

Type CRL Series

Tyco are pleased to offer this High Power, thick film chip resistor for current sensing positions. It has a special metal glaze resistive element and a barrier layer underneath the solder to prolong terminal life. Following the developments by semiconductor manufacturers in the production of a range of IC's for battery charge management and low voltage power supplies, these resistors satisfy the demand for a low ohmic shunt resistor to act as a current sensor. Unique parallel print enables very low values and high powers for thick film resistors.

Key Features

- Up to 1 Watt at 70°C
- Values Down to R01
- Supplied on Tape
- Ideal for Current Detection
- 0.5 Watt by 0805 x 3
- 1 Watt by 0805 x 6

SMD Low Ohmic - Current Sense Resistors

Type CRL Series

Characteristics - Electrical

	CRL1220		CRL3720		CRL7520	
Power Rating at 70°C	1/4W		1/2W		1W	
Resistance Range	$22m\Omega$ - $68m\Omega$	0.1Ω-4.7Ω	22mΩ-68mΩ	0.1Ω	10m Ω -68m Ω	0.1Ω
Resistance Tolerance	2% - 5%	1%	1% - 2%	1% - 2%	1% - 2%	1% - 2%
Temperature Coefficient of Resistance	0~+350ppm/°C	0~+200ppm/°C	0~ +350ppm/°C	0~+200ppm/°C	0~ +350ppm/°C	0~ +200ppm/°C
Resistance Values	E6		E6*		E6*	
Max. Operating Temperature	±125°C					
Short Time Overload	±0.5%					
Load Life	±0.5%					
Moisture Life	±0.5%					
Temperature Cycle	±0.5%					
Resistance to Solder Heat	±0.5%					
+ F 4/0 M/ A-I-IHI F-I-H M-I	DOOF DOA DOF	2075				

^{*} For 1/2 W Additional Existing Value: R025, R04, R05, R075

Derating Curve

For resistors operated in ambient temperatures above 70°C, power rating must be derated in accordance with the curve.

Dimensions

Handling Recommendations

When flow soldering - the land width must be smaller than the chip resistor width to control the solder application. Generally, the land width can be chip resistor width x 0.7 to 0.8. When reflow soldering - The amount of solder can be adjusted. Thus the land width can be set to W x 1.0 to 1.3.

Literature No. 1773205 Issued: 09-05 Dimensions are shown for reference purposes only.

Dimensions are in millimetres unless otherwise specified.

Specifications subject to change.

www.tycoelectronics.com passives.tycoelectronics.com

^{*} For 1 W Additional Existing Value: R018, R02, R025, R04, R05, R075