NEC's 1.0 GHz
 DIVIDE BY 2/4/8 PRESCALER

FEATURES

- HIGH FREQUENCY OPERATION TO 1 GHz
- SELECTABLE DIVIDE RATIO: $\div 2, \div 4, \div 8$
- WIDE SUPPLY VOLTAGE RANGE: 2.2 TO 5 V
- LOW SUPPLY CURRENT: 5.3 mA
- SMALL PACKAGE: 8 pin SSOP
- AVAILABLE IN TAPE AND REEL

DESCRIPTION

NEC's UPB1509GV is a Silicon RFIC digital prescaler manufactured with the NESAT ${ }^{\text {TM }}$ IV silicon bipolar process. It features frequency response to 1 GHz , selectable divide-by-two, four, or eight modes, and operates from a 3 to 5 volt supply while drawing only 5.3 milliamps. The device is housed in a small 8 pin SSOP package that contributes to system miniaturization. The low power consumption and wide supply range makes the device well suited for cellular and cordless telephones as well as DBS receiver applications.

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=2.2$ to 5.5 V , unless otherwise noted)

PART NUMBER PACKAGE OUTLINE			$\begin{gathered} \text { UPB1509GV } \\ \text { S08 } \end{gathered}$		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
Icc	Supply Current, No Input Signal, Vcc $=3 \mathrm{~V}$	mA	3.5	5.0	5.9
fin (u)	$\begin{aligned} & \text { Upper Limit Operating Frequency, PIN }=-20 \text { to } 0 \mathrm{dBm} \\ & \qquad \begin{aligned} & \text { PIN }=-20 \text { to }-5 \mathrm{dBm} \text { at } \div 2 \\ & \text { at } \div 4 \\ & \text { at } \div 8 \end{aligned} \end{aligned}$	MHz MHz MHz MHz	$\begin{gathered} 500 \\ 700 \\ 800 \\ 1000 \\ \hline \end{gathered}$		
fin (L)	Lower Limit Operating Frequency, PIN $=-20$ to 0 dBm Pin $=-20$ to -5 dBm	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \hline \end{aligned}$			$\begin{aligned} & 50 \\ & 500 \end{aligned}$
PIN	$\begin{aligned} \text { Input Power, fin } & =50 \text { to } 1000 \mathrm{MHz} \\ \text { fiN } & =50 \text { to } 500 \mathrm{MHz} \end{aligned}$	dBm dBm	$\begin{aligned} & -20 \\ & -20 \\ & \hline \end{aligned}$		$\begin{gathered} -5 \\ 0 \\ \hline \end{gathered}$
Vout	Output Voltage, RL= 200Ω	Vp-P	0.1	0.2	
$\operatorname{VIN}(\mathrm{H})$	Division Ratio Control Voltage High	V		Vcc	
$\operatorname{VIN}($ L $)$	Division Ratio Control Voltage Low	V		OPEN	

[^0] that this is the latest version.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}\left(\mathrm{TA}=25^{\circ} \mathrm{C}\right)$

SYMBOLS	PARAMETERS	UNITS	RATINGS
VCC1, VCC2	Supply Voltage	V	6.0
VIN	Input Voltage	V	6.0
Pd	Power Dissipation ${ }^{2}$	mW	250
ToP	Operating Temperature	${ }^{\circ} \mathrm{C}$	-45 to +85
TsTG	Storage Temperature	${ }^{\circ} \mathrm{C}$	-55 to +150

Notes:

1. Operation in excess of any one of these parameters may result in permanent damage.
2. Mounted on a double-sided copper clad $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass PWB ($\mathrm{TA}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$).

RECOMMENDED

OPERATING CONDITIONS

SYMBOL	PARAMETER	UNITS	MIN	TYP	MAX
VCC1, Vcc2	Supply Voltage	V	2.2	3.0	5.5
TOP	Operating Temperature	${ }^{\circ} \mathrm{C}$	-40	+25	+85

INTERNAL BLOCK DIAGRAM

PIN DESCRIPTIONS

TYPICAL PERFORMANCE CURVES

($\mathrm{TA}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

CIRCUIT CURRENT vs.
SUPPLY VOLTAGE and TEMPERATURE

INPUT POWER vs. INPUT FREQUENCY and TEMPERATURE

INPUT POWER vs. INPUT FREQUENCY and TEMPERATURE

INPUT POWER vs. INPUT FREQUENCY and VOLTAGE

NPUT POWER vs. INPUT FREQUENCY and TEMPERATURE

TYPICAL PERFORMANCE CURVES

($\mathrm{TA}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

OUTPUT VOLTAGE SWING vs. INPUT FREQUENCY and VOLTAGE

Divide by 4 mode
(Guaranteed operating window: $\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$)

TYPICAL PERFORMANCE CURVES
($\mathrm{TA}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Divide by 8 mode
(Guaranteed operating window: $\mathrm{VCC}=2.2$ to $5.5 \mathrm{~V}, \mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$)

TYPICAL SCATTERING PARAMETERS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

S11 vs. INPUT FREQUENCY

$$
\begin{aligned}
& \mathrm{VCC1}=\mathrm{VCC2}=3.0 \mathrm{~V}, \mathrm{SW} 1=\mathrm{SW} 2=3.0 \mathrm{~V} \\
& \text { FREQUENCY }
\end{aligned}
$$

$\begin{array}{ll}\text { S11 } & \\ \text { REF } & \text { 1.0 Units/ } \\ 2 & 200.0 \mathrm{mUnits} / \\ \nabla & 55.375 \Omega-142.79 \Omega\end{array}$

START 0.050000000 GHz STOP 1.000000000 GHz

GHz	MAG	ANG
0.1	0.929	-6.7
0.2	0.898	-10.5
0.3	0.866	-13.6
0.4	0.840	-15.9
0.5	0.834	-19.1
0.6	0.819	-21.9
0.7	0.803	-24.7
0.8	0.792	-27.0
0.9	0.787	-30.0
1.0	0.771	-32.7

S22 vs. OUTPUT FREQUENCY

SYSTEM APPLICATION EXAMPLE

OUTLINE DIMENSIONS (Units in mm)

PACKAGE OUTLINE S08

PIN CONNECTIONS

1. VcC1 5. SW1
2. IN 6. SW2
3. $\overline{\mathrm{N}} \quad$ 7. OUT
4. GND 8. Vcc2

ORDERING INFORMATION (Solder Contains Lead)

PART NUMBER	QUANTITY
UPB1509GV-E1	$1000 /$ Reel

ORDERING INFORMATION (Pb-Free)

PART NUMBER	QUANTITY
UPB1509GV-E1-A	$1000 /$ Reel

Life Support Applications
These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	$<1000 \mathrm{PPM}$	-A	-AZ
Mercury	$<1000 \mathrm{PPM}$	Not Detected	(*)
Cadmium	$<100 \mathrm{PPM}$	Not Detected	
Hexavalent Chromium	$<1000 \mathrm{PPM}$	Not Detected	
PBB	$<1000 \mathrm{PPM}$	Not Detected	
PBDE	$<1000 \mathrm{PPM}$	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.
See CEL Terms and Conditions for additional clarification of warranties and liability.

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm

