FEATURES

- HIGH OUTPUT POWER: PSAT = + 11 dBm at 900 MHz
- LOW VOLTAGE: 3.0 V TYP, 2.7 V MIN
- WIDE BANDWIDTH: 2.7 GHz at -3 dB
- HIGH GAIN: 20 dB at 1.9 GHz
- SUPER SMALL PACKAGE: SOT-363 package
- TAPE AND REEL PACKAGING OPTION AVAILABLE DESCRIPTION

NEC's UPC2763TB is a Silicon Monolithic integrated circuit which is manufactured using the NESAT ${ }^{\text {TM }}$ III process. The NESAT ${ }^{\text {TM }}$ III process produces transistors with fT approaching 20 GHz . The UPC2763TB is pin compatible and has comparable performance to the larger UPC2763T, so it is suitable for use as a replacement to help reduce system size. The IC is housed in a 6 pin super minimold or SOT-363 package. Operating on a 3 volt supply this IC is ideally suited for handheld, portable designs.

NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.

TEMPERATURE

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{ZL}=\mathrm{Zs}=50 \Omega, \mathrm{~V} \mathrm{CC}=3.0 \mathrm{~V}\right)$

PART NUMBER PACKAGE OUTLINE				$\begin{aligned} & \text { UPC2763TB } \\ & \text { S06 } \end{aligned}$		
SYMBOLS	PARAMETERS AND CONDITIONS		UNITS	MIN	TYP	MAX
Icc	Circuit Current (no signal)		mA		27	35
Gs	Small Signal Gain, $\quad \begin{array}{r}f=900 \mathrm{MHz} \\ f=1900 \mathrm{MHz}\end{array}$		$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$
fu	Upper Limit Operating Frequency (The gain at fu is 3 dB down from the gain at 0.1 GHz)		GHz	2.3	2.7	
P1dB	Output Power at $\begin{aligned} \mathrm{dB} \text { Compression Point, } \mathrm{f} & =900 \mathrm{MHz} \\ \mathrm{f} & =1900 \mathrm{MHz}\end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +7 \\ & +4 \end{aligned}$	$\begin{aligned} & \hline+9.5 \\ & +6.5 \end{aligned}$	
Psat	Saturated Output Power, $\begin{aligned} & \mathrm{f}=900 \mathrm{MHz} \\ & \mathrm{f}=1900 \mathrm{MHz}\end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$		$\begin{gathered} 11 \\ 8 \end{gathered}$	
NF	Noise Figure,	$\begin{aligned} & f=900 \mathrm{MHz} \\ & f=1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$
RLIN	Input Return Loss,	$\begin{aligned} & f=900 \mathrm{MHz} \\ & \mathrm{f}=1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	
RLout	Output Return Loss,	$\begin{aligned} & f=900 \mathrm{MHz} \\ & f=1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	
ISOL	Isolation,	$\begin{aligned} & f=900 \mathrm{MHz} \\ & \mathrm{f}=1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 25 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 29 \end{aligned}$	
OIP3	SSB Output Third Order Intercept Point $f=900,902 \mathrm{MHz}$ Pout $=+4 \mathrm{dBm}$ $f=1900,1902 \mathrm{MHz}$		dBm dBm		$\begin{aligned} & +17 \\ & +11 \end{aligned}$	
PAdJ	Adjacent Channel Power, $\mathrm{f}=900 \mathrm{MHz}, \pi / 4$ QPSK wave ${ }^{1}$, $\mathrm{Po}=+4 \mathrm{dBm}$	$\begin{aligned} & \Delta \mathrm{f}= \pm 50 \mathrm{KHz} \\ & \Delta \mathrm{f}= \pm 100 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & \mathrm{dBc} \\ & \mathrm{dBc} \end{aligned}$		$\begin{aligned} & -61 \\ & -62 \end{aligned}$	

Note:

1. $\pi / 4$ QPSK modulated wave input, data rate 42 kbps .

ABSOLUTE MAXIMUM RATINGS ${ }^{1}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

SYMBOLS	PARAMETERS	UNITS	RATINGS
Vcc	Supply Voltage	V	3.6
Icc	Total Supply Current	mA	70
PIN	Input Power	dBm	+10
PT	Total Power Dissipation ${ }^{2}$	mW	200
Top	Operating Temperature	${ }^{\circ} \mathrm{C}$	-40 to +85
TsTG	Storage Temperature	${ }^{\circ} \mathrm{C}$	-55 to +150

Notes:

1. Operation in excess of any one of these parameters may result in permanent damage.
2. Mounted on a $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass $\mathrm{PWB}\left(\mathrm{TA}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$.

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

RECOMMENDED OPERATING CONDITIONS

SYMBOLS	PARAMETERS	UNITS	MIN	TYP	MAX
Vcc	Supply Voltage	V	2.7	3	3.3
Top	Operating Temperature	${ }^{\circ} \mathrm{C}$	-40	25	85

TEST CIRCUIT

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

OUTPUT POWER vs. INPUT POWER AND TEMPERATURE

OUTPUT POWER vs. INPUT POWER AND TEMPERATURE

Input Power, Pin (dBm)

OUTPUT POWER vs.

OUTPUT POWER vs. INPUT POWER AND VOLTAGE

SATURATED OUTPUT POWER vs. FREQUENCY AND VOLTAGE

Frequency, f(GHz)

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

THIRD ORDER INTERMODULATION DISTORTION vs.
OOUTPUT POWER OF EACH TONE AND VOLTAGE

TYPICAL SCATTERING PARAMETERS $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=\mathrm{Vout}=3.0 \mathrm{~V}\right)$

S11

$\mathrm{Vcc}=\mathrm{VOUT}=3.0 \mathrm{~V}$, $\mathrm{Icc}=28 \mathrm{~mA}$

FREQUENCY	S11		S21		S12		S22		K
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	
0.1	0.231	-1.4	10.210	-3.8	0.023	2.4	0.406	-4.1	1.68
0.2	0.242	-0.2	10.305	-8.5	0.023	7.8	0.412	-7.5	1.66
0.3	0.250	2.7	10.464	-12.9	0.024	9.3	0.407	-9.9	1.58
0.4	0.425	2.8	10.655	-18.2	0.024	13.4	0.407	-13.9	1.55
0.5	0.242	2.0	10.863	-22.8	0.026	16.1	0.405	-17.6	1.44
0.6	0.241	-2.2	11.093	-28.1	0.027	19.9	0.414	-21.6	1.37
0.7	0.263	-5.3	11.544	-33.2	0.028	22.3	0.419	-24.6	1.25
0.8	0.291	-5.6	11.843	-39.0	0.029	22.5	0.424	-27.7	1.16
0.9	0.316	-5.1	12.291	-45.1	0.029	23.9	0.424	-31.9	1.09
1.0	0.322	-4.0	12.676	-52.4	0.030	25.6	0.425	-37.1	1.02
1.1	0.318	-5.4	13.066	-59.8	0.031	24.1	0.438	-42.5	0.96
1.2	0.309	-9.0	13.311	-67.3	0.031	27.0	0.442	-47.8	0.96
1.3	0.322	-14.2	13.661	-75.8	0.033	28.8	0.441	-51.2	0.90
1.4	0.344	-20.6	13.845	-83.9	0.033	28.5	0.434	-56.0	0.87
1.5	0.371	-23.7	13.824	-93.0	0.035	30.1	0.435	-62.2	0.82
1.6	0.380	-27.5	13.890	-101.5	0.035	28.1	0.439	-68.9	0.80
1.7	0.388	-30.6	13.634	-110.5	0.036	29.2	0.439	-74.6	0.78
1.8	0.378	-36.4	13.236	-119.6	0.035	29.9	0.428	-81.3	0.84
1.9	0.378	-42.1	12.724	-127.9	0.035	30.9	0.411	-87.0	0.89
2.0	0.375	-46.6	12.290	-136.1	0.035	32.9	0.393	-93.4	0.94
2.1	0.369	-50.5	11.707	-144.0	0.035	33.0	0.385	-99.6	0.99
2.2	0.351	-53.8	11.130	-151.7	0.036	35.7	0.373	-104.9	1.06
2.3	0.331	-59.8	10.524	-159.1	0.036	36.8	0.359	-110.3	1.13
2.4	0.306	-66.4	9.824	-165.9	0.034	38.7	0.336	-117.5	1.31
2.5	0.300	-73.1	9.152	-172.3	0.035	40.1	0.321	-123.3	1.41
2.6	0.294	-75.8	8.583	-178.2	0.034	43.8	0.306	-129.4	1.55
2.7	0.290	-77.1	8.029	176.2	0.035	46.3	0.299	-133.9	1.58
2.8	0.270	-77.7	7.610	170.6	0.037	47.7	0.288	-138.6	1.63
2.9	0.248	-78.7	7.240	166.1	0.039	51.1	0.270	-143.6	1.67
3.0	0.219	-82.3	6.827	161.2	0.039	53.6	0.253	-150.1	1.79
3.1	0.198	-88.7	6.516	156.9	0.040	55.1	0.244	-156.2	1.88

OUTLINE DIMENSIONS (Units in mm)

LEAD CONNECTIONS

(Top View)

(Bottom View)

1. INPUT
2. GND
3. GND
4. OUTPUT
5. GND
6. Vcc

PIN DESCRIPTIONS

Pin No.	Pin Name	Applied Voltage (V)	Description	Internal Equivalent Circuit
1	Input	-	Signal input pin. An internal matching circuit, configured with resistors, enables 50Ω connection over a wide bandwidth. A multi-feedback circuit is designed to cancel the deviations of hFE and resistance. This pin must be coupled to the signal source with a blocking capacitor.	
4	Output	2.7 to 3.3	Signal output pin. Connect an inductor between this pin and Vcc to supply current to the internal output transistors.	
6	Vcc		Power supply pin. This pin should be externally equipped with a bypass capacitor to minimize ground impedance.	
$\begin{aligned} & 2 \\ & 3 \\ & 5 \end{aligned}$	GND	0	Ground pins. These pins should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be connected together with wide ground pattern to minimize impedance difference.	

ORDERING INFORMATION

PART NUMBER	QTY
UPC2763TB-E3-A	3K/Reel

Note:
Embossed Tape, 8 mm wide. Pins 1, 2 and 3 face perforated side
of tape.
Life Support Applications
These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

EXCLUSIVE NORTH AMERICAN AGENT FOR NEC RF, MICROWAVE \& OPTOELECTRONIC SEMICONDUCTORS
CEL CALIFORNIA EASTERN LABORATORIES • Headquarters • 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • Telex 34-6393 • FAX (408) 988-0279 24-Hour Fax-On-Demand: 800-390-3232 (U.S. and Canada only) • Internet: http:/WWW.CEL.COM

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	<1000 PPM	- -A	
Mercury	<1000 PPM	Not Detected	
Cadmium	<100 PPM	Not Detected	
Hexavalent Chromium	<1000 PPM	Not Detected	
PBB	<1000 PPM	Not Detected	
PBDE	<1000 PPM	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

[^0]
[^0]: Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
 In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.
 See CEL Terms and Conditions for additional clarification of warranties and liability.

