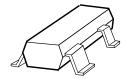
MSA-0311

Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

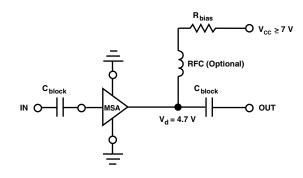

The MSA-0311 is a low cost silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in the surface mount plastic SOT-143 package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

Features

- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 2.3 GHz
- 11.0 dB Typical Gain at 1.0 GHz
- 9.0 dBm Typical P_{1 dB} at --1.0 GHz
- Unconditionally Stable (k>1)
- Low Cost Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available
- Lead-free Option Available

SOT-143 Package


Pin Connections and Package Marking

Notes

Top View. Package Marking provides orientation and identification. "x" is the date code.

Typical Biasing Configuration

MSA-0311 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]
Device Current	60 mA
Power Dissipation ^[2,3]	240 mW
RF Input Power	+13 dBm
Junction Temperature	150°C
Storage Temperature	−65 to 150°C

Thermal Resistance ^[2] :						
$\theta_{jc} = 500^{\circ} \text{C/W}$						

Notes

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25^{\circ}C$.
- 3. Derate at 2.0 mW/°C for $T_C > 30$ °C.

Electrical Specifications $^{[1]}$, $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: I	Units	Min.	Тур.	Max.	
G _P	Power Gain (S ₂₁ ²)	f = 0.1 GHz f = 1.0 GHz	dB	9.0	11.5 11.0	
ΔG_P	Gain Flatness	f = 0.1 to 1.6 GHz	dB		±0.7	
f _{3 dB}	3 dB Bandwidth		GHz		2.3	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.5:1	
VSVVII	Output VSWR	f = 0.1 to 3.0 GHz			1.7:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		6.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		9.0	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		22.0	
t _D	Group Delay	f = 1.0 GHz	psec		140	
V_d	Device Voltage	T _C = 25°C	V	3.8	4.7	5.6
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:

Ordering Information

Part Numbers	No. of Devices	Comments
MSA-0311-BLK	100	Bulk
MSA-0311-BLKG	100	Bulk
MSA-0311-TR1	3000	7" Reel
MSA-0311-TR1G	3000	7" Reel
MSA-0311-TR2	10000	13" Reel
MSA-0311-TR2G	10000	13" Reel

Note: Order part number with a "G" suffix if lead-free option is desired.

^{1.} The recommended operating current range for this device is 20 to 40 mA. Typical gain performance as a function of current is on the following page.

MSA-0311 Typical Scattering Parameters (Z $_0$ = 50 Ω , T $_A$ = 25°C, I $_d$ = 35 mA)

Freq.	S	11		S ₂₁			S ₁₂			S ₂₂
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.06	25	11.7	3.84	175	-17.9	.127	2	.24	-7
0.2	.07	31	11.7	3.83	170	-17.9	.128	3	.23	-13
0.4	.07	38	11.6	3.78	159	-17.8	.129	6	.24	-28
0.6	.07	30	11.4	3.72	149	-17.6	.132	18	.24	-40
0.8	.08	21	11.2	3.65	140	-17.3	.136	11	.24	-53
1.0	.08	10	11.0	3.56	130	-17.0	.141	13	.24	-65
1.5	.09	-32	10.4	3.31	106	-15.9	.160	17	.24	-91
2.0	.09	-105	9.5	2.99	84	-14.9	.179	16	.23	-115
2.5	.13	-151	8.5	2.66	70	-14.1	.197	19	.23	-133
3.0	.19	-176	7.4	2.35	51	-13.5	.212	15	.22	-145
3.5	.24	166	6.2	2.04	35	-13.0	.224	11	.23	-151
4.0	.27	152	5.1	1.80	20	-12.7	.232	6	.24	-151
5.0	.36	114	2.9	1.39	-6	-12.1	.250	-1	.25	-152
6.0	.50	88	0.8	1.10	-28	-11.8	.258	-8	.25	-166

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

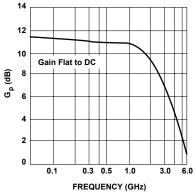


Figure 1. Typical Power Gain vs. Frequency, $\rm I_{\rm d}$ = 35 mA.

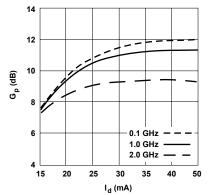


Figure 2. Power Gain vs. Current.

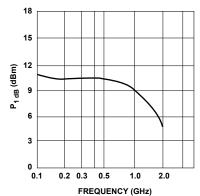
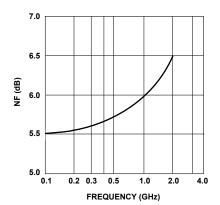
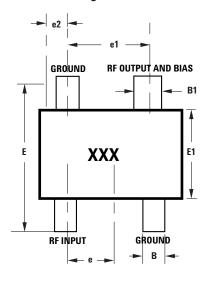


Figure 3. Output Power at 1 dB Gain Compression vs. Frequency, I_d = 35 mA.

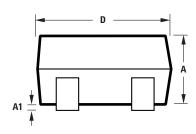


Figure 4. Noise Figure vs. Frequency, I_d = 35 mA.

SOT-143 Package Dimensions

Notes: XXX-package marking Drawings are not to scale

	DIMENSIONS (mm)				
SYMBOL	MIN.	MAX.			
Α	0.79	1.097			
A1	0.013	0.10			
В	0.36	0.54			
B1	0.76	0.92			
С	0.086	0.152			
D	2.80	3.06			
E1	1.20	1.40			
е	0.89	1.02			
e1	1.78	2.04			
e2	0.45	0.60			
E	2.10	2.65			
L	0.45	0.69			

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved. Obsoletes 5989-4452EN AV02-0788EN - October 30, 2007

