCESS signals that the scan has completed.
Other error conditions signify a failure to scan on the channel specified.

This frame is a response to the callback command.

Response Parameters:

int8u channel The channel on which the current error occurred. Undefined for
the case of EMBER_SUCCESS.

EmberStatus status The error condition that occurred on the current channel. Value
will be EMBER_SUCCESS when the scan has completed.

Name: stopScan ID: 0x1D

Description: Terminates a scan in progress.

Command Parameters: None

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

64 120-1003-000D

Name: formNetwork ID: 0x1E

Description: Forms a new network by becoming the coordinator.

Command Parameters:

EmberNetworkParameters parameters Specification of the new network.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: joinNetwork ID: 0x1F

Description: Causes the stack to associate with the network using the specified network parameters. It can
take several seconds for the stack to associate with the local network. Do not send messages until the stack-
StatusHandler callback informs you that the stack is up.

Command Parameters:

EmberNodeType nodeType Specification of the role that this node will have in the network.
This role must not be EMBER_COORDINATOR. To be a coordina-
tor, use the formNetwork command.

EmberNetworkParameters parameters Specification of the network with which the node should associ-
ate.

boolean useKey If true, the node uses the current key to secure messages during
the joining process. The proper value for secured networks
depends upon their configuration. Some networks use unsecured
joining and distribute the key from the coordinator. Other
networks require secure joining and accept only nodes that know
the correct key. This value has no effect if the security level is
0.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 65

Name: scanAndFormNetwork ID: 0x4F

Description: Scan for an available channel and PAN ID then form a network. This performs the following
actions: 1. Performs an energy scan on the indicated channels and randomly chooses one from amongst those
with the least average energy. 2. Randomly picks a PAN ID that does not appear during an active scan on the
chosen channel. 3. Forms a network using the chosen channel and PAN ID. If any errors occur the status code
is passed to the scanErrorHandler callback and no network is formed. Success is indicated when the stack-
StatusHandler callback is invoked with the EMBER_NETWORK_UP status value.

Command Parameters:

int32u channelMask Bits set as 1 indicate that this particular channel should be
scanned. Bits set to 0 indicate that this particular channel should
not be scanned. For example, a channelMask value of
0x00000001 would indicate that only channel 0 should be
scanned. Valid channels range from 11 to 26 inclusive. This
translates to a channel mask value of 0x07FFF800.

int8s radioTxPower A power setting, in dBm.

Response Parameters: None

Name: scanAndJoinNetwork ID: 0x50

Description: Scan and join a network. This performs the following actions: 1. Does an active scan to find a
network that uses our stack profile and currently allows new nodes to join. 2. Joins the chosen network. If any
errors occur the status code is passed to the scanErrorHandler callback and no network is joined. Success is
indicated when the stackStatusHandler callback is invoked with the EMBER_NETWORK_UP status value.

Command Parameters:

EmberNodeType nodeType Specification of the role that this node will have in the network.
This role must not be EMBER_COORDINATOR. To be a coordina-
tor, use the scanAndformNetwork command.

int32u channelMask Bits set as 1 indicate that this particular channel should be
scanned. Bits set to 0 indicate that this particular channel should
not be scanned. For example, a channelMask value of
0x00000001 would indicate that only channel 0 should be
scanned. Valid channels range from 11 to 26 inclusive. This
translates to a channel mask value of 0x07FFF800.

int8s radioTxPower A power setting, in dBm.

boolean useKey If true, the node uses the current key to secure messages during
the joining process. The proper value for secured networks
depends upon their configuration. Some networks use unsecured
joining and distribute the key from the coordinator. Other
networks require secure joining and accept only nodes that know
the correct key. This value has no effect if the security level is
0.

Response Parameters: None

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

66 120-1003-000D

Name: scanErrorHandler ID: 0x51

Description: This callback is invoked if an error occurs while attempting to scanAndFormNetwork or scanAnd-
JoinNetwork.

This frame is a response to the callback command.

Response Parameters:

EmberStatus status An EmberStatus value indicating the reason for the scanAnd-
FormNetwork or scanAndJoinNetwork failure.

Name: leaveNetwork ID: 0x20

Description: Causes the stack to leave the current network. This generates a stackStatusHandler callback to
indicate that the network is down. The radio will not be used until after sending a formNetwork or joinNet-
work command.

Command Parameters: None

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: mobileNodeHasMoved ID: 0x21

Description: Informs the stack that contact with the network has been lost. Only devices that are joined to a
network with a node type of EMBER_MOBILE_END_DEVICE may call this function. This generates a stackStatu-
sHandler callback to indicate that the network is down. The stack will try to re-establish contact with the
network. A second stackStatusHandler callback indicates either the success or the failure of the attempt.

Command Parameters: None

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: permitJoining ID: 0x22

Description: Tells the stack to allow other nodes to join the network with this node as their parent. Joining is
initially disabled by default.

Command Parameters:

int8u duration A value of 0x00 disables joining. A value of 0xFF enables joining.
Any other value enables joining for that number of seconds.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 67

Name: childJoinHandler ID: 0x23

Description: Indicates that a child has joined or left.

This frame is a response to the callback command.

Response Parameters:

int8u index The index of the child of interest.

boolean joining True if the child is joining. False the child is leaving.

EmberNodeId childId The node ID of the child.

EmberEUI64 childEui64 The EUI64 of the child.

EmberNodeType childType The node type of the child.

Name: trustCenterJoinHandler ID: 0x24

Description: The EM260 used the trust center behavior policy to decide whether to allow a new node to join
the network. The Host cannot change the current decision, but it can change the policy for future decisions
using the setPolicy command.

This frame is a response to the callback command.

Response Parameters:

EmberEUI64 newNode The EUI64 of the node that wished to join.

boolean securedJoin True if the node was joining securely using the network security
key.

EmberJoinDecision policyDecision An EmberJoinDecision reflecting the decision made.

Name: sendDiscoveryInformationToParent ID: 0x25

Description: Initiates the upload of discovery information to the parent of this node. Only devices that are
joined to a network with a node type of EMBER_SLEEPY_END_DEVICE may call this function. The parent stores
the information in its discovery cache. The information is sent using ZDO messages with cluster IDs
NODE_DESCRIPTOR_RESPONSE, POWER_DESCRIPTOR_RESPONSE and SIMPLE_DESCRIPTOR_RESPONSE.

Command Parameters: None

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: getEui64 ID: 0x26

Description: Returns the EUI64 ID of the local node.

Command Parameters: None

Response Parameters:

EmberEUI64 eui64 The 64-bit ID.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

68 120-1003-000D

Name: getNodeId ID: 0x27

Description: Returns the 16-bit node ID of the local node.

Command Parameters: None

Response Parameters:

EmberNodeId nodeId The 16-bit ID.

Name: getNetworkParameters ID: 0x28

Description: Returns the current network parameters.

Command Parameters: None

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

EmberNodeType nodeType An EmberNodeType value indicating the current node type.

EmberNetworkParameters parameters The current network parameters.

Name: getParentChildParameters ID: 0x29

Description: Returns information about the children of the local node and the parent of the local node.

Command Parameters: None

Response Parameters:

int8u childCount The number of children the node currently has.

EmberEUI64 parentEui64 The parent's EUI64. The value is undefined for nodes without
parents (coordinators and nodes that are not joined to a net-
work).

EmberNodeId parentNodeId The parent's node ID. The value is undefined for nodes without
parents (coordinators and nodes that are not joined to a net-
work).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 69

Name: getChildData ID: 0x4A

Description: Returns information about a child of the local node.

Command Parameters:

int8u index The index of the child of interest in the child table. Possible
indexes range from zero to EMBER_CHILD_TABLE_SIZE.

Response Parameters:

EmberStatus status EMBER_SUCCESS if there is a child at index. EMBER_NOT_JOINED
if there is no child at index.

EmberNodeId childId The node ID of the child.

EmberEUI64 childEui64 The EUI64 of the child.

EmberNodeType childType The EmberNodeType value for the child.

6.3.7 Binding Frames

Name: clearBindingTable ID: 0x2A

Description: Deletes all binding table entries.

Command Parameters: None

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: setBinding ID: 0x2B

Description: Sets an entry in the binding table.

Command Parameters:

int8u index The index of a binding table entry.

EmberBindingTableEntry value The contents of the binding entry.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

70 120-1003-000D

Name: getBinding ID: 0x2C

Description: Gets an entry from the binding table.

Command Parameters:

int8u index The index of a binding table entry.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

EmberBindingTableEntry value The contents of the binding entry.

Name: deleteBinding ID: 0x2D

Description: Deletes a binding table entry.

Command Parameters:

int8u index The index of a binding table entry.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: bindingIsActive ID: 0x2E

Description: Indicates whether a binding table entry is active - that is, whether a connection to it is open or
any messages are en route from it. Note that this command does not indicate whether a binding is clear. To
determine whether a binding is clear, check whether the type field of the EmberBindingTableEntry has the
value EMBER_UNUSED_BINDING.

Command Parameters:

int8u index The index of a binding table entry.

Response Parameters:

boolean active True if the binding table entry is active. False if the binding
table entry is not active.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 71

Name: getBindingDestinationNodeId ID: 0x2F

Description: Returns the node ID for the binding's destination, if the ID is known. If a message is sent using the
binding and the destination's ID is not known, the stack will discover the ID by broadcasting a ZDO address
request. The application can avoid the need for this discovery by using setBindingDestinationNodeId when
it knows the correct ID via some other means. The destination's node ID is forgotten when the binding is
changed, when the local node reboots or, much more rarely, when the destination node changes its ID in
response to an ID conflict.

Command Parameters:

int8u index The index of a binding table entry.

Response Parameters:

EmberNodeId nodeId The short ID of the destination node or EMBER_NULL_NODE_ID if
no destination is known.

Name: setBindingDestinationNodeId ID: 0x30

Description: Set the node ID for the binding's destination. See getBindingDestinationNodeId for a descrip-
tion.

Command Parameters:

int8u index The index of a binding table entry.

EmberNodeId nodeId The short ID of the destination node.

Response Parameters: None

Name: remoteSetBindingHandler ID: 0x31

Description: The EM260 used the external binding modification policy to decide how to handle a remote set
binding request. The Host cannot change the current decision, but it can change the policy for future deci-
sions using the setPolicy command.

This frame is a response to the callback command.

Response Parameters:

EmberBindingTableEntry entry The requested binding.

int8u index The index at which the binding was added.

EmberStatus policyDecision EMBER_SUCCESS if the binding was added to the table and any
other status if not.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

72 120-1003-000D

Name: remoteDeleteBindingHandler ID: 0x32

Description: The EM260 used the external binding modification policy to decide how to handle a remote
delete binding request. The Host cannot change the current decision, but it can change the policy for future
decisions using the setPolicy command.

This frame is a response to the callback command.

Response Parameters:

int8u index The index of the binding whose deletion was requested.

EmberStatus policyDecision EMBER_SUCCESS if the binding was removed from the table and
any other status if not.

6.3.8 Messaging Frames

Name: maximumPayloadLength ID: 0x33

Command Parameters: None

Response Parameters:

int8u apsLength The maximum APS payload length.

int8u transportLength The maximum transport payload length.

Name: sendUnicast ID: 0x34

Description: Sends a unicast message as per the ZigBee specification. The message will arrive at its destina-
tion only if there is a known route to the destination node. Setting the ENABLE_ROUTE_DISCOVERY option will
cause a route to be discovered if none is known. Setting the FORCE_ROUTE_DISCOVERY option will force route
discovery. Routes to end-device children of the local node are always known. Setting the APS_RETRY option
will cause the message to be retransmitted until either a matching acknowledgement is received or three
transmissions have been made. The ZigBee APS retry mechanism does not use sequence numbers. If multiple
messages are sent to the same destination at the same time any acknowledgement from that node will stop
transmission of all outstanding messages. Note: Using the FORCE_ROUTE_DISCOVERY option will cause the first
transmission to be consumed by a route request as part of discovery, so the application payload of this packet
will not reach its destination on the first attempt. If you want the packet to reach its destination, the
APS_RETRY option must be set so that another attempt is made to transmit the message with its application
payload after the route has been constructed.

Command Parameters:

EmberNodeId destination The node ID to which the message will be sent.

EmberApsFrame apsFrame The APS frame for the message.

int8u messageTag A value chosen by the Host. This value is used in the emberUni-
castSent response to refer to this message.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The unicast message.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 73

Name: unicastSent ID: 0x35

Description: A callback indicating the stack has completed sending a non-transport unicast message. Except
for the status value, the parameters are identical to those of the sendUnicast command used to send the
message.

This frame is a response to the callback command.

Response Parameters:

EmberNodeId destination The node ID to which the message was be sent.

EmberApsFrame apsFrame The APS frame for the message.

int8u messageTag The value supplied by the Host in the emberSendUnicast com-
mand.

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The unicast message supplied by the Host. The message contents
are only included here if the decision for the messageCon-
tentsInCallback policy is messageTagAndContentsInCallback.

Name: sendBroadcast ID: 0x36

Description: Sends a broadcast message as per the ZigBee specification.

Command Parameters:

EmberApsFrame apsFrame The APS frame for the message.

int8u radius The message will be delivered to all nodes within radius hops of
the sender. A radius of zero is converted to EMBER_MAX_HOPS.

int8u messageTag Reserved for future use. This value is ignored by the EM260.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The broadcast message.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

74 120-1003-000D

Name: sendDatagram ID: 0x37

Description: Sends a datagram to the node and endpoint specified in a binding table entry. The status of the
delivery will be reported by a messageSent callback.

Command Parameters:

int8u bindingTableIndex The index of the binding table entry.

int8u clusterId The cluster ID to use.

int8u messageTag A value chosen by the Host. This value is used in the emberCan-
celMessage command and the emberMessageSent response to
refer to this message.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The datagram message.

Response Parameters:

EmberStatus status An EmberStatus value. For any result other than EM-
BER_SUCCESS, the message will not be sent. EMBER_SUCCESS -
The message has been submitted for transmission. EM-
BER_INVALID_BINDING_INDEX - The bindingTableIndex refers to a
non-unicast binding. EMBER_NETWORK_DOWN - The node is not
part of a network. EMBER_MESSAGE_TOO_LONG - The message is
too large to fit in a MAC layer frame. EM-
BER_MAX_MESSAGE_LIMIT_REACHED - The EM-
BER_TRANSPORT_PACKET_COUNT limit has been reached.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 75

Name: sendMulticast ID: 0x38

Description: Sends a multicast message to all endpoints that share a specific multicast ID and are within a
specified number of hops of the sender.

Command Parameters:

int8u bindingTableIndex The index of the binding table entry specifying the multicast
group.

int8u clusterId The cluster ID to use.

int8u messageTag Reserved for future use. This value is ignored by the EM260.

int8u hops The message will be delivered to all nodes within this number of
hops of the sender. A value of zero is converted to EM-
BER_MAX_HOPS.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The multicast message.

Response Parameters:

EmberStatus status An EmberStatus value. For any result other than EM-
BER_SUCCESS, the message will not be sent. EMBER_SUCCESS -
The message has been submitted for transmission. EM-
BER_INVALID_BINDING_INDEX - The bindingTableIndex refers to a
non-multicast binding. EMBER_NETWORK_DOWN - The node is
not part of a network. EMBER_MESSAGE_TOO_LONG - The mes-
sage is too large to fit in a MAC layer frame. EMBER_NO_BUFFERS
- The free packet buffer pool is empty. EMBER_NETWORK_BUSY -
Insufficient resources available in Network or MAC layers to send
message.

Name: sendReply ID: 0x39

Description: Sends a reply to a received datagram message. The incomingMessageHandler callback for the
datagram being replied to supplies the values for all the parameters except the reply itself.

Command Parameters:

EmberNodeId sender Value supplied by incoming datagram.

EmberApsFrame apsFrame Value supplied by incoming datagram.

int8u datagramReplyTag Value supplied by incoming datagram.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The reply message.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

76 120-1003-000D

Name: openConnection ID: 0x3A

Description: Opens a sequenced connection to a node.

Command Parameters:

int8u bindingTableIndex The index of the binding table entry to which a connection will
be opened.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Name: connectionStatus ID: 0x3B

Description: Returns the connection status of a binding table entry.

Command Parameters:

int8u bindingTableIndex The index of the binding table entry whose status is being
queried.

Response Parameters:

EmberStatus status An EmberStatus value: EMBER_CONNECTION_CLOSED - The
connection is closed. EMBER_CONNECTION_NOT_YET_OPEN - The
connection is in the process of being established. EM-
BER_CONNECTION_OPEN - The connection is currently estab-
lished. EMBER_CONNECTION_CLOSING - The connection is in the
process of being closed.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 77

Name: connectionStatusHandler ID: 0x3C

Description: A callback indicating the status of a connection has changed.

This frame is a response to the callback command.

Response Parameters:

int8u bindingTableIndex The index of the binding table entry whose connection status has
changed.

EmberStatus status An EmberStatus value: EMBER_CONNECTION_OPEN - A sequenced
connection has successfully been established for the binding. It
may have been initiated locally or remotely. EM-
BER_CONNECTION_CLOSING - The sequenced connection for the
binding is being closed gracefully. The close may have been
initiated locally or remotely. As soon as the disposition of all in-
flight messages has been resolved the connection will be com-
pletely closed (and the EMBER_CONNECTION_CLOSED status will
be reported). EMBER_CONNECTION_CLOSED - The sequenced
connection has been successfully closed. The disposition of every
message sent over the connection has already been reported (via
the various callbacks). There will be no further message related
callbacks. EMBER_CONNECTION_FAILED - The sequenced connec-
tion has been closed unexpectedly. If there were messages in-
flight their disposition will never be known or reported via
callbacks. This error may be reported during the opening of a
connection, while a connection is established or during the
closing of a connection. EM-
BER_INCOMING_SEQUENCED_MESSAGES_LOST - One or more
sequenced messages have not been received on the connection
and it has been determined they will never be received.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

78 120-1003-000D

Name: sendSequenced ID: 0x3D

Description: Sends a sequenced message over the connection associated with a specified binding table entry.

Command Parameters:

int8u bindingTableIndex The index of the binding table entry specifying the message
destination.

int8u clusterId The cluster ID to use.

int8u messageTag A value chosen by the Host. This value is used in the emberCan-
celMessage command and the emberMessageSent response to
refer to this message.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The sequenced message.

Response Parameters:

EmberStatus status An EmberStatus value. For any result other than EM-
BER_SUCCESS, the message will not be sent. EMBER_SUCCESS -
The message has been submitted for transmission. EM-
BER_CONNECTION_CLOSED - The connection associated with
bindingTableIndex is either closed or in the process of closing.
EMBER_INVALID_BINDING_INDEX - The bindingTableIndex refers
to a non-unicast binding. EMBER_NETWORK_DOWN - The node is
not part of a network. EMBER_MESSAGE_TOO_LONG - The mes-
sage is too large to fit in a MAC layer frame. EM-
BER_MAX_MESSAGE_LIMIT_REACHED - Either the EM-
BER_TRANSPORT_PACKET_COUNT limit has been reached or the
transmit window is full (i.e. there are already 8 sequenced
messages in flight on the connection).

Name: closeConnection ID: 0x3E

Description: Closes a connection. Any sequenced messages previously sent on the connection will be delivered
before the connection is closed. Similarly, all messages sent by the remote node before the connection close
is initiated will be received before the connection closes locally.

Command Parameters:

int8u bindingTableIndex The index of the binding table entry whose connection is to be
closed.

Response Parameters:

EmberStatus status An EmberStatus value indicating success or the reason for fail-
ure.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 79

Name: messageSent ID: 0x3F

Description: A callback indicating the stack has completed sending a datagram or sequenced message.

This frame is a response to the callback command.

Response Parameters:

int8u bindingTableIndex The index of the binding table entry to which the message was
sent.

int8u clusterId The cluster ID that was used.

int8u messageTag The value supplied by the Host in the emberSendDatagram or
emberSendSequenced command.

EmberStatus status An EmberStatus value of EMBER_SUCCESS if an ACK was received
from the destination or EMBER_DELIVERY_FAILED if no ACK was
received.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The unicast message supplied by the Host. The message contents
are only included here if the decision for the messageCon-
tentsInCallback policy is messageTagAndContentsInCallback.

Name: cancelMessage ID: 0x40

Description: Cancels an outgoing message.

Command Parameters:

int8u messageTag The value supplied by the Host in the emberSendDatagram or
emberSendSequenced command.

Response Parameters:

EmberStatus status Always returns EMBER_SUCCESS.

Name: createAggregationRoutes ID: 0x41

Description: Sends a route request that creates routes from every node in the network back to this node. This
function should be called by the application if it wishes to aggregate data from many nodes. The data sources
will not have to discover routes individually. Additionally, incoming data will set up temporary reverse routes
that allow acknowledgement messages to return without a route discovery. The temporary routes expire and
become reusable after a single use, or 10-20 seconds.

Command Parameters: None

Response Parameters:

EmberStatus status EMBER_SUCCESS if the route request was successfully submitted
to the transmit queue, and EMBER_ERR_FATAL otherwise.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

80 120-1003-000D

Name: pollForData ID: 0x42

Description: Periodically request any pending data from our parent. Setting interval to 0 or units to EM-
BER_EVENT_INACTIVE will generate a single poll.

Command Parameters:

int16u interval The time between polls. Note that the timer clock is free run-
ning and is not synchronized with this command. This means that
the time will be between interval and (interval - 1).

EmberEventUnits units The units for interval.

int8u failureLimit The number of poll failures that will be tolerated before a
pollCompleteHandler callback is generated. A value of zero will
result in a callback for every poll. Any status value apart from
EMBER_SUCCESS and EMBER_MAC_NO_DATA is counted as a
failure.

Response Parameters:

EmberStatus status The result of sending the first poll.

Name: pollCompleteHandler ID: 0x43

Description: Indicates the result of a data poll to the parent of the local node.

This frame is a response to the callback command.

Response Parameters:

EmberStatus status An EmberStatus value: EMBER_SUCCESS - Data was received in
response to the poll. EMBER_MAC_NO_DATA - No data was
pending. EMBER_DELIVERY_FAILED - The poll message could not
be sent. EMBER_MAC_NO_ACK_RECEIVED - The poll message was
sent but not acknowledged by the parent.

Name: pollHandler ID: 0x44

Description: Indicates that the local node received a data poll from a child.

This frame is a response to the callback command.

Response Parameters:

EmberNodeId childId The node ID of the child that is requesting data.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 81

Name: incomingMessageHandler ID: 0x45

Description: A callback indicating a message has been received.

This frame is a response to the callback command.

Response Parameters:

EmberIncomingMessageType type The type of the incoming message. One of the following: EM-
BER_INCOMING_DATAGRAM, EM-
BER_INCOMING_DATAGRAM_REPLY, EM-
BER_INCOMING_SEQUENCED, EMBER_INCOMING_MULTICAST,
EMBER_INCOMING_SHARED_MULTICAST, EM-
BER_INCOMING_MULTICAST_LOOPBACK

EmberApsFrame apsFrame The APS frame from the incoming message.

int8u lastHopLqi The link quality from the node that last relayed the message.

int8s lastHopRssi The energy level (in units of dBm) observed during the reception.

EmberNodeId sender The sender of the message.

int8u bindingIndex The index of a binding that matches the message or 0xFF if there
is no matching binding.

int8u datagramReplyTag If the incoming message is a datagram and the Host wishes to
send a reply, this value must be supplied to the emberSendReply
command.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The incoming message.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

82 120-1003-000D

6.3.9 Alphabetical List of Frames

Frame Name ID

addEndpoint 0x02

bindingIsActive 0x2E

calibrationCompleteHandler 0x4D

callback 0x06

cancelMessage 0x40

channelCalibrated 0x4B

childJoinHandler 0x23

clearBindingTable 0x2A

closeConnection 0x3E

connectionStatus 0x3B

connectionStatusHandler 0x3C

createAggregationRoutes 0x41

debugHandler 0x13

debugWrite 0x12

deleteBinding 0x2D

energyScanResultHandler 0x48

formNetwork 0x1E

getBinding 0x2C

getBindingDestinationNodeId 0x2F

getChildData 0x4A

getConfigurationValue 0x52

getEui64 0x26

getMfgToken 0x0B

getMillisecondTime 0x0D

getNetworkParameters 0x28

getNodeId 0x27

getParentChildParameters 0x29

getPolicy 0x56

getRam 0x47

getRandomNumber 0x49

getTimer 0x4E

getToken 0x0A

incomingMessageHandler 0x45

invalidCommand 0x58

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 83

Frame Name ID

joinNetwork 0x1F

leaveNetwork 0x20

maximumPayloadLength 0x33

messageSent 0x3F

mobileNodeHasMoved 0x21

networkFoundHandler 0x1B

networkInit 0x17

networkState 0x18

noCallbacks 0x07

nop 0x05

openConnection 0x3A

permitJoining 0x22

pollCompleteHandler 0x43

pollForData 0x42

pollHandler 0x44

remoteDeleteBindingHandler 0x32

remoteSetBindingHandler 0x31

reset 0x08

scanAndFormNetwork 0x4F

scanAndJoinNetwork 0x50

scanCompleteHandler 0x1C

scanErrorHandler 0x51

sendBroadcast 0x36

sendDatagram 0x37

sendDiscoveryInformationToParent 0x25

sendMulticast 0x38

sendReply 0x39

sendSequenced 0x3D

sendUnicast 0x34

serialRead 0x11

serialWrite 0x10

setBinding 0x2B

setBindingDestinationNodeId 0x30

setConfigurationValue 0x53

setEncryptionKey 0x14

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

84 120-1003-000D

Frame Name ID

setManufacturerCode 0x15

setPolicy 0x55

setPowerDescriptor 0x16

setRam 0x46

setTimer 0x0E

setToken 0x09

stackStatusHandler 0x19

startChannelCalibration 0x4C

startScan 0x1A

stopScan 0x1D

timerHandler 0x0F

trustCenterJoinHandler 0x24

unicastSent 0x35

version 0x00

6.4 Sample Transactions

The following sections illustrate the following sample transactions:

 Joining

 Binding

 Sending

 Receiving

6.4.1 Joining

1) frame control = 0x00 (command frame, don't sleep)
 joinNetwork command = 0x1F
 nodeType = 0x02 (EMBER_ROUTER)
 panId = 0x1234
 radioTxPower = 0xFF (-1)
 radioChannel = 0x0B (11)
 useKey = 0x00 (FALSE)

 HOST -> EM260: | 00 | 1F | 02 | 34 | 12 | FF | 0B | 00 |

 frame control = 0x80 (response frame, no overflow, not truncated)
 joinNetwork response = 0x1F
 status = 0x00 (EMBER_SUCCESS)

 EM260 -> HOST: | 80 | 1F | 00 |

2) Host waits for callback signal while EM260 tries to join the network.

3) frame control = 0x00 (command frame, don't sleep)
 callback command = 0x06

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 85

 HOST -> EM260: | 00 | 06 |

 frame control = 0x80 (response frame, no overflow, not truncated)
 stackStatusHandler response = 0x19
 status = 0x90 (EMBER_NETWORK_UP)

 EM260 -> HOST: | 80 | 19 | 90 |

6.4.2 Binding

1) frame control = 0x00 (command frame, don't sleep)
 setBinding command = 0x2B
 index = 0x00
 type = 0x01 (EMBER_UNICAST_BINDING)
 local = 0x11
 remote = 0x12
 clusterId = 0x55
 identifier = 0x1122334455667788

 HOST -> EM260: | 00 | 2B | 00 | 01 | 11 | 12 | 55 | 88 | 77 | 66 | 55
 | 44 | 33 | 22 | 11 |

 frame control = 0x80 (response frame, no overflow, not truncated)
 setBinding response = 0x2B
 status = 0x00 (EMBER_SUCCESS)

 EM260 -> HOST: | 80 | 2B | 00 |

6.4.3 Sending

1) frame control = 0x00 (command frame, don't sleep)
 sendDatagram command = 0x37
 bindingTableIndex = 0x00
 clusterId = 0x55
 messageTag = 0x01
 messageLength = 0x03
 messageContents = 0xE1, 0xE2, 0xE3

 HOST -> EM260: | 00 | 37 | 00 | 55 | 01 | 03 | E1 | E2 | E3 |

 frame control = 0x80 (response frame, no overflow, not truncated)
 sendDatagram response = 0x37
 status = 0x00 (EMBER_SUCCESS)

 EM260 -> HOST: | 80 | 37 | 00 |

2) Host waits for callback signal while EM260 tries to send the message.

3) frame control = 0x00 (command frame, don't sleep)
 callback command = 0x06

 HOST -> EM260: | 00 | 06 |

 frame control = 0x80 (response frame, no overflow, not truncated)
 messageSent response = 0x3F
 bindingTableIndex = 0x00
 clusterId = 0x55
 messageTag = 0x01
 status = 0x00 (EMBER_SUCCESS)

 EM260 -> HOST: | 80 | 3F | 00 | 55 | 01 | 00 |

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

86 120-1003-000D

6.4.4 Receiving

1) Host waits for callback signal after a message is received by the EM260.

2) frame control = 0x00 (command frame, don't sleep)
 callback command = 0x06

 HOST -> EM260: | 00 | 06 |

 frame control = 0x80 (response frame, no overflow, not truncated)
 incomingMessageHandler response = 0x45
 type = 0x00 (EMBER_INCOMING_DATAGRAM)
 profileId = 0xABCD
 clusterId = 0x55
 sourceEndpoint = 0x11
 destinationEndpoint = 0x12
 options = 0x00
 lastHopLqi = 0xF0
 lastHopRssi = 0xC4 (-60)
 sender = 0x0001
 bindingIndex = 0xFF
 datagramReplyTag = 0x01
 messageLength = 0x03
 messageContents = 0xE1, 0xE2, 0xE3

 EM260 -> HOST: | 80 | 45 | 00 | CD | AB | 55 | 11 | 12 | 00 | F0 | C4
 | 01 | 00 | FF | 01 | 03 | E1 | E2 | E3 |

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 87

7 SIF Module Programming and Debug Interface
SIF is a synchronous serial interface developed by Cambridge Consultants Ltd. It is the primary programming
and debug interface of the EM260. Therefore, any design implementing the EM260 should make the SIF signals
readily available. The SIF module allows external devices to read and write memory-mapped registers in real-
time without changing the functionality or timing of the XAP2b core. See the EM260 Reference Design for
details regarding the implementation of the SIF interface.

The SIF interface provides the following:

 IC production test (especially analog)

 PCB production test

 XAP2b code development

 Product control and characterization

The pins are:

 nSIF_LOAD

 SIF_CLK

 SIF_MOSI

 SIF_MISO

Because the SIF module directly connects to the program and data memory buses within the EM260, it has
access to the entire Flash and RAM blocks, as well as the on-chip registers.

The maximum serial shift speed for the SIF interface is 48MHz. SIF interface accesses can be initiated even
when the chip is in idle and deep sleep modes. An edge on nSIF_LOAD wakes the chip to allow SIF cycles.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

88 120-1003-000D

8 Typical Application
Figure 12 illustrates the typical application circuit for the EM260. This figure does not contain all decoupling
capacitance required by the EM260. The Balun provides the impedance transformation from the antenna to
the EM250 for both TX and RX modes. The harmonic filter provides additional suppression of the second
harmonic, which increases the margin over the FCC limit. The 24MHz crystal with loading capacitors is re-
quired and provides the high frequency source for the EM250. The RC debounce filter (R4 and C7) is suggested
to improve the noise immunity of the RESET logic (Pin 11).

The SIF (nSIF_LOAD, SIF_MOSI, SIF_MISO, and SIF_CLK) and Packet Trace Signals (PTI_EN and PTI_TXD) should
be brought out test points or, if space permits to a 10-pin, dual row, 0.05-inch pitch header footprint. With a
header populated, a direct connection to the InSight Adapter is possible which enhances the debug capability
of the EM260. For more information, refer to the EM260 Reference Design.

L1

R1

C4
C5X1

1.8V

C6

Programming and
Debug Interface (these
pins should be routed
to test points)

Serial Interface
(route to Host uP)

Route to LED
or leave unconnected

VDD_VCO

RF_P

VDD_RF

RF_N

RF_TX_ALT_P

RF_TX_ALT_N

VDD_IF

BIAS_R

VDD_PADSA

TX_ACTIVE

SIF_LOADB

SIF_MOSI

SIF_MISO

SIF_CLK

HOST_INT

RES

VDD_PADS

PTI_DATA

PTI_EN

SSEL

G
N

D

VD
D

_F
LA

S
H

SD
BG

LI
N

K_
AC

TI
V

IT
Y

W
A

KE

VD
D

_C
O

R
E

VD
D

_S
YN

TH
_P

R
E

O
SC

B

O
SC

A

VD
D

_2
4M

H
Z

SC
LK

M
IS

O

M
O

SI

S
SE

L_
IN

T

VD
D

_C
O

R
E

VD
D

_P
AD

S

R
S

TB

VD
D

_P
AD

S

V
R

EG
_O

U
T

R
E

S

11 12 13 14 15 16 17 18 19 20

10

9

8

7

6

5

4

3

2

1

21

22

23

24

25

26

27

28

29

30

40 39 38 37 36 35 34 33 32 31

41
GND

EM260
U1

Ceramic
Balun (BLN1)

L2

C2

C1

C3

1.8V

Harmonic
Filter

R2

C7

R4

VDD_PADS
(2.1V to 3.6V)

R3

VDD_PADS
(2.1V to 3.6V)

Figure 12. Typical Application Circuit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 89

Table 23 contains the Bill of Materials for the application circuit shown in Figure 12.

Table 23. Bill of Materials

Item Quantity Reference Description Manufacturer/Part No.

1 1 C2 CAPACITOR, 5PF, 50V, NPO, 0402 <not specified>

2 2 C1,C3 CAPACITOR, 0.5PF, 50V, NPO, 0402 <not specified>

3 4 C4,C5 CAPACITOR, 27PF, 50V, NPO, 0402 <not specified>

4 1 C6 CAPACITOR, 10UF, 10V, TANTALUM, 3216 (SIZE A) <not specified>

5 1 C7 CAPACITOR, 10PF, 5V, NPO, 0402 <not specified>

6 1 L1 INDUCTOR, 2.7NH, +/- 5%, 0603, MULTILAYER MURATA

LQG18HN2N7

7 2 L2 INDUCTOR, 3.3NH, +/- 5%, 0603, MULTILAYER MURATA

LQG18HN3N3

8 1 R1 RESISTOR, 169 KOHM, 1%, 0402 <not specified>

9 1 R2 RESISTOR, 100 KOHM, 5% O402 <not specified>

10 1 R3 RESISTOR, 3.3 KOHM, 5% 0402 <not specified>

11 1 R4 RESISTOR, 10 KOHM, 5%, 0402 <not specified>

12 1 U1 EM260 SINGLE-CHIP ZIGBEE/802.15.4 SOLUTION EMBER

EM260

13 1 X1 CRYSTAL, 24.000MHZ, +/- 10PPM TOLERANCE,
+/- 25PPM STABILITY, 18PF, - 40 TO + 85C

ILSI

ILCX08-JG5F18-24.000MHZ

14 1 BLN1 BALUN, CERAMIC TDK

HHM1521

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

90 120-1003-000D

9 Mechanical Details
The EM260 package is a plastic 40-pin QFN that is 6mm x 6mm x 0.9mm. A large ground pad in the bottom
center of the package forms a 41st pin. A number of thermal vias should connect the EM260 decal center to a
PCB ground plane. For more information, refer to the EM260 Reference Design.

Figure 13 illustrates the package drawing.

Top View

Edge View

Sym. Minimum Nominal Maximum
A 0.85 1.90 1.0

Common Dimensions (mm)

Tolerances for
Form & PositionSym.

bbb
aaa

0.10
0.15

Notes

Notes
1. JEDEC ref MO-220
2. All dimensions are in millimeters
3. Pin 1 orientation identified by chamfer on corner of
exposed die pad.
4. Datum C and the seating plane are defined by the flat surface
of the metallised terminal
5. Dimension 'e' represents the terminal pitch
6. Dimension b applies to metallised terminal and is measured
1.25 to 1.30mm from terminal tip.
7. Dimension L1 represents terminal pull back from package
edge. Where terminal pull back exists, only upper half of lead is
visible on package edge due to half etching of leadframe.
8. Package surface shall be matte finish , Ra 1.6 - 2.2
9. Package warp shall be 1.150 maximum
10. Leadframe material is copper A194.
11. Coplanarity applies to the exposed pad as well as the
terminals.

Detail B

Bottom View

2x

2x

Nx

ccc 0.10

Detail A

Detail B

Detail A

Pin 1

EXPOSED
PAD

7

0.4000

0.4000

A1 0 1.02 1.05
A3 0.20 ref
D 5.90 6.11 6.10

D1 4.5 BSC
D2 4.21 4.31 4.41
E 5.91 6.10 6.10
E1
E2 4.21 4.31 4.41
L 0.35 0.41 1.45

L1 0.1
b 0.18 1.23 0.31
N 40
e 1.50
k 1.2
R b min / 2
T 0.15

R

4

6

3

D

E E1 E2

D1

D2
e

L

nx
 k

Nx b

0.15 typ T

0.
27

 ty
p

L1A3

A1

4.5 BSC

Figure 13. Package Drawing

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 91

10 Ordering Information
Use the following part numbers to order the EM260:

 EM260-RTR Reel, RoHS

 EM260-RTY Tray, RoHS

To order parts, contact Ember at +1-617-951-0200, or send your inquiry by email to sales@ember.com. Details
about our international distributors can be found on our Web site: www.ember.com.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

92 120-1003-000D

11 Abbreviations and Acronyms

Acronym/Abbreviation Meaning

ACR Adjacent Channel Rejection

AES Advanced Encryption Standard

CBC-MAC Cipher Block Chaining—Message Authentication Code

CCA Clear Channel Assessment

CCM Counter with CBC-MAC Mode for AES encryption

CCM* Improved Counter with CBC-MAC Mode for AES encryption

CSMA Carrier Sense Multiple Access

CTR Counter Mode

EEPROM Electrically Erasable Programmable Read Only Memory

ESD Electro Static Discharge

ESR Equivalent Series Resistance

FFD Full Function Device (ZigBee)

FIA Flash Information Area

GPIO General Purpose I/O (pins)

HF High Frequency (24MHz)

I2C Inter-Integrated Circuit bus

IDE Integrated Development Environment

IF Intermediate Frequency

IP3 Third order Intermodulation Product

ISR Interrupt Service Routine

kB Kilobyte

kbps kilobits/second

LF Low Frequency

LNA Low Noise Amplifier

LQI Link Quality Indicator

MAC Medium Access Control

MSL Moisture Sensitivity Level

Msps Mega samples per second

O-QPSK Offset-Quadrature Phase Shift Keying

PA Power Amplifier

PER Packet Error Rate

PHY Physical Layer

PLL Phase-Locked Loop

POR Power-On-Reset

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

120-1003-000D 93

Acronym/Abbreviation Meaning

PSD Power Spectral Density

PSRR Power Supply Rejection Ratio

PTI Packet Trace Interface

PWM Pulse Width Modulation

RoHS Restriction of Hazardous Substances

RSSI Receive Signal Strength Indicator

SFD Start Frame Delimiter

SIF Serial Interface

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

VCO Voltage Controlled Oscillator

VDD Voltage Supply

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

EM260

94 120-1003-000D

12 References
1. IEEE 802.11g (http://standards.ieee.org/getieee802/download/802.11g-2003.pdf)

2. Bluetooth Specification v1.2 (www.bluetooth.org/spec)

3. ZigBee Specification v1.1 (www.zigbee.org; document number 053474r07)

4. ZigBee Security Services Specification v1.0 (document number 03322r13)

5. Ember EM260 Reference Design (www.ember.com)

© 2006 Ember Corporation. All rights reserved.

The information in this document is subject to change without notice. This document is believed to be accu-
rate and reliable, but the statements contained herein are presented without express or implied warranty.

EmberNet, EmberZNet, and Ember are trademarks of Ember Corporation. All other trademarks are the prop-
erty of their respective holders.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

