Advanced

ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The ALD1706A/ALD1706B/ALD1706/ALD1706G is a monolithic CMOS ultra micropower high slew-rate, high performance operational amplifier intended for a broad range of analog applications using $\pm 1 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ dual power supply systems, as well as +2 V to +10 V battery operated systems. All device characteristics are specified for +5 V single supply or $\pm 2.5 \mathrm{~V}$ dual supply systems. Supply current is $40 \mu \mathrm{~A}$ maximum at 5 V supply voltage. It is manufactured with Advanced Linear Devices' enhanced ACMOS silicon gate CMOS process.

The ALD1706A/ALD1706B/ALD1706/ALD1706G is designed to offer high performance for a wide range of applications requiring very low power dissipation. It has been developed specifically for the +5 V single battery or $\pm 1 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ dual battery user and offers the popular industry standard single operational amplifier pin configuration.

Several important characteristics of the device make application easier to implement at those voltages. First, the operational amplifier can operate with rail to rail input and output voltages. This means the signal input voltage and output voltage can be close to or equal to the positive and negative supply voltages. This feature allows numerous analog serial stages and flexibility in input signal bias levels. Second, the device was designed to accommodate mixed applications where digital and analog circuits may operate off the same power supply or battery. Third, the output stage can typically drive up to 25 pF capacitive and $20 \mathrm{~K} \Omega$ resistive loads. These features, combined with extremely low input currents, high open loop voltage gain of $100 \mathrm{~V} / \mathrm{mV}$, useful bandwidth of 400 KHz , a slew rate of $0.17 \mathrm{~V} / \mu \mathrm{s}$, low offset voltage and temperature drift, make the ALD1706A/ALD1706B/ALD1706/ALD1706G a versatile, micropower operational amplifier.

The ALD1706A/ALD1706B/ALD1706/ALD1706G, designed and fabricated with silicon gate CMOS technology, offers 0.1 pA typical input bias current. On chip offset voltage trimming allows the device to be used without nulling in most applications. Additionally, robust design and rigorous screening make this device especially suitable for operation in temperature-extreme environments and rugged conditions.

ORDERING INFORMATION ("L" suffix denotes lead-free (RoHS))

Operating Temperature Range		
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
8-Pin	8-Pin	8-Pin
Small Outline	Plastic Dip	CERDIP
Package (SOIC)	Package	Package
ALD1706ASAL	ALD1706APAL	ALD1706ADA
ALD1706BSAL	ALD1706BPAL	ALD1706BDA
ALD1706SAL	ALD1706PAL	ALD1706DA
ALD1706GSAL	ALD1706GPAL	

[^0]
FEATURES

- All parameters specified for +5 V single supply or $\pm 2.5 \mathrm{~V}$ dual supply systems
- Rail to rail input and output voltage ranges
- No frequency compensation required -unity gain stable
- Extremely low input bias currents -1.0pA typical (30pA max.)
- Ideal for high source impedance applications
- Dual power supply $\pm 1.0 \mathrm{~V}$ to $\pm 5.0 \mathrm{~V}$ operation
- Single power supply +2.0 V to +10.0 V operation
- High voltage gain -- typically $100 \mathrm{~V} / \mathrm{mV}$ @ $\pm 2.5 \mathrm{~V}(100 \mathrm{~dB})$
- Drive as low as $10 \mathrm{~K} \Omega$ load
- Output short circuit protected
- Unity gain bandwidth of 0.7 MHz
- Slew rate of $0.7 \mathrm{~V} / \mu \mathrm{s}$
- Low power dissipation
- Suitable for rugged, temperature-extreme environments

APPLICATIONS

- Voltage amplifier
- Voltage follower/buffer
- Charge integrator
- Photodiode amplifier
- Data acquisition systems
- High performance portable instruments
- Signal conditioning circuits
- Sensor and transducer amplifiers
- Low leakage amplifiers
- Active filters
- Sample/Hold amplifier
- Picoammeter
- Current to voltage converter

PIN CONFIGURATION

[^1]Supply voltage, V^{+}
Differential input voltage range \qquad -0.3 V to $\mathrm{V}++0.3 \mathrm{~V}$
Power dissipation \qquad
SAL, PAL packages \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Operating temperature range	SAL, PAL packages DA package_ Storage temperature range$\quad-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Lead temperature, 10 seconds \qquad $+260^{\circ} \mathrm{C}$
CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.

OPERATING ELECTRICAL CHARACTERISTICS

 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ VS $= \pm 2.5 \mathrm{~V}$ unless otherwise specified| Parameter | Symbol | 1706A | | | 1706B | | | 1706 | | | 1706G | | | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min | Typ | Max | | |
| Supply
 Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{S}} \\ & \mathrm{~V}+ \\ & \hline \end{aligned}$ | $\begin{array}{r} \pm 1.0 \\ 2.0 \\ \hline \end{array}$ | | $\begin{aligned} & \pm 5.0 \\ & 10.0 \\ & \hline \end{aligned}$ | $\begin{array}{r} \pm 1.0 \\ 2.0 \end{array}$ | | $\begin{aligned} & \pm 5.0 \\ & 10.0 \\ & \hline \end{aligned}$ | $\begin{array}{r} \pm 1.0 \\ 2.0 \end{array}$ | | $\begin{array}{\|r} \pm 5.0 \\ 10.0 \\ \hline \end{array}$ | $\begin{array}{r} \pm 1.0 \\ 2.0 \end{array}$ | | $\begin{aligned} & \pm 5.0 \\ & 10.0 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ | Dual Supply Single Supply |
| Input Offset Voltage | V OS | | | $\begin{aligned} & 0.9 \\ & 1.7 \end{aligned}$ | | | $\begin{aligned} & 2.0 \\ & 2.8 \end{aligned}$ | | | $\begin{aligned} & 4.5 \\ & 5.3 \end{aligned}$ | | | $\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$ |
| Input Offset Current | los | | 0.1 | $\begin{array}{r} 25 \\ 240 \end{array}$ | | 0.1 | $\begin{array}{r} 25 \\ 240 \end{array}$ | | 0.1 | $\begin{array}{r} 25 \\ 240 \end{array}$ | | 0.1 | $\begin{array}{r} 30 \\ 450 \end{array}$ | pA
 pA | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$ |
| Input Bias Current | IB | | 0.1 | $\begin{array}{r} 30 \\ 300 \end{array}$ | | 0.1 | $\begin{array}{r} 30 \\ 300 \end{array}$ | | 0.1 | $\begin{array}{r} 30 \\ 300 \end{array}$ | | 0.1 | $\begin{array}{r} 50 \\ 600 \end{array}$ | pA
 pA | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$ |
| Input Voltage Range | V_{IR} | $\begin{aligned} & -0.3 \\ & -2.8 \end{aligned}$ | | $\begin{aligned} & 5.3 \\ & 2.8 \end{aligned}$ | $\begin{aligned} & -0.3 \\ & -2.8 \end{aligned}$ | | $\begin{aligned} & 5.3 \\ & 2.8 \end{aligned}$ | $\begin{aligned} & -0.3 \\ & -2.8 \end{aligned}$ | | $\begin{aligned} & 5.3 \\ & 2.8 \end{aligned}$ | $\begin{aligned} & -0.3 \\ & -2.8 \end{aligned}$ | | $\begin{aligned} & 5.3 \\ & 2.8 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \end{aligned}$ |
| Input Resistance | $\mathrm{R}_{\text {IN }}$ | | 10^{12} | | | 10^{12} | | | 10^{12} | | | 10^{12} | | Ω | |
| Input Offset Voltage Drift | TCV ${ }_{\text {OS }}$ | | 7 | | | 7 | | | 7 | | | 10 | | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ | $\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$ |
| Power Supply Rejection Ratio | PSRR | $\begin{aligned} & 70 \\ & 70 \end{aligned}$ | $\begin{aligned} & 80 \\ & 80 \end{aligned}$ | | $\begin{aligned} & 65 \\ & 65 \end{aligned}$ | $\begin{aligned} & 80 \\ & 80 \end{aligned}$ | | $\begin{aligned} & 65 \\ & 65 \end{aligned}$ | $\begin{aligned} & 80 \\ & 80 \end{aligned}$ | | $\begin{aligned} & 60 \\ & 60 \end{aligned}$ | $\begin{aligned} & 80 \\ & 80 \end{aligned}$ | | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$ |
| Common Mode Rejection Ratio | CMRR | 70 70 | $\begin{aligned} & 83 \\ & 83 \end{aligned}$ | | 65 | 83 83 | | 65 | 83 83 | | 60 | $\begin{aligned} & 83 \\ & 83 \end{aligned}$ | | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{RS} \leq 100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$ |
| Large Signal Voltage Gain | A_{V} | $\begin{aligned} & 32 \\ & 20 \end{aligned}$ | 100 | | $\begin{aligned} & 32 \\ & 20 \end{aligned}$ | 100 | | 32 20 | 100 | | $\begin{aligned} & 20 \\ & 10 \end{aligned}$ | 80 | | $\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$ | $\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$ |
| Output
 Voltage | Volow V_{0} high | 4.99 | $\begin{array}{\|c\|} 0.001 \\ 4.999 \end{array}$ | 0.01 | 4.99 | $\begin{aligned} & 0.001 \\ & 4.999 \end{aligned}$ | 0.01 | 4.99 | $\begin{aligned} & 0.001 \\ & 4.999 \end{aligned}$ | 0.01 | 4.99 | $\begin{aligned} & 0.001 \\ & 4.999 \end{aligned}$ | 0.01 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$ |
| Range | Volow V_{0} high | 2.30 | $\begin{aligned} & -2.40 \\ & 2.40 \end{aligned}$ | -2.30 | 2.30 | $\begin{array}{r} -2.40 \\ 2.40 \end{array}$ | -2.30 | 2.30 | $\begin{array}{r} -2.40 \\ 2.40 \end{array}$ | -2.30 | 2.30 | $\begin{array}{r} -2.40 \\ 2.40 \end{array}$ | -2.30 | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$ |
| Output Short Circuit Current | ISC | | 200 | | | 200 | | | 200 | | | 200 | | $\mu \mathrm{A}$ | |
| Supply Current | Is | | 20 | 40 | | 20 | 40 | | 20 | 40 | | 20 | 50 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
 No Load |
| Power Dissipation | PD | | | 200 | | | 200 | | | 200 | | | 250 | $\mu \mathrm{W}$ | $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ |

OPERATING ELECTRICAL CHARACTERISTICS (cont'd)
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ V $= \pm 2.5 \mathrm{~V}$ unless otherwise specified

		1706A			1706B			1706			1706G			Unit	Test Conditions
Parameter	Symbol	Min	Typ	Max											
Input Capacitance	CIN		1			1			1			1		pF	
Bandwidth	B_{W}		400			400			400			400		KHz	
Slew Rate	S_{R}		0.17			0.17			0.17			0.17		V/us	$\begin{aligned} & A V=+1 \\ & R L=1 M \Omega \end{aligned}$
Rise time	t_{r}		1.0			1.0			1.0			1.0		$\mu \mathrm{s}$	$R_{L}=1 \mathrm{M} \Omega$
Overshoot Factor			20			20			20			20		\%	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{CL}_{\mathrm{L}}=25 \mathrm{pF} \end{aligned}$
Settling Time	t s		10.0			10.0			10.0			10.0		$\mu \mathrm{S}$	$\begin{aligned} & 0.1 \% \\ & A V=-R_{L}=1 \mathrm{M} \Omega \\ & C_{L}=25 \mathrm{pF} \end{aligned}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{S}}= \pm 1.0 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	1706A			1706B			1706			1706G			Unit	Test Conditions
		Min	Typ	Max											
Power Supply Rejection Ratio	PSRR		70			70			70			70		dB	$R_{S} \leq 1 \mathrm{M} \Omega$
Common Mode Rejection Ratio	CMRR		70			70			70			70		$d B$	$R_{S} \leq 1 \mathrm{M} \Omega$
Large Signal Voltage Gain	A_{V}		50			50			50			50		V / mV	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$
Output Voltage Range	Volow V_{0} high	0.9	$\begin{array}{r} -0.95 \\ 0.95 \end{array}$	-0.9	0.9	$\begin{array}{r} -0.95 \\ 0.95 \end{array}$	-0.9	0.9	$\begin{array}{r} -0.95 \\ 0.95 \end{array}$	-0.9	0.9	$\begin{array}{r} -0.95 \\ 0.95 \end{array}$	-0.9	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$R_{L}=1 \mathrm{M} \Omega$
Bandwidth	BW		0.3			0.3			0.3			0.3		MHz	
Slew Rate	S_{R}		0.17			0.17			0.17			0.17		V/us	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+1 \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \end{aligned}$

$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	1706BDA			1706DA			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Input Offset Voltage	V_{OS}			3.0			6.5	mV	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$
Input Offset Current	los			8.0			8.0	nA	
Input Bias Current	IB			10.0			10.0	nA	
Power Supply Rejection Ratio	PSRR	60	75		60	75		dB	$\mathrm{R}_{S} \leq 1 \mathrm{M} \Omega$
Common Mode Rejection Ratio	CMRR	60	83		60	83		dB	$\mathrm{R}_{S} \leq 1 \mathrm{M} \Omega$
Large Signal Voltage Gain	Av	15	50		15	50		V / mV	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$
Output Voltage Range	V_{O} low V_{O} high	2.30	$\begin{array}{r} -2.40 \\ 2.40 \end{array}$	-2.30	2.30	$\begin{array}{r} -2.40 \\ 2.40 \end{array}$	-2.30	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$R_{L}=1 \mathrm{M} \Omega$

Design \& Operating Notes:

1. The ALD1706A/ALD1706B/ALD1706/ALD1706G CMOS operational amplifier uses a 3 gain stage architecture and an improved frequency compensation scheme to achieve large voltage gain, high output driving capability, and better frequency stability. In a conventional CMOS operational amplifier design, compensation is achieved with a pole splitting capacitor together with a nulling resistor. This method is, however, very bias dependent and thus cannot accommodate the large range of supply voltage operation as is required from a stand alone CMOS operational amplifier. The ALD1706A/ALD1706B/ALD1706/ALD1706G is internally compensated for unity gain stability using a novel scheme that does not use a nulling resistor. This scheme produces a clean single pole roll off in the gain characteristics while providing for more than 70 degrees of phase margin at the unity gain frequency.
2. The ALD1706A/ALD1706B/ALD1706/ALD1706G has complementary p-channel and n-channel input differential stages connected in parallel to accomplish rail-to-rail input common mode voltage range. This means that with the ranges of common mode input voltage close to the power supplies, one of the two differential stages is switched off internally. To maintain compatibility with other operational amplifiers, this switching point has been selected to be about 1.5 V below the positive supply voltage. Since offset voltage trimming on the ALD1706A/ALD1706B/ALD1706/ALD1706G is made when the input voltage is symmetrical to the supply voltages, this internal switching does not affect a large variety of applications such as an inverting amplifier or non-inverting amplifier with a gain larger than 2.5 (5 V operation), where the common mode voltage does not make excursions above this switching point. The user should however, be aware that this switching does take place if the operational amplifier is connected as a unity gain buffer and should make provision in his design to allow for input offset voltage variations.
3. The input bias and offset currents are essentially input protection diode reverse bias leakage currents, and are typically less than

1pA at room temperature. This low input bias current assures tha the analog signal from the source will not be distorted by input bias currents. Normally, this extremely high input impedance of greater than $10^{12} \Omega$ would not be a problem as the source impedance would limit the node impedance. However, for applications where source impedance is very high, it may be necessary to limit noise and hum pickup through proper shielding.
4. The output stage consists of class $A B$ complementary output drivers, capable of driving a low resistance load. The output voltage swing is limited by the drain to source on-resistance of the output transistors as determined by the bias circuitry, and the value of the load resistor. When connected in the voltage follower configuration, the oscillation resistant feature, combined with the rail to rail input and output feature, makes an effective analog signal buffer for medium to high source impedance sensors, transducers, and other circuit networks.
5. The ALD1706A/ALD1706B/ALD1706/ALD1706G operational amplifier has been designed to provide full static discharge protection. Internally, the design has been carefully implemented to minimize latch up. However, care must be exercised when handling the device to avoid strong static fields that may degrade a diode junction, causing increased input leakage currents. In using the operational amplifier, the user is advised to power up the circuit before, or simultaneously with, any input voltages applied and to limit input voltages to not exceed 0.3 V of the power supply voltage levels.
6. The ALD1706A/ALD1706B/ALD1706/ALD1706G , with its micropower operation, offers numerous benefits in reduced power supply requirements, less noise coupling and current spikes, less thermally induced drift, better overall reliability due to lower self heating, and lower input bias current. It requires practically no warm up time as the chip junction heats less than $0.1^{\circ} \mathrm{C}$ above ambient temperature under most operating conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

COMMON MODE INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

TYPICAL PERFORMANCE CHARACTERISTICS (cont'd)

INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE REPRESENTATIVE UNITS

LARGE - SIGNAL TRANSIENT RESPONSE

OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

LARGE - SIGNAL TRANSIENT RESPONSE

SMALL - SIGNAL TRANSIENT RESPONSE

- $100 \mathrm{mV} / \mathrm{div}$					$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
					$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$
					$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
$50 \mathrm{mV} / \mathrm{div}$					10us/div

TYPICAL APPLICATIONS

RAIL-TO-RAIL VOLTAGE FOLLOWER/BUFFER

$0 \leq V_{I N} \leq 5 \mathrm{~V}$

* See Rail to Rail Waveform

HIGH INPUT IMPEDANCE RAIL-TO-RAIL PRECISION DC SUMMING AMPLIFIER

RIN $=10 \mathrm{M} \Omega$ Accuracy limited by resistor tolerances and input offset voltage

HIGH IMPEDANCE NON-INVERTING AMPLIFIER

WIEN BRIDGE OSCILLATOR

PHOTO DETECTOR CURRENT TO VOLTAGE CONVERTER

MICROPOWER BUFFERED VARIABLE VOLTAGE SOURCE

$2.0 \mathrm{~V} \leq \mathrm{V}^{+} \leq 12.0 \mathrm{~V}$
$0.1 \leq \mathrm{V}_{\text {OUT }} \leq\left(\mathrm{V}^{+}-0.1\right) \mathrm{V}$
OUPUT CURRENT $\pm 200 \mu \mathrm{~A}$

SOIC-8 PACKAGE DRAWING

8 Pin Plastic SOIC Package

Dim	Millimeters		Inches			
	Min	Max	Min	Max		
A	1.35	1.75	0.053	0.069		
$\mathbf{A}_{\mathbf{1}}$	0.10	0.25	0.004	0.010		
b	0.35	0.45	0.014	0.018		
\mathbf{C}	0.18	0.25	0.007	0.010		
D-8	4.69	5.00	0.185	0.196		
E	3.50	4.05	0.140	0.160		
e	1.27		BSC	0.050		BSC
\mathbf{H}	5.70	6.30	0.224	0.248		
\mathbf{L}	0.60	0.937	0.024	0.037		
$\boldsymbol{\varnothing}$	0°	8°	0°	8°		
\mathbf{S}	0.25	0.50	0.010	0.020		

PDIP-8 PACKAGE DRAWING

8 Pin Plastic DIP Package

Dim	Millimeters		Inches	
	Min	Max	Min	Max
\mathbf{A}	3.81	5.08	0.105	0.200
$\mathbf{A}_{\mathbf{1}}$	0.38	1.27	0.015	0.050
$\mathbf{A}_{\mathbf{2}}$	1.27	2.03	0.050	0.080
\mathbf{b}	0.89	1.65	0.035	0.065
$\mathbf{b}_{\mathbf{1}}$	0.38	0.51	0.015	0.020
\mathbf{c}	0.20	0.30	0.008	0.012
$\mathbf{D - 8}$	9.40	11.68	0.370	0.460
\mathbf{E}	5.59	7.11	0.220	0.280
$\mathbf{E}_{\mathbf{1}}$	7.62	8.26	0.300	0.325
\mathbf{e}	2.29	2.79	0.090	0.110
\mathbf{e}	7.37	7.87	0.290	0.310
\mathbf{L}	2.79	3.81	0.110	0.150
$\mathbf{S}-\mathbf{8}$	1.02	2.03	0.040	0.080
$\boldsymbol{\varnothing}$	0°	15°	0°	15°

CERDIP-8 PACKAGE DRAWING

8 Pin CERDIP Package

Dim	Millimeters		Inches	
	Min	Max	Min	Max
\mathbf{A}	3.55	5.08	0.140	0.200
$\mathbf{A}_{\mathbf{1}}$	1.27	2.16	0.050	0.085
\mathbf{b}	0.97	1.65	0.038	0.065
$\mathbf{b}_{\mathbf{1}}$	0.36	0.58	0.014	0.023
\mathbf{C}	0.20	0.38	0.008	0.015
$\mathbf{D - 8}$	--	10.29	--	0.405
\mathbf{E}	5.59	7.87	0.220	0.310
$\mathbf{E}_{\mathbf{1}}$	7.73	8.26	0.290	0.325
\mathbf{e}	2.54 BSC		0.100 BSC	
$\mathbf{e}_{\mathbf{1}}$	7.62 BSC		0.300 BSC	
\mathbf{L}	3.81	5.08	0.150	0.200
$\mathbf{L}_{\mathbf{1}}$	3.18	--	0.125	--
$\mathbf{L}_{\mathbf{2}}$	0.38	1.78	0.015	0.070
\mathbf{S}	--	2.49	--	0.098
$\boldsymbol{\varnothing}$	0°	15°	0°	15°

[^0]: * Contact factory for leaded (non-RoHS) or high temperature versions.

[^1]: N/C pins are internally connected. Do not connect externally.

