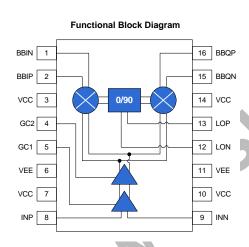


rfmd.com

Preliminary

SRF-1016(Z)

65 MHz to 300 MHz SILICON GERMANIUM IF RECEIVER


Thursday.

RFMD Green, RoHS Compliant, Pb-Free (Z Part Number)
Package: TSSOP, 16-Pin, 5.0mmx6.4mmx1.0mm

Product Description

RFMD's SRF-1016 is a quadrature demodulator RFIC designed for UHF and microwave receiver IF applications. This device features switchable gain control, high P1dB, and excellent I/Q amplitude and phase balance. Use of this highly integrated device can result in lower component count, a more compact assembly, and higher transceiver card yields. The device is packaged in an industry standard 16-pin TSSOP with exposed paddle for superb RF and thermal ground.

Optimum Technology Matching® Applied GaAs HBT GaAs MESFET InGaP HBT SiGe BiCMOS Si BiCMOS ✓ SiGe HBT GaAs pHEMT Si CMOS Si BJT GaN HEMT RF MEMS

Features

- Gain Control in 20dB Steps
- Excellent I/Q Amplitude and Phase Balance
- Output P1dB>+4dBm Over All Gain Settings

Applications

- Digital and Spread Spectrum Communication Systems
- Cellular, PCS, DCS, 2G, 2.5G, 3G Transceivers
- ISM Band Transceivers
- Point-to-Point Microwave Receivers
- Broadband Wireless Systems

Parameter	Specification			Unit	Condition	
Falailletei	Min. Typ.		Max.	Offic	Condition	
IF Input						
IF Frequency Range	65		300	MHz		
INP/INN Return Loss		20		dB	50Ω nominal differential input, Note 1	
INP/INN Common Mode Voltage		2		V	Internally generated	
Gain	28	31	33	dB	High gain setting	
Input P1dB	-26	-24		dBm	GC1=GC2=+5V	
DSB Noise Figure		11		dB		
Gain	9	12	14	dB	Medium gain setting	
Input P1dB	-8	-6		dBm	GC1=+5V GC2=+0V	
DSB Noise Figure		14.5		dB	402 101	
Gain	-9.0	-6.5	-4.0	dB	Low gain setting GC1=GC2=0V	
Input P1dB	12	14		dBm	GC1=GC2=0V	
DSB Noise Figure		31		dB		

Preliminary

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	6.0	VDC
LO Input	+10	dBm
IF Input	+10	dBm
Operating Temperature	-40 to +85	°C
Storage Temperature	-65 to +150	°C

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Product Specifications - I/Q Output

Parameters	Min	Тур	Max	Unit	Additonal Test Conditions
I/Q Output Frequency Range	DC		500	MHz	
I/Q Output Amplitude Balance	-0.2		0.2	dB	
I/Q output Phase Balance	-2		2	deg	
I/Q Output Common-mode Voltage		2.5		V	
I/Q Output Return Loss		20		dB	50Ω nominal differential output*

^{*} To achieve 20dB port match above 100MHz, the parasitic inductance of the package must be matched out.

Product Specifications - LO Input

Parameters	Min	Тур	Max	Unit	Additonal Test Conditions
LO Frequency Range	65		300	MHz	
LO Input Level	-3	0	+3	dBm	
LO Return Loss		20		dB	50Ω nominal differential input

^{*} To achieve 20dB of port match the parasitic inducatnce of the package, board, and L4, L5 must be matched at the center frequency with a series capacitor.

Product Specifications - Miscellaneous

Parameters	Min	Тур	Max	Unit	Additonal Test Conditions
Supply Voltage (V _{CC})	+4.75	+5.0	+5.25	V	
Supply Current (I _{CC})		195		mA	
Thermal Resistance		35	45	°C/W	Hot spot on die to lead
GC1, GC2 Input V _{IL}	0		0.3xV _{CC}	V	Logic level zero
GC1, GC2 Input V _{IH}	0.7xV _{CC}		V _{CC}	V	Logic level one
GC1, GC2 Input Impedance	40			kohm	

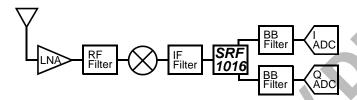
Test Conditions

Gain State	GC1 Voltage	GC2 Voltage	IF Power
Low Gain	OV	OV	OdBm
Medium Gain	+5V	OV	-20dBm
High Gain	+5V	+5V	-40 dBm

 V_{CC} =+5 V_{DC} , T=+25°C, LO input=0dBm, 200MHz, IF input=201MHz

rfmd.com

Preliminary


SRF-1016(Z)

The SRF-1016 is a variable gain I-Q demodulator designed for use in receiver IF sections, as shown in the figure below. It consists of five subcircuits: two cascaded switched gain stages, a matched pair of mixers, and a LO quadrature generator. This part is also available in a higher frequency version, the SRF-2016.

The gain stages are broadband differential amplifiers each with a digital control pin to set the gain. The gain control pins act independently of each other. Since the amplifiers have approximately the same gain, setting GC1 high and GC2 low results in approximately the same gain as setting GC1 low and GC2 high. The former setting is preferred because it offers better noise figure. The IF input is differential with internal bias circuitry to set the common mode voltage. The use of blocking capacitors to facilitate AC coupling is highly recommended to avoid changing the common mode voltage. Either input may be driven single-ended if the other input is connected to ground through an AC short such as a 1000 pF capacitor. This typically results in slightly lower input P_{1dB}.

The two matched mixers are configured with the quadrature LO generator to provide in-phase and quadrature baseband outputs. These can be fed through ADCs to a DSP engine, or can be fed into a low frequency 90° hybrid for image rejection. Alternatively, the IF signal can be extracted from the BBI port by injecting DC into the LO port.

The LO and IF ports offer a differential 50Ω impedance. The package (and in the case of the input port, the parallel L-R network) adds inductance that tends to degrade return loss. This can easily be matched out with a series capacitor. The $27\,\mathrm{pF}$ capacitor on the evaluation board is appropriate for $200\,\mathrm{MHz}$ operation; larger capacitors should be used for lower frequencies.

Typical use for the SRF-1016 in a receiver employing digital I/Q demodulation.

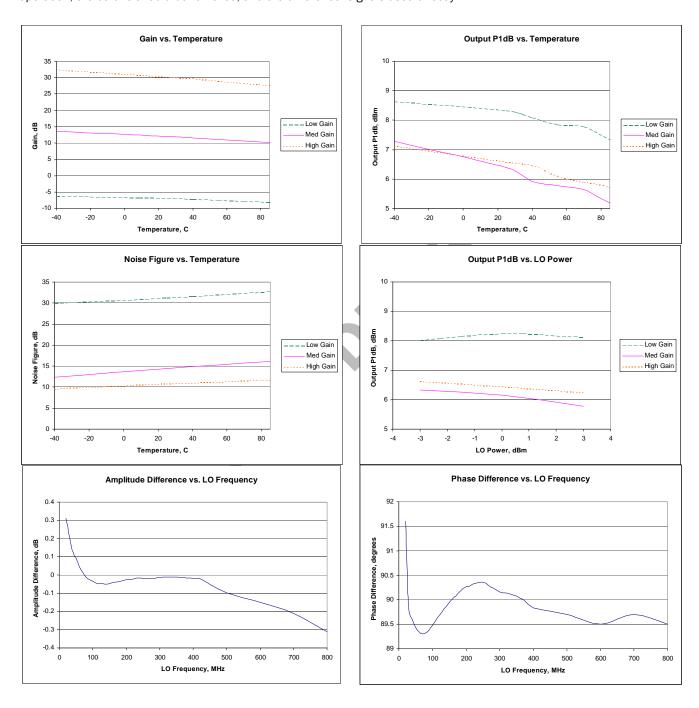
The SRF-1016 has high gain at UHF frequencies, so instability can result if there is poor power supply decoupling or undesired coupling from the input to the output. The following considerations should be observed when laying out a PC board:

Follow the general layout of the evaluation board, keeping the power supply decoupling capacitors as close to the package as possible. The back of the package, the two ground pins and the decoupling capacitors should connect directly to ground, preferably to a large dedicated ground plane. Use the parallel L-R circuits on the input pins. Ensure that the input signal tracks are routed far from the output tracks. The V_{CC} pins are not internally connected, so all must be connected together externally with the specified decoupling capacitors.

The figures on page 4 illustrate a typical SRF-1016's performance with respect to temperature. Note that these numbers include the effect of the R-L network in the IF port.

The frequency response of the IF and LO ports is dominated by the L-R network on the input. When de-embedded, the gain and P_{1dB} response is within 0.5dB from 65MHz to 300MHz.

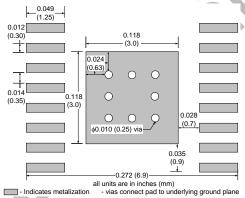
The SRF-1016 features immunity from changes in LO power. The gain typically changes by less than 0.6dB over a 6dB range of LO power. Also note the excellent I/Q balance, which typically falls within 0.1dB and 1° from 65MHz to 300MHz, and varies less than 0.05dB and 0.5° over temperature (-40 to +85C).


SRF-1016(Z)

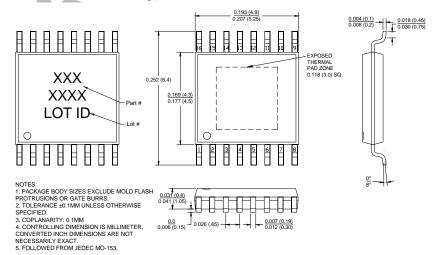
Preliminary

The package dimensions are shown on page 5. Note that heat is removed from the part via the heat slug, so this slug must be properly soldered to a copper plane under the part.

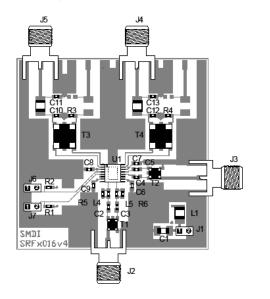
Evaluation boards are available for this device and a description of the board are shownon page 6. Note that the evaluation board uses baluns on the I/Q outputs, and these baluns limit the low frequency response of the device. For true baseband operation, the baluns should be removed, and the differential signals used directly.


Unless otherwise stated, measurements were taken with an IF frequency of 200 MHz, an LO frequency of 201 MHz, a baseband output of 1 MHz, an LO power of 0 dBm, at room temperature, with a supply voltage of 5 volts. Measurements were done on the evaluation board.

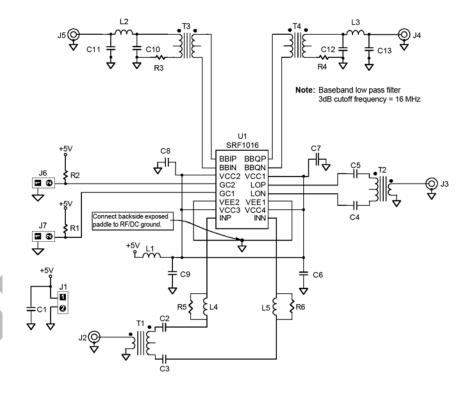
rfmd	com


Pin	Function	Description
1	BBIN	Baseband i-axis output (-). Self-biasing.
2	BBIP	Baseband I-axis output (+). Self-biasing.
3, 7,	VCC	Positive power supply.
10, 14		
4	GC2	Gain control input, stage 2. 5V CMOS levels.
5	GC1	Gain control input, stage 1. 5V CMOS levels.
6, 11	VEE	Ground.
8	INP	IF input (+). Self-biasing; AC-couple.
9	INN	IF input (-). Self-biasing; AC-couple.
12	LON	LO input (-). Self-biasing; AC-couple.
13	LOP	LO input (+). Self-biaising; AC-couple.
15	BBQN	Baseband Q-axis output (-). Self-biasing.
16	BBQP	Baseband Q-axis output (+). Self-biasing.

Suggested PCB Pad Layout


Package Drawing

Dimensions in inches (millimeters)
Refer to drawing posted at www.rfmd.com for tolerances.



Fully Assembled PCB

Demo Test Board Schematic Tuned for Operation at 200 MHz

rfmd.com

Bill of Materials

Component Designator	Value	Qty	Vendor	Part Number	Description
U1		1	SMDI	SRF-1016	IF receiver
J1, J6, J7		3	Sullins	\$1312-02-ND	2 pin 0.1" header
J2, J3, J4, J5		4	Johnson Components	142-0701-851	SMA end launch connector
T1, T2		2	Mini-Circuits	TC1-1	IF Transformer
T3, T4		2	Mini-Circuits	ADT1-6T	Baseband Transformer
C1	1 uF	1	Venkel	C1206Y5V160-105ZNE	1206 size supply bypass capacitor
C2, C3	27 pF	2	Venkel	C0603C0G500-270JNE	0603 size coupling capacitor
C4, C5	68 pF	2	Venkel	C0603C0G500-680JNE	0603 size coupling capacitor
C9	100 pF	1	Venkel	C0603C0G500-101JNE	0603 size bypass capacitor
C6, C7, C8	22 pF	3	Venkel	C0603C0G500-220JNE	0603 size bypass capacitor
C10, C11, C12, C13	220 pF	4	Venkel	C0603C0G500-221JNE	0603 size filter capacitor
L1, L2, L3	1 uH	5	Panasonic	PCD1008TR-ND	1210 size filter inductor
R1, R2	1 kOhm	2	Venkel	CR0603-16W-102JT	0603 size pull-up resistor
R3, R4	0 Ohm	2	Venkel	CR0603-16W-000T	0603 jumper
R5, R6	50 Ohm	2	Venkel	CR0603-16W-500JT	0603 size stability resistor
L4, L5	10 nH	2	Toko	LL1608 FS10NJ	0603 size stability inductor
		1	SMDI	ECB-102274	Evaluation Board

Ordering Information

Part Number	Reel Size	Devices/Reel
SRF-1016	7"	1000
SRF-1016Z	7"	1000

