
Vishay Thin Film

High Frequency (up to 20 GHz) Resistor, Thin Film Surface Mount Chip

FC series chip resistors are designed with low internal reactance. They function as almost pure resistors on a very high range of frequencies. The specialized laser edge trimming allows for precision tolerances to 0.1 %.

FEATURES

- Small standard size 0402 case size
- Edge trimmed block resistors
- Alumina substrate high purity (99.6 %)
- Ohmic range (10 Ω to 1000 Ω)
- Small internal reactance (< 10 mΩ)
- Low TCR (down to ± 25 ppm/°C)
- Epoxy bondable termination available
- Compliant to RoHS directive 2002/95/EC

APPLICATIONS

- Low noise amplifiers
- Attenuation
- Line termination

STANDARD ELECTRICAL SPECIFICATIONS					
TEST	SPECIFICATIONS	CONDITIONS			
Material	Passivated nichrome	-			
Resistance Range	10 Ω to 1000 Ω	Case size dependent			
TCR: Absolute	$\pm25\text{ppm/°C}$ (standard) ($\geq50~\Omega)$ to $\pm100\text{ppm/°C}$	- 55 °C to + 125 °C			
Tolerance: Absolute	± 0.1 % to ± 5.0 %	+ 25 °C			
Stability: Absolute	$\Delta R \pm 0.02 \%$	2000 h at 70 °C			
Stability: Ratio	-	-			
Voltage Coefficient	0.1 ppm/V	-			
Working Voltage	30 V to 75 V	-			
Operating Temperature Range	- 55 °C to + 125 °C	-			
Storage Temperature Range	- 55 °C to + 150 °C	-			
Noise	< - 35 dB	-			
Shelf Life Stability: Absolute	Δ <i>R</i> ± 0.01 %	1 year at + 25 °C			

COMPONENT RATINGS							
CASE SIZE	POWER RATING (mW)	WORKING VOLTAGE (V)	RESISTANCE RANGE (Ω)				
0402	50	30	16 to 1000				
0505	125	37	20 to 1000				
0603	125	50	10 to 1000				
0805	200	50	10 to 1000				
1005	250	75	10 to 1000				
1206	330	75	10 to 1000				

* Pb containing terminations are not RoHS compliant, exemptions may apply

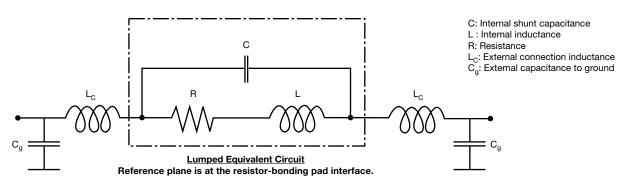
Document Number: 60093 Revision: 24-Nov-10

Vishay Thin Film

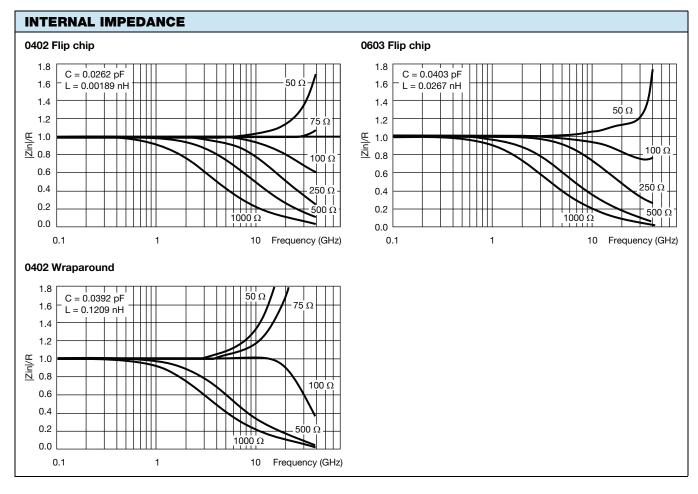
High Frequency (up to 20 GHz) Resistor, Thin Film Surface Mount Chip

← D→	CASE SIZE	LENGTH	WIDTH W (± 0.005)	THICKNESS MIN./MAX.	-	BOTTOM PAD E (± 0.005)
	0402	$\begin{array}{c} 0.040 \pm 0.003 \\ (1.016 \pm 0.076) \end{array}$	0.020 (0.508)	0.015 (0.381)	0.012 (0.305)	0.015 (0.381)
▲L	0505	$\begin{array}{c} 0.050 \pm 0.005 \\ (1.270 \pm 0.127) \end{array}$	0.050 (1.270)	0.015 (0.381)	0.012 (0.305)	0.015 (0.381)
≼-D→ ▲	0603	0.064 ± 0.006 (1.626 ± 0.153)	0.032 (0.813)	0.015 (0.381)	0.012 (0.305)	0.015 (0.381)
	0805	$\begin{array}{c} 0.080 \pm 0.006 \\ (2.032 \pm 0.153) \end{array}$	0.050 (1.270)	0.015 (0.381)	0.016 ± 0.008 (0.407 ± 10.53) (0.381)
	1005	$\begin{array}{c} 0.100 \pm 0.008 \\ (2.540 \pm 0.204) \end{array}$	0.053 (1.347)	0.025 (0.635)	(0.508 + 0).005/- 0.010).127/- 0.254)
←L►	1206	$\begin{array}{c} 0.126 \pm 0.008 \\ (3.201 \pm 0.204) \end{array}$	0.063 (1.601)	0.025 (0.635)).005/- 0.010).127/- 0.254)
MECHANICAL SPECIFICATION	6	I		_		
Resistive Element					d nichrome	
Substrate Material				-	mina	
Terminations Lead (Pb)-free Option						
Tin/Lead Option			96		% Ag, 0.5 % Cu 163	
Lead (Pb)-free Finish and Tin/Lead					lder dip	
					-	
F C 1 2 0 6 F C 1 2 0 6	╡┝═┥┝	\dashv \vdash \vdash	0 1 0 0	B T	B B S	T S
GLOBAL CASE TCR MODEL SIZE CHARACTERISTIC RE	SISTANCE	TOLERANCE		/INATION or 3 digits)	P	ACKAGING
FC0402 0505 0603 0805 1005E = 25 ppm/°C H = 50 ppm/°C K = 100 ppm/°CThe first 3 digits are significant figures and the last digit specifies the number of zeros to follow. "R" designates the decimal point.B = 0.1 % D = 0.5 % F = 1 % J = 5 %T = Top sided Au (gold) term Au over Ni epoxy bondable RoHS compliant - e4BS = BULK 100 min., 1 mB = 0.1 % D = 0.5 % F = 1 % I ast digit specifies the number of zeros to follow. "R" designates the decimal point.B = 0.1 % D = 0.5 % F = 1 % J = 5 %T = Top sided Au (gold) term Au over Ni epoxy bondable RoHS compliant - e4BS = BULK 100 min., 1 mTHe first 3 digits are significant figures and the last digit specifies the number of zeros to follow. "R" designates the decimal point.B = 0.1 % D = 0.5 %T = Top sided Au (gold) term Au over Ni epoxy bondable BarrierBS = BULK 100 min., 1 mTHe first 3 digits are significant figures and the last digit specifies the decimal point. Example: 1000 = 10 Ω 1001 = 1 kΩB = 0.1 % D = 0.5 %T = Top sided Au (gold) term Au over Ni epoxy bondable RoHS compliant - e1BS = BULK 100 min., 1 mTHe first 3 digits are significant figures and the last digit specifies the decimal point.B = 0.1 % D = 0.5 %T = Top sided Au (gold) term Au over Ni epoxy bondable RoHS compliant - e1BS = Dot min., 1 mTHE figure are significant the decimal point.T = Top sided lead (Pb)-free Solder w/nickel barrier RoHS compliant - e1T = Top sided P Solder Solder Solder Solder SolderT = Top sided P Solder Solder <th>I min., 1 mult NFFLE D min., 1 mult D REEL min., 100 mult D min., 1000 mult min., 300 mult min., 500 mult reel</th>					I min., 1 mult NFFLE D min., 1 mult D REEL min., 100 mult D min., 1000 mult min., 300 mult min., 500 mult reel	
Historical Part Number example: FC1206			oses only)			
Historical Part Number example: FC1206	E1001BBT (fo	r reference purp		3	 B	T

Note


⁽¹⁾ Preferred packaging code

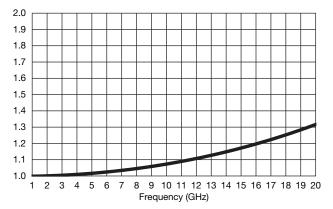
www.vishay.com 74



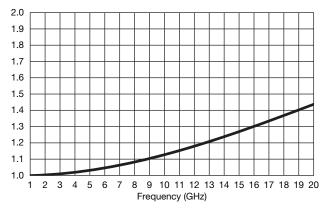
High Frequency (up to 20 GHz) Resistor, Thin Film Surface Mount Chip

TYPICAL HIGH FREQUENCY PERFORMANCE ELECTRICAL MODEL AND TESTING

The lumped circuit above was used to model the data at the bonding pad-resistor reference plane. High frequency testing was performed by Modelithics, Inc. on parts mounted to quartz test boards. Quartz test boards were chosen to minimize the contribution of the board effects at high frequencies. Future testing will be performed on various industry standard board types. Vishay in partnership with Modelithics, Inc. will develop substrate scalable models for the FC series resistors. These models will be available for industry standard design software packages and will allow the designer to accurately model their wireless and microwave printed boards.



Vishay Thin Film


High Frequency (up to 20 GHz) Resistor, Thin Film Surface Mount Chip

VSWR FC Series 0402 size 50 Ω

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.