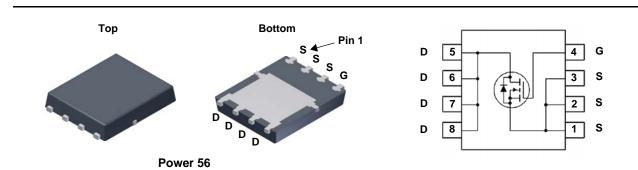


November 2010

FDMS86104 N-Channel PowerTrench[®] MOSFET 100 V, 16 A, 24 mΩ

Features

- Max $r_{DS(on)}$ = 24 m Ω at V_{GS} = 10 V, I_D = 7 A
- Max $r_{DS(on)}$ = 39 m Ω at V_{GS} = 6 V, I_D = 5.5 A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant



General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process thant has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Application

DC-DC Conversion

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DS}	Drain to Source Voltage			100	V
V _{GS}	Gate to Source Voltage			±20	V
	Drain Current -Continuous (Package limited)	T _C = 25 °C		16	
	-Continuous (Silicon limited)	T _C = 25 °C		39	
D	-Continuous	T _A = 25 °C	(Note 1a)	7	Α
	-Pulsed			30	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	96	mJ
D	Power Dissipation	T _C = 25 °C		73	W
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	vv
T _J , T _{STG}	Operating and Storage Junction Temperature R	ange		-55 to +150	°C

Thermal Characteristics

F	< ^{θJC}	Thermal Resistance, Junction to Case		1.7	°C/W	
F	R _{AJA}	Thermal Resistance, Junction to Ambient (Not	ote 1a)	50	0/00	

Package Marking and Ordering Information

FDMS86104 FDMS86104 Power 56 13 " 12 mm 3000 units	Device Marking	Device	Package	Reel Size	Tape Width	Quantity
	FDMS86104	FDMS86104	Power 56		12 mm	3000 units

©2010 Fairchild Semiconductor Corporation FDMS86104 Rev. C1

Test Conditions	Min	Тур	Max	Units
l _D = 250 μA, V _{GS} = 0 V	100			V
$_{\rm D}$ = 250 μ A, referenced to 25 °C		66		mV/°C
V _{DS} = 80 V, V _{GS} = 0 V			1	μA
$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			±100	nA
$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	2	2.9	4	V
$_{\rm D}$ = 250 μ A, referenced to 25 °C		-10		mV/°C
V _{GS} = 10 V, I _D = 7 A		20	24	
V _{GS} = 6 V, I _D = 5.5 A		27	39	mΩ
/ _{GS} = 10 V, I _D = 7 A, T _J = 125 °C		33	40	
$I_{\rm DS} = 10 \text{ V}, I_{\rm D} = 7 \text{ A}$		18		S
/		694	923	pF
		694 178	923 237	pF
		178 8		
		178	237	pF
		178 8	237	pF pF
		178 8	237	pF pF
= 1 MHz / _{DD} = 50 V, I _D = 7 A,		178 8 0.5	237 13	pF pF Ω
= 1 MHz / _{DD} = 50 V, I _D = 7 A,		178 8 0.5 8	237 13 16	pF pF Ω ns
= 1 MHz / _{DD} = 50 V, I _D = 7 A, / _{GS} = 10 V, R _{GEN} = 6 Ω		178 8 0.5 8 3.5	237 13 16 10	pF pF Ω ns
= 1 MHz $V_{DD} = 50 \text{ V}, \text{ I}_{D} = 7 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$		178 8 0.5 8 3.5 14.3 3.2 11.7	237 13 16 10 26	pF pF Ω ns ns ns
= 1 MHz $V_{DD} = 50 \text{ V}, \text{ I}_{D} = 7 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 50 \text{ V},$		178 8 0.5 8 3.5 14.3 3.2 11.7 6.7	237 13 16 10 26 10	pF pF Ω ns ns ns
$V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ $i = 1 \text{ MHz}$ $V_{DD} = 50 \text{ V}, \text{ I}_{D} = 7 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V},$ $V_{DD} = 50 \text{ V},$ $I_{D} = 7 \text{ A}$		178 8 0.5 8 3.5 14.3 3.2 11.7	237 13 16 10 26 10 16	pF pF Ω ns ns ns

FDMS86104 N-Channel PowerTrench[®] MOSFET

Q_{gs} Gate to Source Charge Q_{gd} Gate to Drain "Miller" Charge

Drain-Source Diode Characteristics

Electrical Characteristics T_J = 25 °C unless otherwise noted

Parameter

Drain to Source Breakdown Voltage

Breakdown Voltage Temperature

Zero Gate Voltage Drain Current

Gate to Source Leakage Current

Gate to Source Threshold Voltage

Gate to Source Threshold Voltage

Static Drain to Source On Resistance

Temperature Coefficient

Forward Transconductance

Reverse Transfer Capacitance

Input Capacitance

Gate Resistance

Output Capacitance

Turn-On Delay Time

Turn-Off Delay Time

Total Gate Charge

Total Gate Charge

V	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2 A$ (Note 2)	0.7	1.2	V
V _{SD}	Source to Drain Diode Porward Voltage	$V_{GS} = 0 V, I_S = 7 A$ (Note 2)	0.8	1.3	v
t _{rr}	Reverse Recovery Time	I _F = 7 A, di/dt = 100 A/μs	44	70	ns
Q _{rr}	Reverse Recovery Charge	$F = 7 A$, $dv dt = 100 A/\mu s$	41	65	nC

Notes:

Symbol

BV_{DSS}

 ΔBV_{DSS}

 ΔT_{J}

I_{DSS}

I_{GSS}

V_{GS(th)} $\Delta V_{GS(th)}$

 ΔT_{J}

r_{DS(on)}

gfs

Ciss

Coss

 C_{rss}

 R_{g}

t_{d(on)}

t_{d(off)}

t_r

t_f

Qa

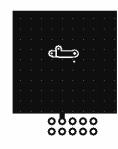
Qg

Off Characteristics

On Characteristics

Dynamic Characteristics

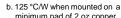
Switching Characteristics


Rise Time

Fall Time

Coefficient

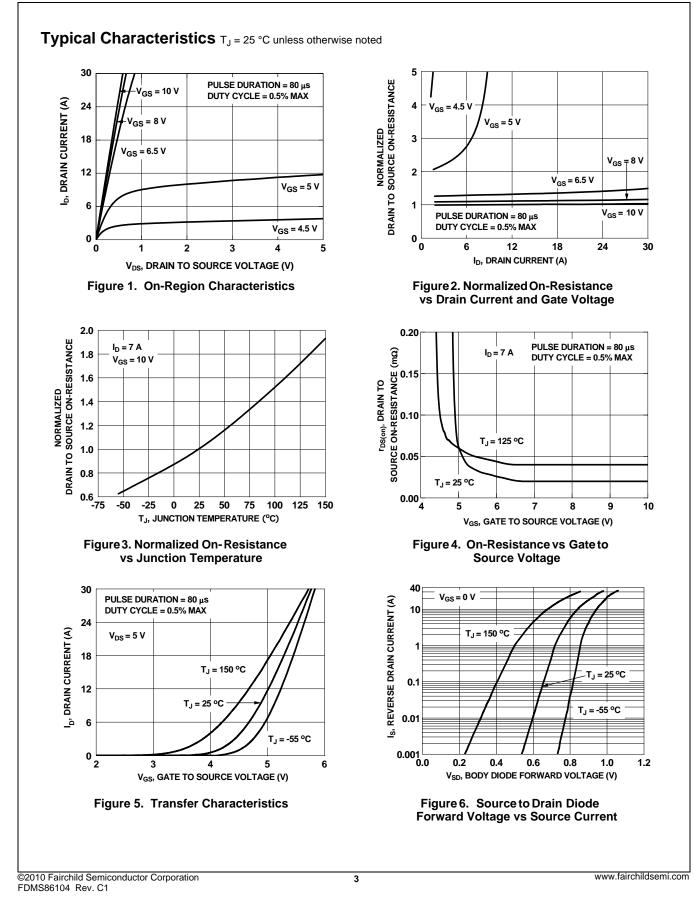
1. R_{BLA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{BLC} is guaranteed by design while R_{BCA} is determined by the user's board design


2

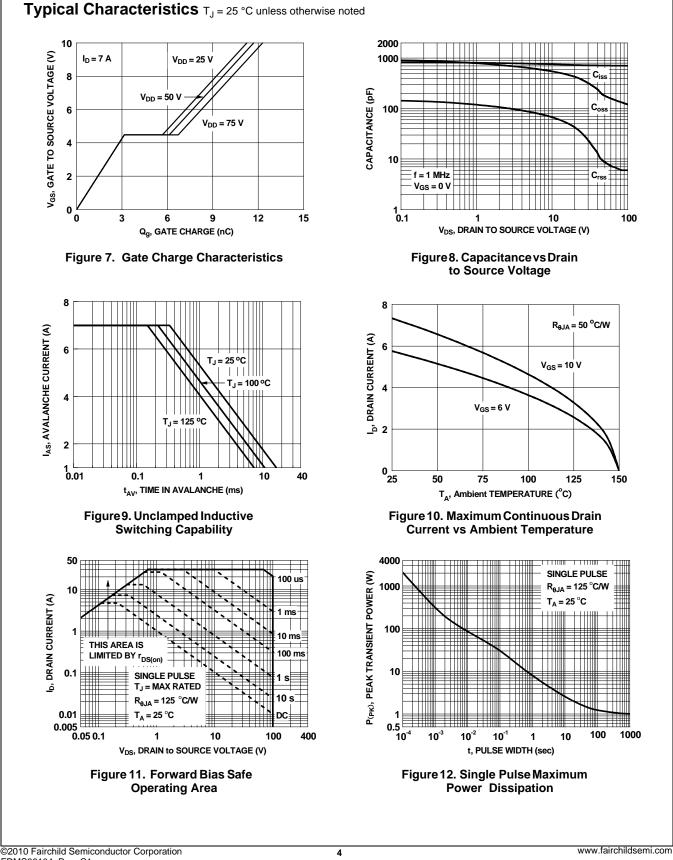
2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

3. Starting T_J = 25 °C, L = 3 mH, I_{AS} = 8 A, V_DD = 100 V, V_GS = 10 V

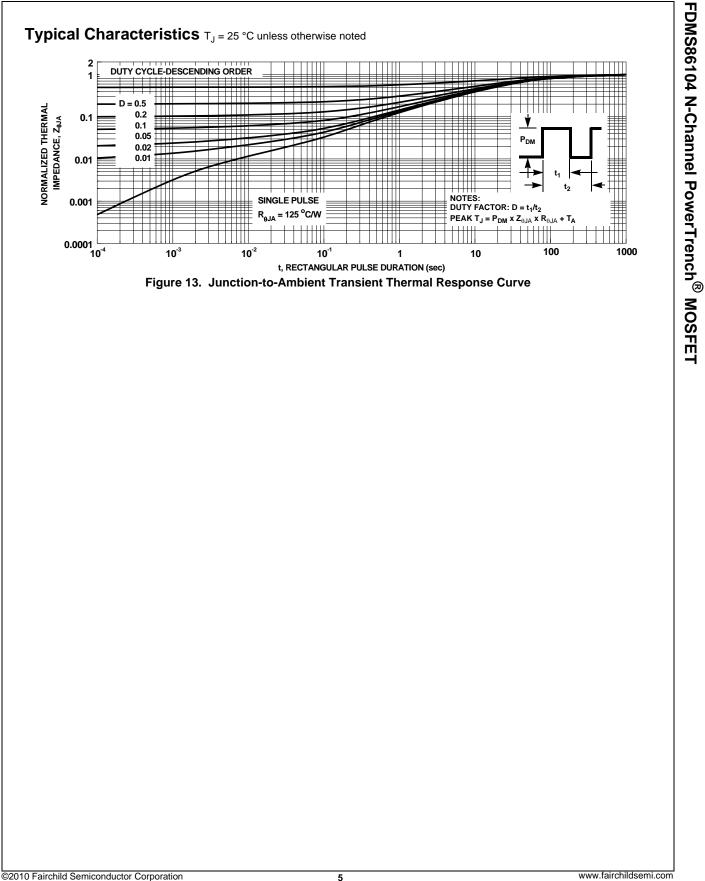
a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper.

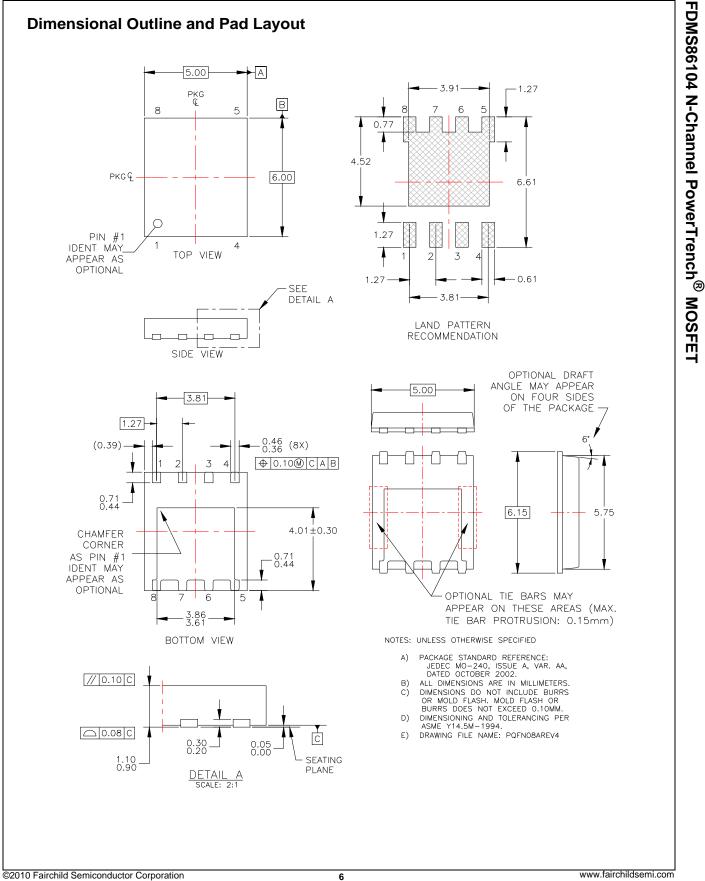


minimum pad of 2 oz copper.



©2010 Fairchild Semiconductor Corporation


FDMS86104 Rev. C1



FDMS86104 Rev. C1

FDMS86104 Rev. C1

FDMS86104 Rev. C1

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

©2010 Fairchild Semiconductor Corporation FDMS86104 Rev. C1 www.fairchildsemi.com