
BSS138K

N-Channel Logic Level Enhancement Mode Field Effect Transistor

Features

- · Low On-Resistance
- · Low Gate Threshold Voltage
- · Low Input Capacitance
- · Fast Switching Speed
- · Low Input/Output Leakage
- · Ultra-Small Surface Mount Package
- Pb Free/RoHS Compliant
- · Green Compound
- ESD HBM=2000V as per JEDEC A114A; ESD CDM = 2000V as per JEDEC C101C

Absolute Maximum Ratings * T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{DSS}	Drain-Source Voltage	50	V
V_{GSS}	Gate-Source Voltage	±12	V
I _D	Drain Current Cont Pulse	nuous 0.22 ed 0.88	A
T_J	Operating Junction Temperature Range	-55 to +150	°C
T _{STG}	Storage Temperature Range	-55 to +150	°C

^{*} These ratings are limiting values above which the serviceability of any semiconductor device maybe impaired.

Thermal Characteristics

Symbol	Parameter	Value	Units	
P _D	Total Device Dissipation Derating above T _A = 25°C	350 2.8	mW mW/°C	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient *	350	°C/W	

1

© 2010 Fairchild Semiconductor Corporation BSS138K Rev. A2 www.fairchildsemi.com

^{*} Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch. Minimum land pad size

Electrical Characteristics $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Chara	cteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0V, I_D =10 μ A	50			V
BV _{DSS}	Breakdown Voltage Temperature Coefficient	I _D =250μA, Referenced to 25°C		0.11		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 50V, V _{GS} = 0V			0.1	μΑ
I _{GSS}	Gate-Body Leakage	V_{GS} = ±12V, V_{DS} = 0V V_{GS} = ±10V, V_{DS} = 0V V_{GS} = ±5V, V_{DS} = 0V			±1 ±0.5 ±0.05	μА
On Chara	cteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.6		1.2	V
V _{GS(th)}	Gate Threshold Voltage Temperature Coefficient	I _D = 1mA, Referenced to 25°C		-1.4		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 1.8V, I_D = 50mA,$ $V_{GS} = 2.5V, I_D = 50mA,$ $V_{GS} = 5V, I_D = 50mA,$			2.5 2.0 1.6	Ω
I _{D(ON)}	On-State Drain Current	V _{GS} = 10V, V _{DS} = 5V	0.2			Α
9 _{FS}	Forward Transconductance	V _{DS} = 10V, I _D = 200mA	200			mS
Dynamic	Characteristics					
C _{iss}	Input Capacitance			58		
C _{oss}	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V, f = 1.0MHz$		9.75		pF
C_{rss}	Reverse Transfer Capacitance			5.2		
R_{G}	Gate Resistance	V_{DS} = 5V, V_{GS} = 10mV		281		Ω
Switching	Characteristics					
t _{D(ON)}	Turn-On Delay Time				5	
t _r	Turn-On Rise Time	$V_{DD} = 30V, I_{D} = 0.29A, V_{GS} = 10V, R_{GEN} = 6\Omega$			5	ns
t _{D(OFF)}	Turn-Off Delay Time	V _{GS} = 10V, r _{GEN} = 052			60	115
t _f	Turn-Off Fall Time				35	
Qg	Total Gate Change				2.4	
Q _{gs}	Gate-Source Change	$V_{DS} = 25V, I_{D} = 0.2A,$ $V_{GS} = 10V, I_{G} = 0.1mA$			0.5	nC
Q _{gd}	Gate-Drain Change	- 60 - 61, 10 - 61.11.11			0.5	
Drain-Source Diode Characteristics and Maximum Ratings						
V _{sd}	Drain-Source Diode Forward Voltage	V _{GS} = 0V, I _S = 115mA			1.2	V

Typical Performance Characteristics

Figure 1. On-Region Characteristics

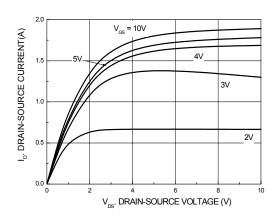


Figure 2. On-Resistance Variation with Gate **Voltage and Drain Current**

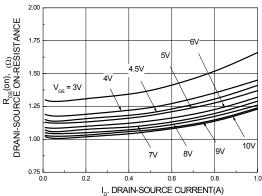


Figure 3. On-Resistance Variation with **Temperature**

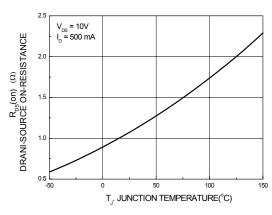


Figure 4. On-Resistance Variation with **Gate-Source Voltage**

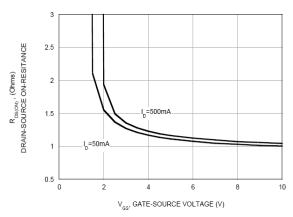


Figure 5. Transfer Characteristics

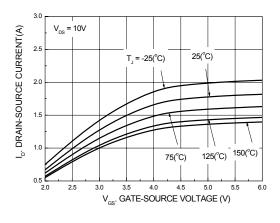
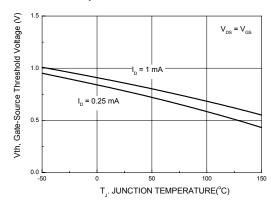
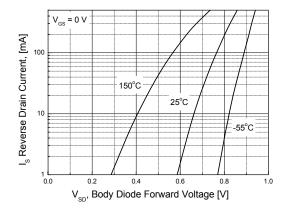




Figure 6. Gate Threshold Variation with **Temperature**

Typical Performance Characteristics (Continue)

Figure 7. Reverse Drain Current Variation with Diode Forward Voltage and Temperature

Physical Dimensions SOT - 23 0.95 2.92±0.20 В 1.30+0.20 2.20 (0.29)-1.00 ⊕ 0.20 M A B 0.95 1.90 1.90 LAND PATTERN RECOMMENDATION SEE DETAIL A -1.30 MAX (0.93)△ 0.10 M C 2.40±0.30 GAGE PLANE NOTES: UNLESS OTHERWISE SPECIFIED REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE H. ALL DIMENSIONS ARE IN MILLIMETERS. DIMENSIONS ARE INCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS. DIMENSIONING AND TOLERANCING PER ASME Y14.5M — 1994. DRAWING FILE NAME: MAO3DREV9 0.20 MIN SEATING PLANE DETAIL A

5

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ Auto-SPM™ FRFET®

Build it Now™ Global Power ResourceSM

CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-Series™

 $CROSSVOLT^{\text{\tiny TM}}$ Gmax™ CTL™ GTO™ Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™ Dual Cool™ MegaBuck™ EcoSPARK® MIČROCOUPLER™ EfficientMax™ MicroFET™

ESBC™ MicroPak™ MicroPak2™ MillerDrive™ Fairchild[®] MotionMax™ Fairchild Semiconductor® Motion-SPM™ FACT Quiet Series™ OptoHiT™

FACT® FAST® OPTOLOGIC® OPTOPLANAR® FastvCore™ FFTBench™

FlashWriter®* PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFĔT® QS™ Quiet Series™ RapidConfigure™ **○**TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 . SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™

μSerDes™ UHC Ultra FRFET™ UniFFT™ VCX™ VisualMax™ XS TM

SYSTEM ®

bwer''

franchise

TinyBoost™

TinyBuck™

TinyCalc™ TinyLogic[®]

TINYOPTO™

TinyPower™

TinyPWM™

TinyWire™

TriFault Detect™

TRUECURRENT™*

The Power Franchise®

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		P. 140

Rev. 149

© Fairchild Semiconductor Corporation

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.