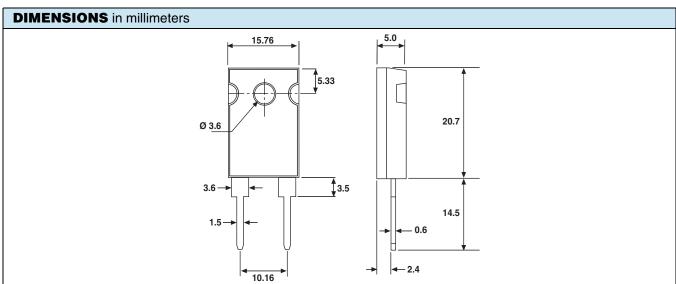
Vishay Sfernice

Power Resistor Thick Film Technology


LTO series are the extension of RTO types. We used the direct ceramic mounting design (no metal tab) of our RCH power resistors applied to semiconductor packages.

FEATURE

 100 W at 25 °C case temperature heatsink mounted

- · Direct mounting ceramic on heatsink
- Broad resistance range: 0.015 Ω to 1 M Ω
- Non inductive
- TO-247 package: Compact and easy to mount
- Compliant to RoHS directive 2002/95/EC

Note

• Tolerance unless otherwise specified: ± 0.3 mm

MECHANICAL SPECIFICATIONS

Mechanical ProtectionMoldedResistive ElementThick filmSubstrateAluminaConnectionsTinned copperWeight3.5 g max.Mounting Torqure1 Nm

DIMENSIONS

Standard Package TO247 package

ENVIRONMENTAL SPECIFICATIONS

Temperature Range Climatic Category Flammability - 55 °C to + 175 °C 55/175/56 IEC 60695-11-5 2 applications 30 s separated by 60 s

ELECTRICAL SPECIFICATIONS					
Resistance Range	0.015 Ω to 1 MΩ				
Tolerances (Standard)	± 1 % to ± 10 %				
Dissipation and Associated	Onto a heatsink				
Power Rating and Thermal Resistance of the Component	100 W at + 25 °C (case temp.) R _{TH (j - c)} : 1.5 °C/W Free air: 3.5 W at + 25 °C				
Temperature Coefficient	See Performance table				
Standard	± 150 ppm/°C				
Limiting Element Voltage U _L	375 V				
Dielectric Strength MIL STD 202	1500 V _{RMS} - 1 min 10 mA max.				
Insulation Resistance	$\geq 10^4 \text{M}\Omega$				
Inductance	≤ 0.1 μH				
Critical Resistance	1.41 kΩ				

www.vishay.com 80 For technical questions, contact: sfer@vishay.com

Document Number: 50051 Revision: 21-Jan-11

PERFORMANCE					
TESTS	CONDITIONS	REQUIREMENTS			
Momentary Overload	EN 60115-1 1.5 <i>P_t</i> /5 s <i>U</i> _S < 1.5 <i>U</i> _L	$\pm (0.5 \% + 0.005 \Omega)$			
Rapid Temperature Change	EN 60115-1 IEC 60068-2-14 Test Na 5 cycles - 55 °C to + 175 °C	$\pm (0.5 \% + 0.005 \Omega)$			
Load Life	EN 60115-1 1000 h P _r at + 25 °C ± (1 % + 0.005 Ω)				
Humidity (Steady State)	MIL STD 202 Method 103 B Cond. D	± (0.5 % + 0.005 Ω)			
Vibration	MIL STD 202 Method 204 Cond. D	± (0.2 % + 0.005 Ω)			
Terminal Strength	minal Strength MIL STD 202 Method 211 Cond. A1 ± (0.2 % + 0.2				
Shock 100G, MIL STD 202 Method 213 Cond. I 100G, MIL STD 202		± (0.5 % + 0.005 Ω)			

SPECIAL FEATURES							
Resistance Values	≥ 0.010	≥ 0.010 ≥ 0.015 ≥ 0.1		≥ 0.5			
Tolerances	± 1 % at ± 10 %						
Typical Temperature Coefficient (- 55 ° to + 175 °C)	± 900 ppm/°C	± 700 ppm/°C	± 250 ppm/°C	± 150 ppm/°C			

CHOICE OF THE HEATSINK

The user must choose according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed 175 °C. The dissipated power is simply calculated by the following ratio:

$$P = \frac{\Delta T}{[R_{TH (j-c)} + R_{TH (c-a)}]}^{(1)}$$

P: Expressed in W

 ΔT : Difference between maximum working temperature and room temperature

R_{TH (j - c)}: Thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal

resistance of the component.

R_{TH (C-a)}: Thermal resistance value measured between outer side of the resistor and room temperature. It is the thermal

resistance of the heatsink itself (type, shape) and the quality of the fastening device, and the thermal resistance

of the thermal compound.

Example:

R_{TH (c - a)} for LTO 100 power rating 10 W at ambient temperature + 25 °C

Thermal resistance R_{TH (j - c)}: 1.5 °C/W

Considering equation (1) we have:

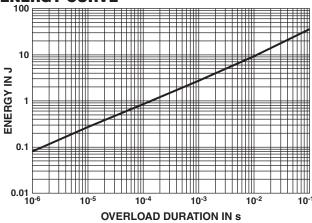
$$\begin{split} \Delta T &= 175~^{\circ}\text{C} - 25~^{\circ}\text{C} = 150~^{\circ}\text{C} \\ R_{TH~(j~-c)} + R_{TH~(c~-a)} &= \frac{\Delta T}{P} = \frac{150}{10} = 15~^{\circ}\text{C/W} \\ R_{TH~(c~-a)} &= 15~^{\circ}\text{C/W} - 1.5~^{\circ}\text{C/W} = 13.5~^{\circ}\text{C/W} \end{split}$$

with a thermal grease $R_{TH\ (c-h)}=1\ ^{\circ}C/W$, we need a heatsink with $R_{TH\ (h-a)}=12.5\ ^{\circ}C/W$.

Document Number: 50051 Revision: 21-Jan-11

Vishay Sfernice

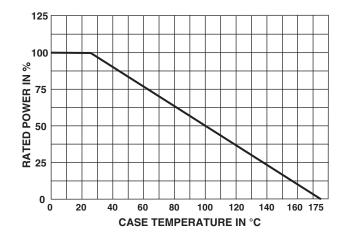
Power Resistor Thick Film Technology



OVERLOADS

In any case the applied voltage must be lower than the maximum overload voltage of 560 V.

The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.


ENERGY CURVE

POWER RATING

The temperature of the case should be maintained within the limits specified.

To improve the thermal conductivity, surfaces in contact should be coated with a silicone grease and the torque applied on the screw for tightening should be around 1 Nm.

MARKING

Model, style, resistance value (in Ω), tolerance (in %), manufacturing date, Vishay Sfernice trademark.

ORDERING INFORMATION								
LTO	100	F	2.7 k Ω	± 1 %	xxx	TU30	e3	
MODEL	STYLE	CONNECTIONS	RESISTANCE VALUE	TOLERANCE	CUSTOM DESIGN	PACKAGING	LEAD (Pb)-FREE	
				± 1 % ± 2 % ± 5 % ± 10 %	Optional on request: Special TCR, shape etc.			

www.vishay.com

For technical questions, contact: sfer@vishay.com

Revision: 21-Jan-11

Document Number: 50051

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1