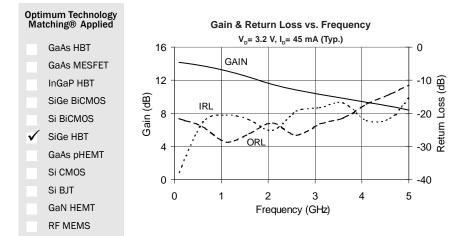


rfmd.com

SGA-4286(Z)


DC to 5000 MHz, CASCADABLE SiGe HBT MMIC AMPLIFIER

RFMD Green, RoHS Compliant, Pb-Free (Z Part Number) Package: SOT-86

Product Description

The SGA-4286 is a high performance SiGe HBT MMIC Amplifier. A Darlington configuration featuring one-micron emitters provides high $F_{\rm T}$ and excellent thermal performance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Only two DC-blocking capacitors, a bias resistor, and an optional RF choke are required for operation.

Features

- Broadband Operation: DC to 5000 MHz
- Cascadable 50Ω
- Operates from Single Supply
- Low Thermal Resistance Package

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- IF Amplifier
- Wireless Data, Satellite

Parameter	Specification			Unit	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition		
Small Signal Gain	12.0	13.5	15.0	dB	850MHz		
		12.0		dB	1950MHz		
		11.1		dB	2400MHz		
Output Power at 1dB Compression		15.0		dBm	850MHz		
		13.0		dBm	1950MHz		
Output Third Intercept Point		29.1		dBm	850MHz		
		26.5		dBm	1950MHz		
Bandwidth Determined by Return Loss		5000		MHz	>10dB		
Input Return Loss		26.6		dB	1950MHz		
Output Return Loss		22.9		dB	1950MHz		
Noise Figure		3.7		dB	1950MHz		
Device Operating Voltage	2.9	3.2	3.5	V			
Device Operating Current	41	45	49	mA			
Thermal Resistance (Junction - Lead)		97		°C/W			

Test Conditions: V_S=8V, I_D=45 mA Typ., OIP₃ Tone Spacing=1MHz, P_{OUT} per tone=-5 dBm, R_{BIAS}=110 Ω , T_L=25°C, Z_S=Z_L=50 Ω

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity[™], PowerStar®, POLARIS[™] TOTAL RADIO[™] and UltimateBlue[™] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices. Inc.

EDS-100639 Rev F

SGA-4286(Z)

RFMD rfmd.com

Absolute Maximum Ratings

Parameter	Rating	Unit
Max Device Current (I _D)	90	mA
Max Device Voltage (V _D)	5	V
Max RF Input Power	+18	dBm
Max Junction Temp (T _J)	+150	°C
Operating Temp Range (T _L)	-40 to +85	°C
Max Storage Temp	+150	°C

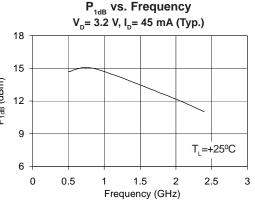
Operation of this device beyond any one of these limits may cause permanent dam-age. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression:

 $I_D V_D < (T_J - T_L) / R_{TH}$, j-l

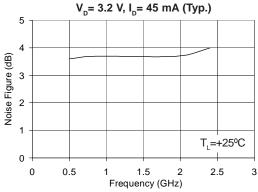
Typical Performance at Key Operating Frequencies

Caution! ESD sensitive device.

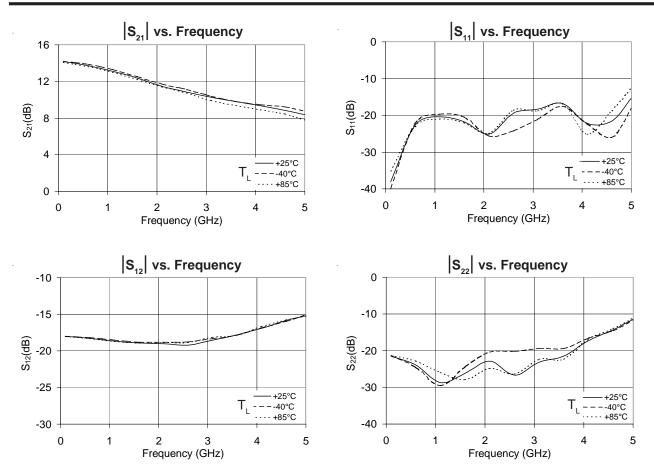

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.


RoHS status based on EUDirective2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

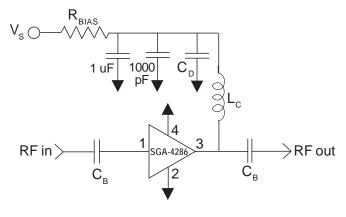

Parameter	Unit	100	500	850	1950	2400	3500
		MHz	MHz	MHz	MHz	MHz	MHz
Small Signal Gain	dB	14.2	13.9	13.5	12.0	11.1	9.9
Output Third Order Intercept Point	dBm		29.4	29.1	26.5	25.2	
Output Power at 1dB Compression	dBm		14.7	15.0	12.3	11.0	
Input Return Loss	dB	38.0	23.8	20.7	26.6	20.2	16.3
Output Return Loss	dB	21.5	23.0	27.1	22.9	27.8	22.1
Reverse Isolation	dB	18.1	18.2	18.6	18.8	19.4	17.9
Noise Figure	dB		3.6	3.7	3.7	4.0	

Test Conditions: $V_S=8V$, $I_D=45$ mA Typ., OIP₃ Tone Spacing=1MHz, P_{OUT} per tone=-5dBm, $R_{BIAS}=110\Omega$, $T_L=25$ °C, $Z_S=Z_L=50\Omega$


Noise Figure vs. Frequency

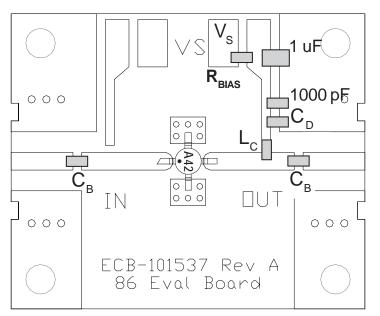
Downloaded from Elcodis.com electronic components distributor

SGA-4286(Z)


Typical RF Performance Over Temperature (Bias: V_{D} = 3.2 V, I_{D} = 45 mA (Typ.))

RFMD with

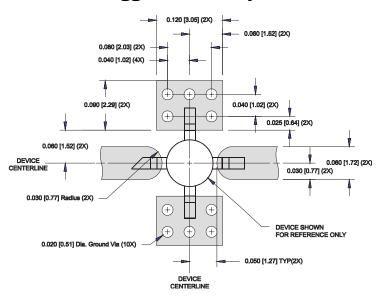
Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC-blocking capacitor chosen for the frequency of operation.
2, 4	GND	Connection to ground. For optimum RF performance, use via holes as close to ground leads as possible to reduce lead inductance.
3	RF OUT/BIAS	RF output and bias pin. DC voltage is present on this pin, therefor a DC-blocking capacitor is necessary for proper opera- tion.


Application Schematic

Deferrer	Frequency (Mhz)						
Reference Designator	500	850	1950	2400	3500		
C _B	220 pF	100 pF	68 pF	56 pF	39 pF		
C _D	100 pF	68 pF	22 pF	22 pF	15 pF		
L _c	68 nH	33 nH	22 nH	18 nH	15 nH		

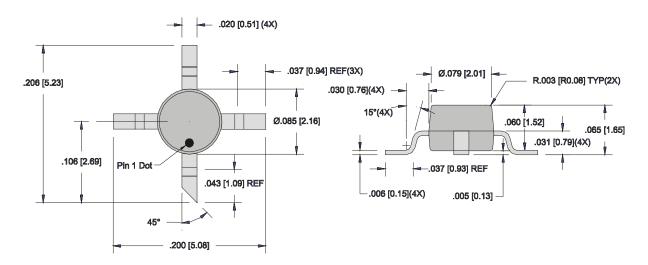
Recommended Bias Resistor Values for I_{D} =45mA R _{BIAS} =(V _S -V _D) / I _D					
Supply Voltage(V _s)	6 V	8 V	10 V	12 V	
R _{BIAS} 62 Ω 110 Ω 150 Ω 200 Ω					
Note: R _{BIAS} provides DC bias stability over temperature.					

Evaluation Board Layout


Mounting Instructions

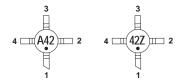
- 1. Use a large ground pad area under device pins 2 and 4 with many plated through-holes as shown.
- 2. We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.

Downloaded from Elcodis.com electronic components distributor



Suggested Pad Layout

Package Drawing


Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.

Part Identification

Ordering Information

Part Number	Reel Size	Devices/Reel		
SGA-4286	13"	3000		
SGA-4286Z	13"	3000		

Downloaded from Elcodis.com electronic components distributor