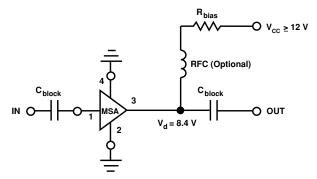
MSA-0505 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

The MSA-0505 is a high performance medium power silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial systems.

The MSA-series is fabricated using Avago's 10 GHz $f_{T},\ 25$ GHz $f_{MAX},\ silicon\ bipolar\ MMIC\ process\ which\ uses\ nitride\ self-alignment,\ ion\ implantation,\ and\ gold\ metallization\ to\ achieve\ excellent\ performance,\ uniformity\ and\ reliability.$


Features

- Cascadable 50 Ω Gain Block
- High Output Power: 18.0 dBm Typical P_{1 dB} at 1.0 GHz
- Low Distortion: 29.0 dBm Typical IP₃ at 1.0 GHz
- 7.0 dB Typical Gain at 1.0 GHz
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available
- Lead-free Option Available

05 Plastic Package

Typical Biasing Configuration

MSA-0505 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	135 mA				
Power Dissipation ^[2,3]	1.5 W				
RF Input Power	+25 dBm				
Junction Temperature	200°C				
Storage Temperature	–65 to 150°C				

Thermal Resistance^[2]:

 $\theta_{ic} = 85^{\circ}C/W$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- T_{CASE} = 25°C.
 Derate at 11.8 mW/°C for T_C > 73°C.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: $I_d = 80$ m	Units	Min.	Тур.	Max.	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz f = 1.0 GHz	dBm dBm	16.0	19.0 18.0	
G _P	Power Gain (S ₂₁ ²)	$\begin{array}{l} f=0.5 \text{ GHz} \\ f=1.0 \text{ GHz} \end{array}$	dB	6.0	7.5 7.0	
ΔG_P	Gain Flatness	f = 0.1 to 1.5 GHz	dB		±0.75	
f _{3 dB}	3 dB Bandwidth ^[2]		GHz		2.3	
VSWR —	Input VSWR	f = 0.1 to 1.5 GHz			1.6:1	
	Output VSWR	f = 0.1 to 1.5 GHz			2.0:1	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		29.0	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		6.5	
t _D	Group Delay	f = 1.0 GHz	psec		190	
V _d	Device Voltage		V	6.7	8.4	10.1
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-16.0	

Notes:

1. The recommended operating current range for this device is 60 to 100 mA.

Typical performance as a function of current is on the following page.

2. Referenced from 0.1 GHz Gain (GP).

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0505-STR	10	Bulk		
MSA-0505-STRG	100	Bulk		
MSA-0505-TR1	500	7" Reel		
MSA-0505-TR1G	500	7" Reel		

Note: Order part number with a "G" suffix if lead-free option is desired.

Freq.	q. S ₁₁		S ₂₁			S ₁			S ₂₂		
MHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
5	.56	-39	14.9	5.56	161	-18.5	.120	39	.65	-36	0.60
25	.24	-103	9.7	3.05	156	-13.9	.202	12	.25	-90	0.97
50	.15	-130	8.2	2.57	163	-13.7	.207	7	.15	-116	1.15
100	.13	-155	7.8	2.45	165	-13.7	.207	3	.11	-132	1.21
200	.12	-170	7.7	3.43	161	-13.5	.211	1	.11	-145	1.21
400	.12	178	7.5	2.37	148	-13.6	.209	-1	.14	-146	1.23
600	.13	172	7.4	2.34	134	-13.6	.209	-2	.17	-151	1.23
800	.13	168	7.2	2.29	119	-13.6	.209	-3	.21	-157	1.23
1000	.14	166	7.0	2.24	105	-13.4	.213	-4	.25	-164	1.21
1500	.21	159	6.4	2.09	72	-13.3	.217	-6	.34	176	1.16
2000	.30	148	5.2	1.82	42	-13.1	.222	-9	.42	159	1.12
2500	.40	136	4.1	1.60	17	-12.9	.227	-11	.48	146	1.05
3000	.52	121	2.7	1.36	-7	-12.6	.234	-16	.55	133	0.92

MSA-0505 Typical Scattering Parameters ($T_A = 25^{\circ}C$, $I_d = 80$ mA)

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted) 10 8 0.1 GHz (qB) 6 GAIN 0.5 GHz 4 1.0 GHz 1.5 GHz 2.0 GHz 2 0 8 10 12 14 16 18 20 22 24 POWER OUT (dBm)

Figure 1. Typical Gain vs. Power Out, $T_A = 25^{\circ}$ C, $I_d = 80$ mA.

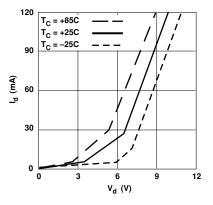
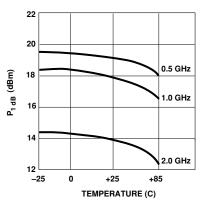
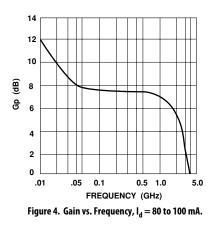
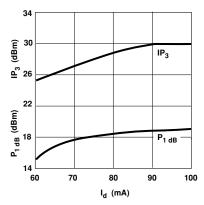
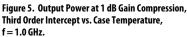
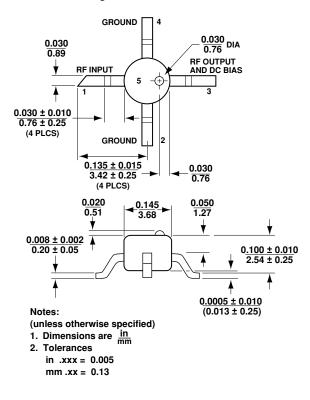


Figure 2. Device Current vs. Voltage.


Figure 3. Output Power at 1 dB Gain Compression, vs. Case Temperature, $\rm I_d=80~mA.$

05 Plastic Package Dimensions

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2008 Avago Technologies, Limited. All rights reserved. Obsoletes 5989-2754EN AV02-1227EN May 14, 2008

