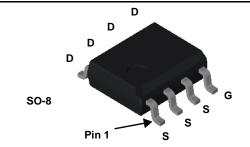
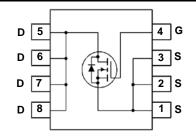


FDS86242 N-Channel PowerTrench[®] MOSFET 150 V, 4.1 A, 67 m Ω

Features

- Max $r_{DS(on)} = 67 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 4.1 \text{ A}$
- Max $r_{DS(on)}$ = 98 m Ω at V_{GS} = 6 V, I_D = 3.3 A
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability in a widely used surface mount package
- 100% UIL Tested
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been optimized for $r_{DS(on)}$, switching performance and ruggedness.

Applications

- DC/DC converters and Off-Line UPS
- Distributed Power Architectures and VRMs
- Primary Switch for 24V and 48V Systems
- High Voltage Synchronous Rectifier

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

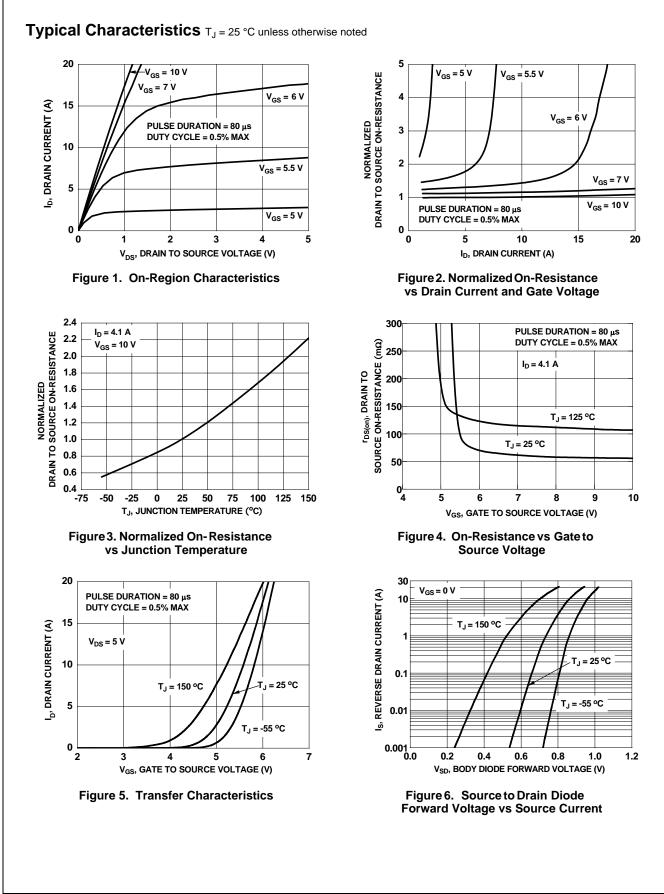
Symbol	Parar	neter		Ratings	Units
V _{DS}	Drain to Source Voltage			150	V
V _{GS}	Gate to Source Voltage			±20	V
1	Drain Current -Continuous			4.1	А
D	-Pulsed			20	A
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	40	mJ
D	Power Dissipation	T _C = 25 °C	(Note 1)	5.0	W
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	vv
T _J , T _{STG}	Operating and Storage Junction Tempe	rature Range		-55 to +150	°C

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	25	°C/W]
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	50	0/11	

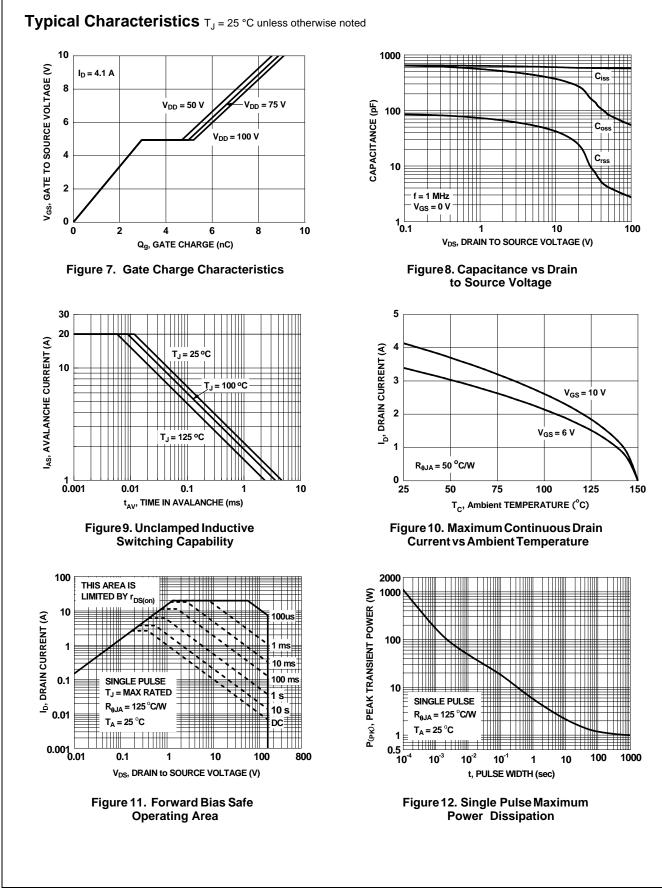
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS86242	FDS86242	SO-8	13 "	12 mm	2500 units

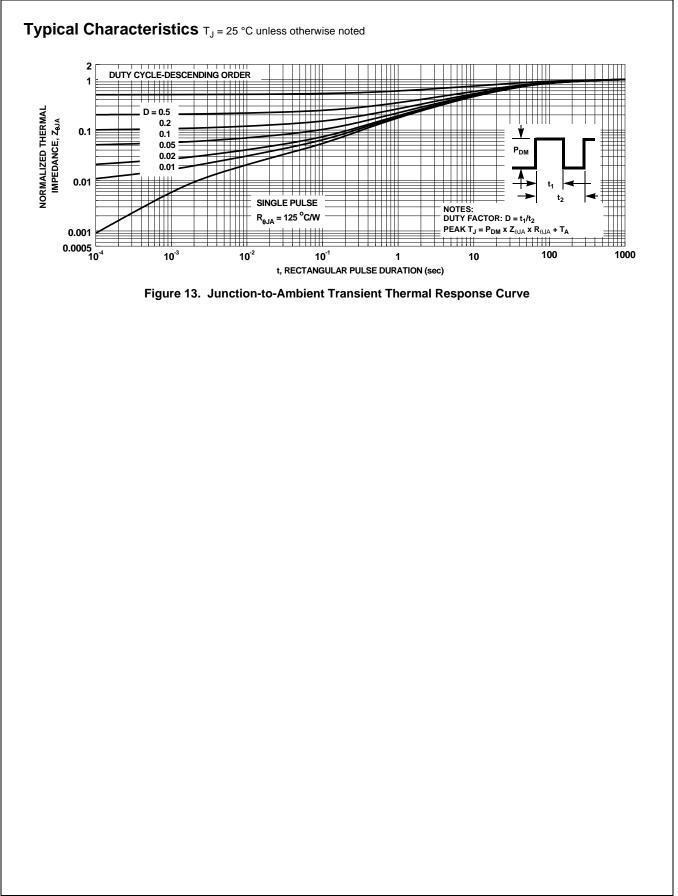

©2010 Fairchild Semiconductor Corporation FDS86242 Rev. C

August 2010

	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	150			V
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperatur Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		104		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 120 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara		00 00				
		N/ N/ 1 050 A		0.5		N
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	2	3.5	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{I}}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C		-10		mV/°
413		V _{GS} = 10 V, I _D = 4.1 A		56.3	67	
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 6 \text{ V}, \text{ I}_{D} = 3.3 \text{ A}$		73.8	98	mΩ
DO(OII)		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.1 \text{ A}, \text{ T}_{J} = 125 \text{ °C}$		107	126	_
9 _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 4.1 \text{ A}$		11		S
Dynamic (Characteristics					
	Input Capacitance			570	760	pF
C _{oss}	Output Capacitance	$V_{\rm DS} = 75 \text{V}, V_{\rm GS} = 0 \text{V},$		64	85	pF
	Reverse Transfer Capacitance	-f = 1MHz		2.9	5	pF
(ree	revelee handler eapachance				•	•
	Gate Resistance			0.5		Ω
c _{rss} R _g Switching	Gate Resistance Characteristics			0.5		Ω
R _g	Characteristics Turn-On Delay Time			0.5	16	Ω
_{Rg} Switching	Characteristics Turn-On Delay Time Rise Time	V _{DD} = 75 V, I _D = 4.1 A,			16 10	
R _g Switching ^t d(on)	Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{DD} = 75$ V, I _D = 4.1 A, V _{GS} = 10 V, R _{GEN} = 6 Ω		7.9 1.5 13	10 23	ns
R _g Switching t _{d(on)} t _r t _{d(off)}	Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		7.9 1.5 13 2.8	10 23 10	ns ns ns ns
R _g Switching t _{d(on)} t _r t _{d(off)} t _f Q _{g(TOT)}	Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		7.9 1.5 13 2.8 8.9	10 23 10 13	ns ns ns ns nC
R _g Switching t _{d(on)} t _r t _{d(off)} t _f Q _{g(TOT)} Q _{g(TOT)}	Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		7.9 1.5 13 2.8 8.9 4.9	10 23 10	ns ns ns nC nC
R _g Switching t _{d(on)} t _r t _{d(off)} t _f Q _{g(TOT)} Q _{g(TOT)} Q _{gs}	Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge	V_{GS} = 10 V, R_{GEN} = 6 Ω		7.9 1.5 13 2.8 8.9 4.9 3.0	10 23 10 13	ns ns ns nC nC
R _g Switching t _{d(on)} t _r t _{d(off)} t _f Q _{g(TOT)} Q _{g(TOT)}	Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		7.9 1.5 13 2.8 8.9 4.9	10 23 10 13	ns ns ns nC nC
R _g Switching t _{d(on)} t _r t _{d(off)} t _f Q _{g(TOT)} Q _{g(TOT)} Q _{gs} Q _{gd}	Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 75 \text{ V},$ $I_D = 4.1 \text{ A}$		7.9 1.5 13 2.8 8.9 4.9 3.0	10 23 10 13	ns ns ns nC nC
$\frac{R_{g}}{Switching}$ $\frac{t_{d(on)}}{t_{r}}$ $\frac{t_{d(off)}}{t_{f}}$ $\frac{Q_{g(TOT)}}{Q_{g(TOT)}}$ $\frac{Q_{gs}}{Q_{gd}}$ Drain-Sou	Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge Ince Diode Characteristics	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 75 \text{ V},$ $I_D = 4.1 \text{ A}$ $V_{GS} = 0 \text{ V}, I_S = 4.1 \text{ A}$ (Note 2)		7.9 1.5 13 2.8 8.9 4.9 3.0	10 23 10 13 7 1.3	ns ns ns nC nC nC
$\frac{R_{g}}{Switching}$ $\frac{t_{d(on)}}{t_{r}}$ $\frac{t_{d(off)}}{t_{f}}$ $\frac{Q_{g(TOT)}}{Q_{g(TOT)}}$ $\frac{Q_{gg}}{Q_{gd}}$ Drain-Sou	Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge Ince Diode Characteristics Source to Drain Diode Forward Voltage	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 75 \text{ V},$ $I_D = 4.1 \text{ A}$		7.9 1.5 13 2.8 8.9 4.9 3.0 2.0 0.81 0.77	10 23 10 13 7 1.3 1.2	ns ns ns nC nC nC nC v
$\frac{R_{g}}{Switching}$ $\frac{t_{d(on)}}{t_{r}}$ $\frac{t_{d(off)}}{t_{f}}$ $\frac{Q_{g(TOT)}}{Q_{g(TOT)}}$ $\frac{Q_{gs}}{Q_{gd}}$ Drain-Sou	Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge Ince Diode Characteristics	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 75 \text{ V},$ $I_D = 4.1 \text{ A}$ $V_{GS} = 0 \text{ V}, I_S = 4.1 \text{ A}$ (Note 2)		7.9 1.5 13 2.8 8.9 4.9 3.0 2.0	10 23 10 13 7 1.3	ns ns ns nC nC nC


2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. Starting T_J = 25 °C, L = 1 mH, I_{AS} = 9 A, V_{DD} = 135 V, V_{GS} = 10 V.

©2010 Fairchild Semiconductor Corporation FDS86242 Rev. C



©2010 Fairchild Semiconductor Corporation FDS86242 Rev. C

©2010 Fairchild Semiconductor Corporation FDS86242 Rev. C

FDS86242 N-Channel PowerTrench[®] MOSFET

©2010 Fairchild Semiconductor Corporation

Obsolete

FDS86242 Rev C

Semiconductor. The datasheet is for reference information only.

Rev. 148

www.fairchildsemi.com

Not In Production