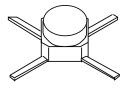
MSA-0436

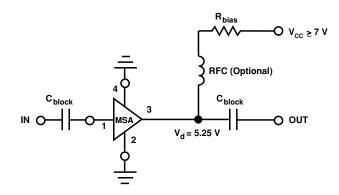
Cascadable Silicon Bipolar MMIC Amplifiers

Data Sheet

Description


The MSA-0436 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a cost effective, microstrip package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- Cascadable 50Ω Gain Block
- 3 dB Bandwidth: DC to 3.8 GHz
- 12.5 dBm Typical $P_{1 dB}$ at 1.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Cost Effective Ceramic Microstrip Package

36 micro-X Package

Typical Biasing Configuration

MSA-0436 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	100 mA				
Power Dissipation ^[2,3]	650 mW				
RF Input Power	+13 dBm				
Junction Temperature	150°C				
Storage Temperature ^[4]	−65 to 150°C				

Thermal Resistance ^[2,5] :	
$\theta_{\rm jc} = 140^{\circ}{ m C/W}$	

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25^{\circ}C$. 3. Derate at 7.1 mW/°C for $T_{C} > 109^{\circ}C$.
- 4. Storage above +150°C may tarnish the leads of this package making it difficult to solder into a circuit.
- 5. The small spot size of this technique results in a higher, though more accurate determination of q_{jc} than do alternate methods.

Electrical Specifications $^{[1]}$, $\rm T_A=25^{\circ}C$

Symbol	Parameters and Test Conditions:	$I_d = 50 \text{ mA}, Z_0 = 50 \Omega$	Units	Min.	Тур.	Max.
GP	Power Gain ($ S_{21} ^2$)	f = 0.1 GHz	dB	7.5	8.5	9.5
ΔG_P	Gain Flatness	f = 0.1 to 2.5 GHz	dB		±0.6	±1.0
f _{3 dB}	3 dB Bandwidth		GHz		3.8	
VSWR	Input VSWR	f = 0.1 to 2.5 GHz			1.4:1	
VSWK	Output VSWR	f = 0.1 to 2.5 GHz			1.9:1	
NF	$50~\Omega$ Noise Figure	f = 1.0 GHz	dB		6.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		12.5	
IP3	Third Order Intercept Point	f = 1.0 GHz	dBm		25.5	
t_{D}	Group Delay	f = 1.0 GHz	psec		125	
V_{d}	Device Voltage		V	4.75	5.25	5.75
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

1. The recommended operating current range for this device is 30 to 70 mA. Typical performance as a function of current is on the following page.

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0436-BLKG	100	Bulk		
MSA-0436-TR1G	1000	7" Reel		

Freq.	S ₁₁		S ₂₁		S ₁₂			S ₂₂		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.08	175	8.5	2.67	175	-16.4	.151	1	.20	-10
0.2	.08	172	8.5	2.68	170	-16.3	.153	2	.20	-16
0.4	.07	171	8.5	2.67	161	-16.4	.151	3	.20	-33
0.6	.07	166	8.5	2.66	151	-16.2	.155	6	.21	-45
0.8	.05	169	8.4	2.64	142	-16.1	.156	8	.22	-57
1.0	.05	175	8.3	2.61	136	-16.0	.159	10	.24	-68
1.5	.04	-142	8.1	2.55	109	-15.0	.178	13	.26	-96
2.0	.09	-145	7.8	2.46	87	-14.2	.196	15	.28	-123
2.5	.14	-154	7.3	2.33	71	-13.1	.221	18	.31	-140
3.0	.22	-175	6.6	2.14	50	-12.5	.238	14	.33	-160
3.5	.28	170	5.8	1.94	32	-11.7	.260	9	.35	-173
4.0	.34	156	4.8	1.74	15	-11.3	.271	4	.34	-179
4.5	.37	140	3.9	1.57	-1	-10.7	.291	- 2	.33	-171
5.0	.42	120	3.0	1.41	-16	-10.4	.302	-8	.32	-160

Typical Performance, $T_{\rm A}=25^{\circ}{\rm C}$

(unless otherwise noted)

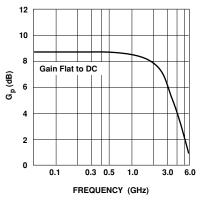


Figure 1. Typical Power Gain vs. Frequency, T_A = 25°C, I_d = 50 mA.

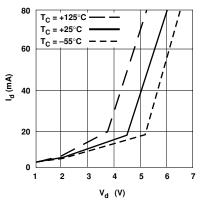


Figure 2. Device Current vs. Voltage.

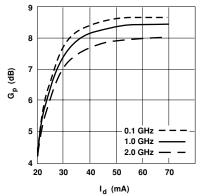


Figure 3. Power Gain vs. Current.

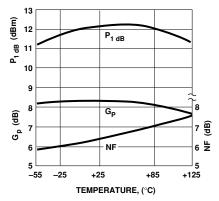


Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f=1.0~GHz, $I_d=50~mA$.

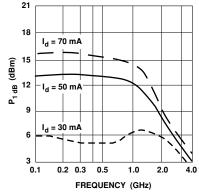


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

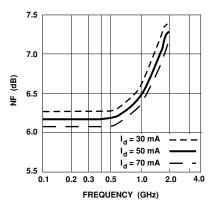
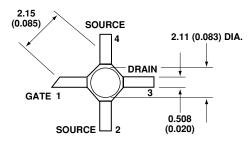
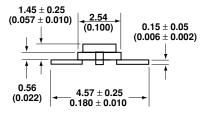




Figure 6. Noise Figure vs. Frequency.

36 micro-X Package Dimensions

Notes:

- 1. Dimensions are in millimeters (inches)
- 2. Tolerances: in .xxx = \pm 0.005 mm .xx = \pm 0.13

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2007 Avago Technologies, Limited. All rights reserved. Obsoletes 5989-2740EN AV02-0303EN - April 12, 2007

