Freescale Semiconductor

Technical Data

RF LDMOS Wideband Integrated Power Amplifiers

The MW6IC2240N wideband integrated circuit is designed with on-chip matching that makes it usable from 2110 to 2170 MHz. This multi-stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulation formats including TD-SCDMA.

Final Application

 Typical 2-Carrier W-CDMA Performance: V_{DD} = 28 Volts, I_{DQ1} = 210 mA, I_{DQ2} = 370 mA, P_{out} = 4.5 Watts Avg., f = 2157 MHz, Channel Bandwidth = 3.84 MHz, PAR = 8.5 dB @ 0.01% Probability on CCDF. Power Gain — 28 dB Power Added Efficiency — 15% IM3 @ 10 MHz Offset — -43 dBc in 3.84 MHz Bandwidth ACPR @ 5 MHz Offset — -46 dBc in 3.84 MHz Bandwidth

Driver Application

Typical 2-Carrier W-CDMA Performance: V_{DD} = 28 Volts, I_{DQ1} = 300 mA, I_{DQ2} = 320 mA, P_{out} = 25 dBm, Full Frequency Band (2110-2170 MHz), Channel Bandwidth = 3.84 MHz, PAR = 8.5 dB @ 0.01% Probability on CCDF.
 Power Gain — 29 dB
 IM3 @ 10 MHz Offset — -59 dBc in 3.84 MHz Bandwidth

ACPR @ 5 MHz Offset — -62 dBc in 3.84 MHz Bandwidth

- Capable of Handling 3:1 VSWR, @ 28 Vdc, 2170 MHz, 20 Watts CW Output Power
- Stable into a 3:1 VSWR. All Spurs Below -60 dBc @ 100 mW to 10 Watts CW P_{out}.

Features

- Characterized with Series Equivalent Large-Signal Impedance Parameters and Common Source Scattering Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked, >3 Ohm Output)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function ⁽¹⁾
- Integrated ESD Protection
- 225°C Capable Plastic Package
- RoHS Compliant
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel

 Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.

CASE 1329-09 TO-272 WB-16

PLASTIC MW6IC2240NBR1

CASE 1329A-04 TO-272 WB-16 GULL PLASTIC MW6IC2240GNBR1

Document Number: MW6IC2240N Rev. 6, 12/2008

MW6IC2240NBR1 MW6IC2240GNBR1

2110-2170 MHz, 4.5 W AVG., 28 V

2 x W-CDMA

RF LDMOS WIDEBAND

INTEGRATED POWER AMPLIFIERS

√RoHS

© Freescale Semiconductor, Inc., 2005-2008. All rights reserved.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +68	Vdc
Gate - Source Voltage	V_{GS}	-0.5, +6	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C
Input Power	P _{in}	23	dBm

Table 2. Thermal Characteristics

C	haracteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to	Case	R _{θJC}		°C/W
W-CDMA Application (P _{out} = 4.5 W Avg.)	Stage 1, 28 Vdc, I _{DQ} = 210 mA Stage 2, 28 Vdc, I _{DQ} = 370 mA		1.8 1.0	
W-CDMA Application (P _{out} = 40 W CW)	Stage 1, 28 Vdc, I _{DQ} = 110 mA Stage 2, 28 Vdc, I _{DQ} = 370 mA		2.0 0.87	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1A (Minimum)
Machine Model (per EIA/JESD22-A115)	A (Minimum)
Charge Device Model (per JESD22-C101)	III (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit

Functional Tests (In Freescale Wideband 2110-2170 MHz Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1} = 210 mA, I_{DQ2} = 370 mA, P_{out} = 4.5 W Avg., f = 2157 MHz, 2-Carrier W-CDMA, 3.84 MHz Channel Bandwidth Carriers. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. IM3 measured in 3.84 MHz Channel Bandwidth @ ±10 MHz Offset. PAR = 8.5 dB @ 0.01% Probability on CCDF.

Power Gain	G _{ps}	25.5	28	30	dB
Power Added Efficiency	PAE	13.7	15	_	%
Intermodulation Distortion	IМЗ		-43	- 40	dBc
Adjacent Channel Power Ratio	ACPR		-46	-43	dBc
Input Return Loss	IRL	—	-15	-10	dB

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

(continued)

Table 5. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Мах	Unit

Typical Performances (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1} = 210 mA, I_{DQ2} = 370 mA, 2110 MHz<Frequency<2170 MHz

Video Bandwidth (Tone Spacing from 100 kHz to VBW) ∆IMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both sidebands)	VBW	_	30		MHz
Quiescent Current Accuracy over Temperature with 18 k Ω Gate Feed Resistors (-10 to 85°C) ⁽¹⁾	ΔI_{QT}	_	±5		%
Gain Flatness in 30 MHz Bandwidth @ P _{out} = 1 W CW	G _F	_	0.2		dB
Deviation from Linear Phase in 30 MHz Bandwidth @ Pout = 1 W CW	Φ	_	±1		٥
Delay @ P _{out} = 1 W CW Including Output Matching	Delay	_	2.8	_	ns
Part-to-Part Phase Variation @ P _{out} = 1 W CW	$\Delta \Phi$		±9	_	0

 Table 6. Electrical Characteristics
 (T_C = 25°C unless otherwise noted)

Characteristic		Min	Тур	Max	Unit
Typical Performances (In Freescale Test Fixture, 50 ohm system) Voo – 2		110 mA loo	o – 370 mA		

Typical Performances (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1} = 110 mA, I_{DQ2} = 370 mA, 2110 MHz<Frequency<2170 MHz

Saturated Pulsed Output Power	P _{sat}	—	60	_	W
(8 μsec(on), 1 msec(off))					

1. Refer to AN1977, *Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family* and to AN1987, *Quiescent Current Control for the RF Integrated Circuit Device Family*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.

Figure 3. MW6IC2240NBR1(GNBR1) Test Circuit Schematic

Table 7. MW6IC2240NBR	(GNBR1) Test Circuit	Component	Designations	and Values
-----------------------	--------	----------------	-----------	--------------	------------

Part	Description	Part Number	Manufacturer
C1, C2	1.5 pF Chip Capacitors	ATC100B1R5BT500XT	ATC
C3	1.8 pF Chip Capacitor	ATC100B1R8BT500XT	ATC
C4, C5	6.8 pF Chip Capacitors	ATC100B6R8CT500XT	ATC
C6, C7, C10, C11, C12, C13	4.7 μF Chip Capacitors	C4532X5R1H475MT	TDK
C8	8.2 pF Chip Capacitor	ATC100B8R2CT500XT	ATC
C9	0.5 pF Chip Capacitor	ATC100B0R5BT500XT	ATC
R1	18 kΩ, 1/4 W Chip Resistor	CRCW12061802FKEA	Vishay
R2	8.2 kΩ, 1/4 W Chip Resistor	CRCW12068201FKEA	Vishay

Figure 4. MW6IC2240NBR1(GNBR1) Test Circuit Component Layout

Figure 6. 2-Carrier W-CDMA Wideband Performance @ $P_{out} = 0.6$ Watts Avg.

Figure 8. Frequency Response versus Current

MW6IC2240NBR1 MW6IC2240GNBR1

Downloaded from Elcodis.com electronic components distributor

This above graph displays calculated MTTF in hours when the device is operated at V_{DD} = 28 Vdc, P_{out} = 4.5 W Avg., and PAE = 15%.

MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product.

 V_{DD} = 28 Vdc, I_{DQ1} = 210 mA, I_{DQ2} = 370 mA, P_{out} = 4.5 W Avg.

f MHz	Z _{in} Ω	Z_{load}
2050	33.723 + j3.048	7.971 - j5.705
2080	38.052 + j8.201	7.559 - j5.532
2110	45.972 + j12.306	7.117 - j5.345
2140	59.075 + j9.272	6.642 - j5.119
2170	68.368 - j3.227	6.132 - j4.891
2200	67.177 - j19.071	5.626 - j4.619
2230	58.213 - j28.879	5.118 - j4.305

Z_{load} = Test circuit impedance as measured from drain to ground.

Figure 16. Series Equivalent Input and Load Impedance

f	S	S ₁₁		S ₂₁		\$ ₁₂		\$ ₂₂	
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$	
1000	0.788	131.360	0.0013	63.602	0.0020	25.353	0.9940	172.664	
1200	0.713	113.326	0.0012	42.219	0.0094	10.742	0.9910	169.954	
1400	0.584	86.885	0.0007	55.210	0.1180	-39.325	0.9850	166.452	
1600	0.389	41.593	0.0006	117.726	0.6690	-92.822	0.9780	161.752	
1800	0.239	-54.753	0.0022	122.409	4.9300	-164.584	0.9310	152.388	
2000	0.221	-162.180	0.0036	118.178	21.396	49.432	0.6120	151.441	
2200	0.216	-38.746	0.0057	68.626	19.739	-105.946	0.7530	- 177.800	
2400	0.467	-113.440	0.0043	64.758	7.8281	166.887	0.9010	171.868	
2600	0.539	-153.020	0.0044	48.498	3.8868	113.310	0.9350	167.252	
2800	0.635	-171.630	0.0044	52.829	2.4331	69.460	0.9480	164.137	
3000	0.716	169.263	0.0049	56.398	1.6119	29.135	0.9570	161.593	

Table 8. Common Source Scattering Parameters (V_{DD} = 28 V, I_{DQ1} = 210 mA, I_{DQ2} = 370 mA, 50 Ohm System)

TD-SCDMA CHARACTERIZATION

Figure 17. MW6IC2240NBR1(GNBR1) Test Circuit Schematic — TD-SCDMA

Table 9. MWOIC2240MDR (GMDRT) Test Circuit Component Designations and values — TD-SCDMA	Table 9. MW6IC2240NBR1(GNBF	1) Test Circuit Compor	nent Designations and	Values — TD-SCDMA
---	-----------------------------	------------------------	-----------------------	-------------------

Part	Description	Part Number	Manufacturer
C1, C4, C5, C11	2.2 µF Chip Capacitors	C3225X5R1H225MT	TDK
C2, C3	100 nF Chip Capacitors	C1206CK104K5RC	Kemet
C8, C9	1.2 pF Chip Capacitors	08051J1R2BBS	AVX
C10	6.8 pF Chip Capacitor	08051J6R8CBS	AVX
C6, C7	5.6 pF Chip Capacitors	08051J5R6CBS	AVX
R1, R2	5 kΩ Potentiometer CMS Cermet Multi-turn	3224W	Bourns

Figure 18. MW6IC2240NBR1(GNBR1) Test Circuit Component Layout — TD-SCDMA

POWER ADDED EFFICIENCY (%) ALT/ACPR (dBc) -34 15 Alt-L -42 10 Adj-L -50 5 PAE, Alt-U -58 0 1.5 2.5 6.5 7.5 0.5 3.5 4.5 5.5 Pout, OUTPUT POWER (WATTS) AVG.

TD-SCDMA TEST SIGNAL

 V_{DD} = 28 Vdc, I_{DQ1} = 280 mA, I_{DQ2} = 375 mA

f MHz	Z _{in} Ω	Z _{load} Ω
1950	42.975 - j10.510	12.419 - j4.771
1960	41.871 - j9.592	12.233 - j5.001
1970	40.898 - j9.050	11.983 - j5.104
1980	40.084 - j8.816	11.683 - j5.368
1990	39.463 - j7.496	11.334 - j5.499
2000	38.859 - j6.587	10.959 - j5.585
2010	38.434 - j6.117	10.578 - j5.631
2020	38.096 - j4.972	10.212 - j5.635
2030	37.748 - j4.486	9.877 - j5.596
2040	37.553 - j3.046	9.575 - j5.536
2050	37.414 - j2.586	9.302 - j5.439
2060	37.369 - j1.918	9.053 - j5.319
2070	37.420 - j1.654	8.831 - j5.185
7 5		

 Z_{in} = Device input impedance as measured from gate to ground.

MW6IC2240NBR1 MW6IC2240GNBR1

PACKAGE DIMENSIONS

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECH			L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-272 WIDE BODY		DOCUMENT NO): 98ARH99164A	REV: M	
		CASE NUMBER	8: 1329–09	23 AUG 2007	
MUL II-LEAD			STANDARD: NO	DN-JEDEC	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.
- 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.

	IN	СН	MI	LIMETER		INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
А	.100	.104	2.54	2.64	b	.011	.017	0.28	3 0.43
A1	.038	.044	0.96	1.12	b1	.037	.043	0.94	↓ 1.09
A2	.040	.042	1.02	1.07	b2	.037	.043	0.94	↓ 1.09
D	.928	.932	23.57	23.67	b3	.225	.231	5.72	2 5.87
D1	.810	BSC	20	0.57 BSC	c1	.007	.011	.18	.28
Е	.551	.559	14.00	14.20	е	.C	54 BSC		1.37 BSC
E1	.353	.357	8.97	9.07	e1	.0	40 BSC		1.02 BSC
E2	.346	.350	8.79	8.89	e2	.2	24 BSC	Ę	5.69 BSC
F	.025	BSC	0.64 BSC		e3	.150 BSC		3.81 BSC	
м	.600		15.24		r1	.063	.068	1.6	1.73
N	.270		6.86						
					aaa		.004		.10
© FI	REESCALE SEM ALL RIGHT	ICONDUCTOR, I IS RESERVED.	NC.	MECHANICA	L OUT	LINE	PRINT VERS	SION NC	T TO SCALE
TITLE:	TITLE:				DOCU	MENT NO	: 98ARH99164	A	REV: M
	10-	272 WID	E BOI	JY	CASE NUMBER: 1329-09 23 AUG 20			23 AUG 2007	
MULTI-LEAD					STAN	DARD: NO	N-JEDEC		·

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL		L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-272WB, 16 LE	AD	DOCUMENT NO): 98ASA10532D	REV: F
GULL WING	CASE NUMBER	: 1329A-04	20 JUN 2007	
PLASTIC		STANDARD: JE	DEC MO-253 BA	

MW6IC2240NBR1 MW6IC2240GNBR1

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA			L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	TITLE: TO-272WB 16 LEAD): 98ASA10532D	REV: F
GULL WING			CASE NUMBER: 1329A-04 20 JUN 2007		
	PLASTIC		STANDARD: JE	DEC MO-253 BA	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS EXPOSED AREA OF THE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.

	IN	ЮН	MIL	LIMETER		INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
А	.100	.104	2.54	2.64	q	.011	.017	0.28	0.43	
A1	.001	.004	0.02	0.10	b1	.037	.043	0.94	1.09	
A2	.099	.110	2.51	2.79	b2	.037	.043	0.94	1.09	
D	.928	.932	23.57	23.67	b3	.225	.231	5.72	5.87	
D1	.810	BSC	20.	57 BSC	c1	.007	.011	.18	.28	
Е	.429	.437	10.9	11.1	е	.054 BSC		1.	1.37 BSC	
E1	.353	.357	8.97	9.07	e1	.04	-0 BSC	1.(D2 BSC	
E2	.346	.350	8.79	8.89	e2	.22	4 BSC	5.69 BSC		
L	.018	.024	0.46	0.61	e3	.15	0 BSC	3.81 BSC		
L1	.01	BSC	0.2	25 BSC	r1	.063	.068	1.6	1.73	
М	.600		15.24		t	2'	8'	2'	8'	
Ν	.270		6.86							
					٥٥٥	.004			.10	
© F	© FREESCALE SEMICONDUCTOR, INC. MECHANICA			L OUT	LINE	PRINT VER	SION NO	T TO SCALE		
TITLE:				DOCL	JMENT NO): 98ASA10532	2D	REV: F		
		GULL W	ING		CASE	CASE NUMBER: 1329A-04 20 JUN 200			20 JUN 2007	
PLASTIC				STAN	STANDARD: JEDEC MO-253 BA					

MW6IC2240NBR1 MW6IC2240GNBR1

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
- AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
3	Oct. 2006	 Added "including TD-SCDMA" to data sheet description, p. 1 Added Part Number and Manufacturer to Resistors in Table 7, Component Designations and Values, p. 4 Added TD-SCDMA test circuit schematic, component designations and values, component layout, typical characteristic curves, test signal and series impedance, p. 11-14 Added Product Documentation and Revision History, p. 21
4	Dec. 2006	Updated Part Numbers in Table 7, Component Designations and Values, to RoHS compliant part numbers, p. 4
5	Feb. 2007	 Corrected V_{BIAS} and V_{SUPPLY} callouts, Fig. 3, Test Circuit Schematic, p. 4, Fig. 4, Test Circuit Component Layout, p. 5 Updated Part Numbers in Tables 7 and 9, Component Designations and Values, to latest RoHS compliant part numbers, p. 4, 11 Removed lower voltage tests from Fig. 14, Power Gain versus Output Power, due to fixed tuned fixture limitations, p. 8 Replaced Fig. 15, MTTF versus Junction Temperature with updated graph. Removed Amps² and listed operating characteristics and location of MTTF calculator for device, p. 8 Changed callout η_D to PAE (Power Added Efficiency) for Figs. 19 and 20, 3-Carrier and 6-Carrier TD-SCDMA ACPR, ALT and Power Added Efficiency versus Output Power, p. 13 Corrected Z_{in} data and plot in Fig. 23, Series Impedance, p. 14
6	Dec. 2008	 Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification number, PCN13232, p. 1, 2 Changed 220°C to 225°C in Capable Plastic Package bullet, p. 1 Added Footnote 1 to Quiescent Current Temperature bullet under Features section and to callout in Figure 1, Functional Block Diagram, p. 1 Changed Storage Temperature Range in Max Ratings table from -65 to +200 to -65 to +150 for standardization across products, p. 2 Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2 Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related "Continuous use at maximum temperature will affect MTTF" footnote added, p. 2 Updated Part Numbers in Table 7, Component Designations and Values, to latest RoHS compliant part numbers, p. 4

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005-2008. All rights reserved.

