# **MSA-0786**

# Cascadable Silicon Bipolar MMIC Amplifier

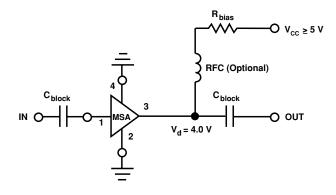


# **Data Sheet**

### **Description**

The MSA-0786 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose  $50\Omega$  gain block. Applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz  $f_T$ , 25 GHz  $f_{MAX}$ , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


#### **Features**

- Cascadable  $50\Omega$  Gain Block
- Low Operating Voltage: 4.0 V Typical V<sub>d</sub>
- 3 dB Bandwidth: DC to 2.0 GHz
- 12.5 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- · Surface Mount Plastic Package
- · Tape-and-Reel Packaging Option Available
- · Lead-free Option Available

#### **86 Plastic Package**



### **Typical Biasing Configuration**



## **MSA-0786 Absolute Maximum Ratings**

| Parameter                          | Absolute Maximum <sup>[1]</sup> |  |  |  |  |
|------------------------------------|---------------------------------|--|--|--|--|
| Device Current                     | 60 mA                           |  |  |  |  |
| Power Dissipation <sup>[2,3]</sup> | 275 mW                          |  |  |  |  |
| RF Input Power                     | +13 dBm                         |  |  |  |  |
| Junction Temperature               | 150°C                           |  |  |  |  |
| Storage Temperature                | −65 to 150°C                    |  |  |  |  |

| Thermal             | <b>Resistance</b> <sup>[2]</sup> : |
|---------------------|------------------------------------|
| $\theta_{\rm jc} =$ | 120°C/W                            |

#### **Notes:**

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2.  $T_{CASE} = 25$ °C.
- 3. Derate at 8.3 mW/°C for  $T_{\rm C} > 117 ^{\circ}{\rm C}.$

## Electrical Specifications $^{[1]}$ , ${\rm T_A}=25^{\circ}{\rm C}$

| Symbol            | <b>Parameters and Test Conditions:</b> | Units                               | Min.  | Тур. | Max.  |     |
|-------------------|----------------------------------------|-------------------------------------|-------|------|-------|-----|
| GP                | Power Gain $( S_{21} ^2)$              | wer Gain $( S_{21} ^2)$ f = 0.1 GHz |       |      | 13.5  |     |
|                   |                                        | f = 1.0  GHz                        |       | 10.5 | 12.5  |     |
| ΔGP               | Gain Flatness                          | f = 0.1 to 1.3 GHz                  | dB    |      | ±0.7  |     |
| f <sub>3 dB</sub> | 3 dB Bandwidth                         |                                     | GHz   |      | 2.0   |     |
| VSWR              | Input VSWR                             | f = 0.1 to 2.5 GHz                  |       |      | 1.7:1 |     |
| vswn              | Output VSWR                            | f = 0.1 to 2.5 GHz                  |       |      | 1.7:1 |     |
| NF                | $50~\Omega$ Noise Figure               | f = 1.0 GHz                         | dB    |      | 5.0   |     |
| P <sub>1 dB</sub> | Output Power at 1 dB Gain Compression  | f = 1.0  GHz                        | dBm   |      | 5.5   |     |
| IP3               | Third Order Intercept Point            | f = 1.0  GHz                        | dBm   |      | 19.0  |     |
| $t_{\mathrm{D}}$  | Group Delay                            | f = 1.0 GHz                         | psec  |      | 150   |     |
| $V_{\rm d}$       | Device Voltage                         |                                     | V     | 3.2  | 4.0   | 4.8 |
| dV/dT             | Device Voltage Temperature Coefficient |                                     | mV/°C |      | -7.0  |     |

#### Note:

## **Ordering Information**

| Part Numbers  | No. of Devices | Comments |  |  |
|---------------|----------------|----------|--|--|
| MSA-0786-BLK  | 100            | Bulk     |  |  |
| MSA-0786-BLKG | 100            | Bulk     |  |  |
| MSA-0786-TR1  | 1000           | 7" Reel  |  |  |
| MSA-0786-TR1G | 1000           | 7" Reel  |  |  |

**Note:** Order part number with a "G" suffix if lead-free option is desired.

<sup>1.</sup> The recommended operating current range for this device is 15 to 40 mA. Typical performance as a function of current is on the following page.

| Freq. | $\mathbf{S}_{11}$ |      | $\mathbf{S}_{21}$ |      | $S_{12}$ |       |      | $\mathbf{S}_{22}$ |     |      |
|-------|-------------------|------|-------------------|------|----------|-------|------|-------------------|-----|------|
| GHz   | Mag               | Ang  | dB                | Mag  | Ang      | dB    | Mag  | Ang               | Mag | Ang  |
| 0.1   | .05               | 175  | 13.5              | 4.74 | 174      | -18.7 | .116 | 1                 | .14 | -12  |
| 0.2   | .05               | 174  | 13.4              | 4.71 | 169      | -18.7 | .117 | 3                 | .14 | -22  |
| 0.4   | .04               | 167  | 13.3              | 4.64 | 158      | -18.4 | .120 | 4                 | .15 | -44  |
| 0.6   | .04               | 175  | 13.1              | 4.52 | 148      | -18.3 | .122 | 7                 | .16 | -65  |
| 0.8   | .05               | -156 | 12.9              | 4.39 | 138      | -18.0 | .126 | 8                 | .17 | -84  |
| 1.0   | .06               | -134 | 12.6              | 4.25 | 127      | -17.5 | .134 | 10                | .18 | -102 |
| 1.5   | .08               | -142 | 11.6              | 3.79 | 103      | -16.6 | .148 | 9                 | .21 | -139 |
| 2.0   | .15               | -159 | 10.5              | 3.34 | 80       | -15.7 | .164 | 7                 | .23 | -164 |
| 2.5   | .25               | -176 | 9.2               | 2.89 | 63       | -15.1 | .176 | 5                 | .24 | 174  |
| 3.0   | .33               | 166  | 7.8               | 2.45 | 44       | -14.7 | .185 | 1                 | .24 | 159  |
| 3.5   | .41               | 150  | 6.5               | 2.11 | 27       | -14.9 | .179 | -5                | .24 | 149  |
| 4.0   | .49               | 137  | 5.2               | 1.82 | 12       | -15.1 | .177 | <b>-9</b>         | .23 | 145  |
| 5.0   | .60               | 116  | 3.0               | 1.41 | -14      | -15.4 | .169 | -14               | .26 | 145  |

## Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

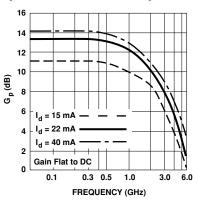



Figure 1. Typical Power Gain vs. Frequency.

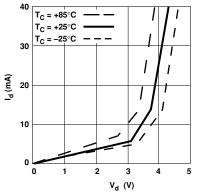



Figure 2. Device Current vs. Voltage.

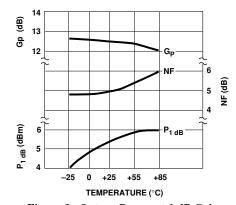



Figure 3. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz,  $I_d$  = 22 mA.

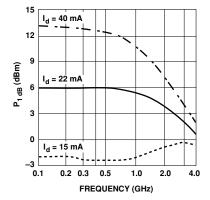



Figure 4. Output Power at 1 dB Gain Compression vs. Frequency.

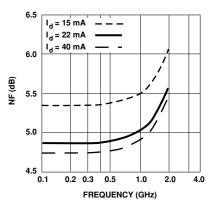
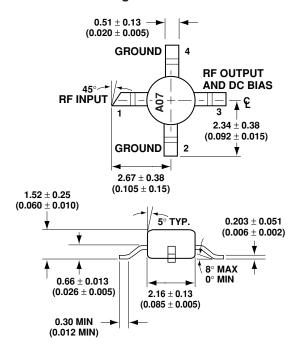




Figure 5. Noise Figure vs. Frequency.

## **86 Plastic Package Dimensions**



**DIMENSIONS ARE IN MILLIMETERS (INCHES)** 

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com** 

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.

Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved. Obsoletes 5968-4716E

5989-2769EN September 1, 2006

