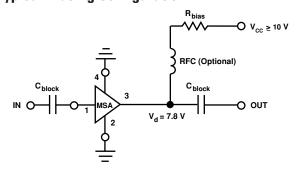
MSA-0886 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

The MSA-0886 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose 50Ω gain block above 0.5 GHz and can be used as a high gain transistor below this frequency. Typical applications include narrow and moderate band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- · Lead-free Option Available
- · Usable Gain to 5.5 GHz
- High Gain:
 32.5 dB Typical at 0.1 GHz
 22.5 dB Typical at 1.0 GHz
- Low Noise Figure:
 3.3 dB Typical at 1.0 GHz
- · Surface Mount Plastic Package
- · Tape-and-Reel Packaging Option Available
- · Lead-free Option Available

86 Plastic Package

Typical Biasing Configuration

MSA-0886 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	65 mA				
Power Dissipation ^[2,3]	500 mW				
RF Input Power	+13 dBm				
Junction Temperature	150°C				
Storage Temperature	−65°C to 150°C				

Thermal Resistance ^[2] :	
$\theta_{jc} = 140^{\circ} \text{C/W}$	

Notes

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 7.1 mW/°C for $T_{\rm C} > 80 ^{\circ}{\rm C}.$

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions	Units	Min.	Тур.	Max.	
G _P	Power Gain (S ₂₁ ²)	f = 0.1 GHz f = 1.0 GHz	dB	20.5	32.5 22.5	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			2.1:1	
	Output VSWR	f = 0.1 to 3.0 GHz			1.9:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		3.3	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		12.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		27.0	
t _D	Group Delay	f = 1.0 GHz	psec		140	
V _d	Device Voltage		V	6.2	7.8	9.4
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-17.0	

Note:

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0886-BLK	100	Bulk		
MSA-0886-BLKG	100	Bulk		
MSA-0886-TR1	1000	7" Reel		
MSA-0886-TR1G	1000	7" Reel		
MSA-0886-TR2	4000	13" Reel		
MSA-0886-TR2G	4000	13" Reel		

Note: Order part number with a "G" suffix if lead-free option is desired.

^{1.} The recommended operating current range for this device is 20 to 40 mA. Typical performance as a function of current is on the following page.

MSA-0886 Typical Scattering Parameters	^{1]} $(Z_0 = 50 \Omega, T_A = 25^\circ)$	$^{\circ}$ C, $I_{d} = 36 \text{ mA})$
--	---	--

Freg.	S ₁₁		S ₂₁		S ₁₂			S ₂₂			
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
0.1	.63	-22	32.5	42.12	160	-36.7	.015	54	.62	-24	0.68
0.2	.56	-41	31.3	36.68	143	-33.9	.020	50	.55	-46	0.64
0.4	.43	-69	28.6	26.94	119	-29.1	.035	52	.43	–79	0.69
0.6	.35	-88	26.4	20.89	104	-27.0	.045	49	.34	-103	0.77
8.0	.30	-104	24.2	16.21	93	-25.3	.054	50	.29	-124	0.83
1.0	.27	-116	22.4	13.20	83	-24.2	.062	49	.26	-139	0.87
1.5	.27	-144	19.2	9.15	65	-21.6	.083	46	.23	-172	0.93
2.0	.31	-166	16.7	6.84	49	-19.5	.105	41	.22	163	0.96
2.5	.35	178	14.8	5.50	38	-17.9	.128	36	.21	149	0.96
3.0	.40	162	12.9	4.41	25	-17.4	.135	30	.20	132	1.01
3.5	.45	149	11.4	3.72	13	-16.8	.145	25	.19	124	1.02
4.0	.51	137	9.9	3.14	1	-16.1	.157	19	.18	121	1.01
5.0	.61	116	7.3	2.31	-22	-15.7	.164	10	.17	130	1.00
6.0	.68	100	4.6	1.69	-42	-15.2	.173	4	.23	143	0.95

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

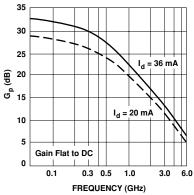


Figure 1. Typical Power Gain vs. Frequency, $I_d = 36 \text{ mA}$.

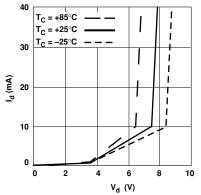


Figure 2. Device Current vs. Voltage.

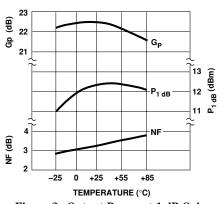


Figure 3. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, I_d = 36 mA.

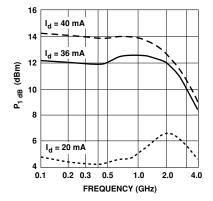


Figure 4. Output Power at 1 dB Gain Compression vs. Frequency.

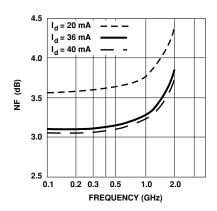
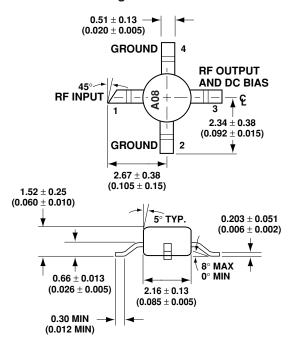



Figure 5. Noise Figure vs. Frequency.

86 Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Pte. in the United States and other countries.

Data subject to change. Copyright © 2006 Avago Technologies Pte. All rights reserved. Obsoletes 5989-2083EN

5989-2744EN February 13, 2006

