

125nA Supervisory Circuits with Capacitor-Adjustable Reset and Watchdog Timeouts

General Description

The MAX16056–MAX16059 are ultra-low-current 125nA (typ) microprocessor (μ P) supervisory circuits that monitor a single system supply voltage. These devices assert an active-low reset signal whenever the V_{CC} supply voltage drops below the factory-trimmed reset threshold, manual reset is pulled low, or the watchdog timer runs out (MAX16056/MAX16058). The reset output remains asserted for an adjustable reset timeout period after V_{CC} rises above the reset threshold. Factory-trimmed reset threshold voltages are offered from 1.575V to 4.625V in approximately 100mV increments (see Table 1).

These devices feature adjustable reset and watchdog timeout using external capacitors. The MAX16056/MAX16058 contain a watchdog timer with a watchdog select input (WDS) that multiplies the watchdog timeout period by 128. The MAX16057/MAX16059 do not have the watchdog feature.

The MAX16056–MAX16059 are available in either pushpull or open-drain output-type configurations (see the *Ordering Information*). These devices are fully specified over the -40°C to +125°C automotive temperature range. The MAX16056/MAX16058 are available in the 8-pin TDFN package, and the MAX16057/MAX16059 are available in the 6-pin TDFN package.

Applications

Portable/Battery-Powered Equipment PDAs/Cell Phones MP3 Players/Pagers Glucose Monitors/Patient Monitors Metering/HVAC Automotive Infotainment

Typical Operating Circuit appears at end of data sheet.

Features

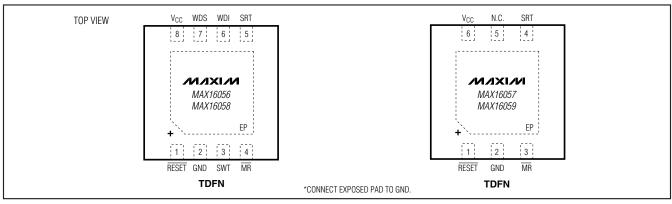
- Ultra-Low 125nA (typ) Supply Current
- ♦ 1.1V to 5.5V Operating Supply Range
- Factory-Set Reset Threshold Options from 1.575V to 4.625V in Approximately 100mV Increments
- Capacitor-Adjustable Reset Timeout
- Capacitor-Adjustable Watchdog Timeout (MAX16056/MAX16058)
- Watchdog Timer Capacitor Open Detect Function
- Optional Watchdog Disable Function (MAX16056/MAX16058)
- Manual Reset Input
- ♦ Guaranteed RESET Valid for V_{CC} ≥ 1.1V
- ♦ Push-Pull or Open-Drain RESET Output Options
- Power-Supply Transient Immunity
- Small, 3mm x 3mm TDFN Package

Ordering Information

PART	PIN- PACKAGE	RESET OUTPUT	WATCH- DOG TIMER
MAX16056ATA+T	8 TDFN-EP*	Push-Pull	Yes
MAX16057ATT+T	6 TDFN-EP*	Push-Pull	No
MAX16058ATA+T	8 TDFN-EP*	Open-Drain	Yes
MAX16059ATT+T	6 TDFN-EP*	Open-Drain	No

Note: All devices are specified over the -40°C to +125°C operating temperature range.

+Denotes a lead(Pb)-free/RoHS-compliant package.


T = Tape and reel.

*EP = Exposed pad.

"__" represents the two number suffix needed when ordering the reset threshold voltage value (see Table 1).

Standard versions and their package top marks are shown in Table 3 at the end of data sheet.

Pin Configurations

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND0.3V to +6V
SRT, SWT, WDS, \overline{MR} , WDI, to GND0.3V to (V _{CC} + 0.3V)
RESET (Push-Pull) to GND0.3V to (V _{CC} + 0.3V)
RESET (Open-Drain) to GND0.3V to +6V
Input Current (all pins) ±20mA
Output Current (RESET) ±20mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
6-Pin TDFN (derate 23.8mW/°C above +70°C)1905mW
8-Pin TDFN (derate 24.4mW/°C above +70°C)1951mW

Junction-to-Ambient Thermal Resistance $(heta_{JA})$	(Note 1)
6-Pin TDFN	42°C/W
8-Pin TDFN	41°C/W
Junction-to-Case Thermal Resistance (θ_{JC}) (No	ote 1)
6-Pin TDFN	9°C/W
8-Pin TDFN	8°C/W
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	-65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to <u>www.maxim-ic.com/thermal-tutorial</u>.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 1.2V \text{ to } 5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = 3.3V, T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
		$T_A = 0^{\circ}C \text{ to } + 125^{\circ}C$		1.1		5.5	V
Supply Voltage	V _{CC}	$T_A = -40^{\circ}C$ to $0^{\circ}C$		1.2		5.5	V
			$V_{CC} = 5.0V, T_A = -40^{\circ}C$ to +85°C		142	210	
			V _{CC} = 3.3V, T _A = -40°C to +85°C		132	185	
		$V_{CC} > V_{TH} + 150 mV$,	$V_{CC} = 1.8V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		125	175	nA
Supply Current	Icc	no load, reset output deasserted (Note 3)	$V_{CC} = 5.0V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		142	430	
			V _{CC} = 3.3V, T _A = -40°C to +125°C		132	415	
			$V_{CC} = 1.8V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		125	400	
		V _{CC} < V _{TH} , no load, reset output asserted			7	15	μA
		V _{CC} falling (see Table 1)	$T_A = +25^{\circ}C$	V _{TH} - 1.5%		V _{TH} + 1.5%	
V _{CC} Reset Threshold	VTH		$T_A = -40^{\circ}C$ to $+125^{\circ}C$	V _{TH} - 2.5%		V _{TH} + 2.5%	V
Hysteresis	VHYST	V _{CC} rising			0.5		%
V _{CC} to Reset Delay	trd	V _{CC} falling from (V _{TH} + 100mV) to (V _{TH} - 100mV) at 10mV/µs			80		μs
Reset Timeout Period	t _{RP}	C _{SRT} = 2700pF (Note 4)		10.5	14.18	17.0	ms

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 1.2V to 5.5V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{CC} = 3.3V, T_A = +25°C.) (Note 2)

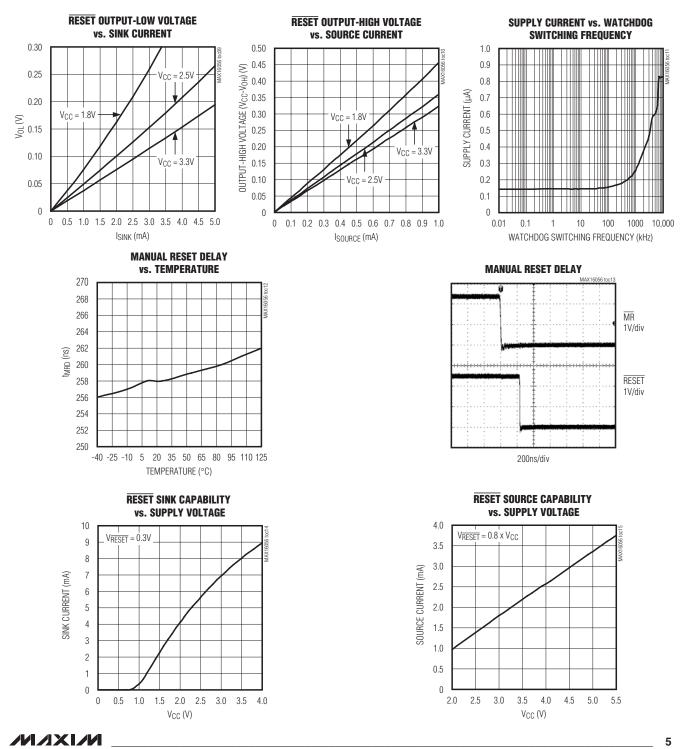
PARAMETER	SYMBOL	COND	TIONS	MIN	ТҮР	MAX	UNITS
SRT Ramp Current	IRAMP1	$V_{SRT} = 0V$ to V_{RAMP1} , $V_{CC} = 1.6V$ to 5V	T _A = -40°C to +125°C	197	240	282	nA
		$V_{CC} = 1.00 \ 10 \ 50$	$T_A = +25^{\circ}C$	210	240	270	
SRT Ramp Threshold	VRAMP1	$V_{CC} = 1.6V$ to 5V (V_{RA}	MP rising)	1.173	1.235	1.297	V
Watchdog Timeout Clock Period	turooco	$T_A = +25^{\circ}C$		5	6.4	8	ms
Watchdog Timeout Clock Feriod	twdper	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		3.5	6.4	9.5	1115
SWT Ramp Current	IRAMP2	$V_{SWT} = 0V$ to V_{RAMP2} ,	T _A = -40°C to +125°C	197	240	282	nA
		$V_{CC} = 1.6V$ to 5V	$T_A = +25^{\circ}C$	210	240	270	
SWT Ramp Threshold	VRAMP2	$V_{CC} = 1.6V$ to 5V (V _{RA}	MP2 rising)	1.173	1.235	1.297	V
		$V_{CC} \ge 1.0V$, $I_{SINK} = 50$	θμΑ			0.3	
RESET Output Voltage	Vol	$V_{CC} \ge 2.7V$, $I_{SINK} = 1.2mA$				0.3	
	$V_{CC} \ge 4.5V$, $I_{SINK} = 3.2mA$				0.4		
	Voh	MAX16056/MAX16057	V _{CC} ≥ 1.8V, I _{SOURCE} = 200µA	0.8 x V _{CC}			V
			, V _{CC} ≥ 2.25V, I _{SOURCE} = 500μA	0.8 x V _{CC}			
			V _{CC} ≥ 4.5V, I _{SOURCE} = 800µA	0.8 x V _{CC}			
RESET Output-Leakage Current, Open Drain	ILKG	V _{CC} > V _{TH} , reset not a 5.5V (MAX16058/MAX	-			1.0	μA
	VIH			0.7 x V _{CC}			
Input-Logic Levels	VIL					0.3 x V _{CC}	V
MR Minimum Pulse Width	tMPW			1			μs
MR Glitch Rejection					200		ns
MR to RESET Delay	t _{MRD}				250		ns
WDI Minimum Pulse Width		(Note 5)		150			ns
Input Leakage Current		MR, WDI, WDS is conr	nected to GND or V _{CC}	-100		+100	nA

Note 2: Devices are production tested at $T_A = +25^{\circ}C$. Specifications over temperature limits are guaranteed by design. **Note 3:** WDI input period is 1s with t_{RISE} and t_{FALL} < 50ns.

Note 4: Worst case of SRT ramp current and voltage is used to guarantee minimum and maximum limits.

Note 5: Guaranteed by design, not production tested.

Typical Operating Characteristics


M IXI M

 $(V_{CC} = 2.5V, T_A = +25^{\circ}C, unless otherwise noted.)$ SUPPLY CURRENT **RESET TIMEOUT PERIOD** vs. SUPPLY VOLTAGE **SUPPLY CURRENT vs. TEMPERATURE vs.** CSRT 10.0 2.0 350 . V_{TH} = 2.23V RESET IS NOT ASSERTED 1.8 V_{TH} = 1.575V 300 1.6 = 5.5V Vcc (PA) 250 1.4 $V_{CC} = 3.3V$ SUPPLY CURRENT 1.2 Icc (JuA) 200 t_{RP} (s) 1.0 ¥. 1.0 150 $T_{\Lambda} = -40^{\circ}C$ 0.8 $T_A = +125^{\circ}C$ 0.6 $T_A = +85^{\circ}C$ 100 +25°C $T_{\Delta} =$ $V_{CC} = 2.5V$ $V_{CC} = 1.8V$ 0.4 50 0.2 0.1 0 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 -40 -25 -10 5 20 35 50 65 80 95 110 125 0 50 100 150 200 250 300 V_{CC} (V) TEMPERATURE (°C) C_{SRT} (nF) NORMALIZED RESET TIMEOUT PERIOD NORMALIZED WATCHDOG MAXIMUM VCC TRANSIENT DURATION vs. TEMPERATURE **TIMEOUT PERIOD vs. TEMPERATURE** vs. RESET THRESHOLD OVERDRIVE 1.10 1.05 1000 1.08 1.04 1.06 1.03 RESET OCCURS ABOVE THIS LINE **FRANSIENT DURATION (µs)** 1.04 1.02 NORMALIZED twd NORMALIZED t_{RP} 100 1.02 1.01 1.00 1.00 0.98 0.99 10 0.96 0.98 0.94 0.97 0.92 0.96 V_{CC} FALLING FROM V_{TH} + 100mV 0.90 0.95 1 -40 -25 -10 5 20 35 50 65 80 95 110 125 20 35 50 65 80 95 110 125 10 -40 -25 -10 5 100 1000 TEMPERATURE (°C) RESET THRESHOLD OVERDRIVE (mV) TEMPERATURE (°C) NORMALIZED RESET THRESHOLD V_{CC} TO RESET DELAY **VOLTAGE vs. TEMPERATURE** vs. TEMPERATURE 1.020 120 V_{CC} = V_{TH} + 100mV TO V_{TH} - 100mV 1.015 110 1.010 100 **NORMALIZED VTH** 1.005 90 (srl) 1.000 ta V 80 0.995 70 0.990 60 0.985 0.980 50 -40 -25 -10 5 20 35 50 65 80 95 110 125 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) TEMPERATURE (°C)

MAX16056-MAX16059

Typical Operating Characteristics (continued)

 $(V_{CC} = 2.5V, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

PIN			
MAX16056/ MAX16058	MAX16057/ MAX16059	NAME	FUNCTION
1	1	RESET	Push-Pull or Open-Drain Reset Output. RESET asserts whenever V _{CC} drops below the selected reset threshold voltage (V _{TH}) or manual reset is pulled low. RESET remains low for the reset timeout period after all reset conditions are deasserted, and then goes high. The watchdog timer triggers a reset pulse (t _{RP}) whenever a watchdog fault occurs (MAX16056/MAX16058).
2	2	GND	Ground
3	_	SWT	Watchdog Timeout Input. Connect a capacitor between SWT and GND to set the basic watchdog timeout period (twp). Determine the period by the formula twp = Floor[C _{SWT} x $5.15 \times 10^{6}/6.4$ ms] x 6.4 ms + 3.2 ms (Note 6) with twp in seconds and C _{SWT} in Farads, or use Table 2. Extend the basic watchdog timeout period by using the WDS input. Connect SWT to ground to disable the watchdog timer function. The value of the capacitor must be between 2275pF and 0.54μ F to have a valid watchdog timeout period.
4	3	MR	Manual-Reset Input. Drive $\overline{\text{MR}}$ low to manually reset the device. $\overline{\text{RESET}}$ remains asserted for the reset timeout period after $\overline{\text{MR}}$ is released. There is no internal pullup on $\overline{\text{MR}}$. $\overline{\text{MR}}$ must not be left unconnected. Connect $\overline{\text{MR}}$ to V _{CC} if not used.
5	4	SRT	Reset Timeout Input. Connect a capacitor from SRT to GND to select the reset timeout period. Determine the period as follows: $t_{RP} = 5.15 \times 10^6 \times C_{SRT}$ with t_{RP} in seconds and C_{SRT} in Farads, or use Table 2. The value of the capacitor must be between 39pF and 4.7µF.
6		WDI	Watchdog Input. A falling transition must occur on WDI within the selected watchdog timeout period or a reset pulse occurs. The watchdog timer clears when a falling transition occurs on WDI or whenever RESET is asserted. Connect SWT to ground to disable the watchdog timer function.
7		WDS	Watchdog Select Input. WDS selects the watchdog timeout mode. Connect WDS to ground to select normal mode. The watchdog timeout period is t_{WD} . Connect WDS to V_{CC} to select extended mode, multiplying the basic timeout period (t_{WD}) by a factor of 128. A change in the state of WDS clears the watchdog timer.
8	6	V _{CC}	Supply Voltage. V _{CC} is the power-supply input and the input for fixed threshold V _{CC} monitor. For noisy systems, bypass V _{CC} with a 0.1 μ F capacitor to GND.
—	5	N.C.	No Connection. Not internally connected.
_	—	EP	Exposed Pad. Connect EP to GND or leave unconnected.

Note 6: Floor: take the integral value.

Detailed Description

The MAX16056–MAX16059 are ultra-low-current 125nA (typ) μ P supervisory circuits that monitor a single system supply voltage. These devices assert an active-low reset signal whenever the V_{CC} supply voltage drops below the factory-trimmed reset threshold, manual reset is pulled low, or the watchdog timer runs out (MAX16056/MAX16058). The reset output remains asserted for an adjustable reset timeout period after V_{CC} rises above the reset threshold. The reset and watchdog delay periods are adjustable using external capacitors.

RESET Output

The MAX16056–MAX16059 μ P supervisory circuits assert a reset to prevent code-execution errors during powerup, power-down, and brownout conditions. The reset output is guaranteed to be valid for V_{CC} down to 1.1V.

When V_{CC} falls below the reset threshold, the RESET output asserts low. Once V_{CC} exceeds the reset threshold plus the hysteresis, an internal timer keeps the reset output asserted for the capacitor-adjusted reset timeout period (t_{RP}), then after this interval the reset output deasserts (see Figure 1). The reset function features immunity to power-supply voltage transients.

Manual-Reset Input (MR)

Many μ P-based products require manual-reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. The MAX16056– MAX16059 feature an MR input. A logic-low on MR asserts a reset. RESET remains asserted while MR is low and for the timeout period, t_{RP}, after MR returns high. Connect MR to V_{CC} if unused. MR can be driven with CMOS logic levels or with open-drain/collector outputs (with a pullup resistor). Connect a normally open momentary switch from MR to GND and a resistor from MR to V_{CC} to implement a manual-reset function; external debounce circuitry is not required. If MR is driven by long cables or the device is used in a noisy environment, connect a 0.1µF capacitor from MR to GND to provide additional noise immunity.

Watchdog Timer

The MAX16056/MAX16058's watchdog timer circuitry monitors the μ P's activity. If the μ P does not toggle (high-to-low) the watchdog input (WDI) within the capacitor-adjustable watchdog timeout period (t_{WD}), RESET asserts for the reset timeout period (t_{RP}). The internal watchdog timer is cleared by: 1) any event that asserts RESET, by 2) a falling transition at WDI (that can detect pulses as short as 150ns) or by 3) a transition (high-to-low or low-to-high) at WDS. While reset is asserted, the watchdog timer remains cleared and does not count. As soon as reset deasserts, the watchdog timer resumes counting.

There are two modes of watchdog operation, normal mode and extended mode. In normal mode (Figure 2), the watchdog timeout period is determined by the value of the capacitor connected between SWT and ground. In extended mode (Figure 3), the watchdog timeout period is multiplied by 128. For example, in extended mode, a 0.33 μ F capacitor gives a watchdog timeout period of 217s (see Table 2). To disable the watchdog timer function, connect SWT to ground.

When V_{CC} ramps above V_{TH} + V_{HYST}, the value of the external SWT capacitor is sampled after RESET goes high. When sampling is finished, the capacitor value is stored in the device and is used to set watchdog time-out. If RESET goes low before sampling is finished, the device interrupts sampling, and sampling is restarted when RESET goes high again.

If the external SWT capacitor is less than 470pF, the sampling result sets the watchdog timeout to zero. This causes the watchdog to assert RESET continuously after sampling is finished. If a PCB manufacturing defect caused the connection to C_{SWT} to be broken, the capacitance is very low and RESET is continuously asserted. If the external SWT capacitor is greater than 0.47µF, the sampling result sets the watchdog timeout to be infinite, disabling the watchdog function.

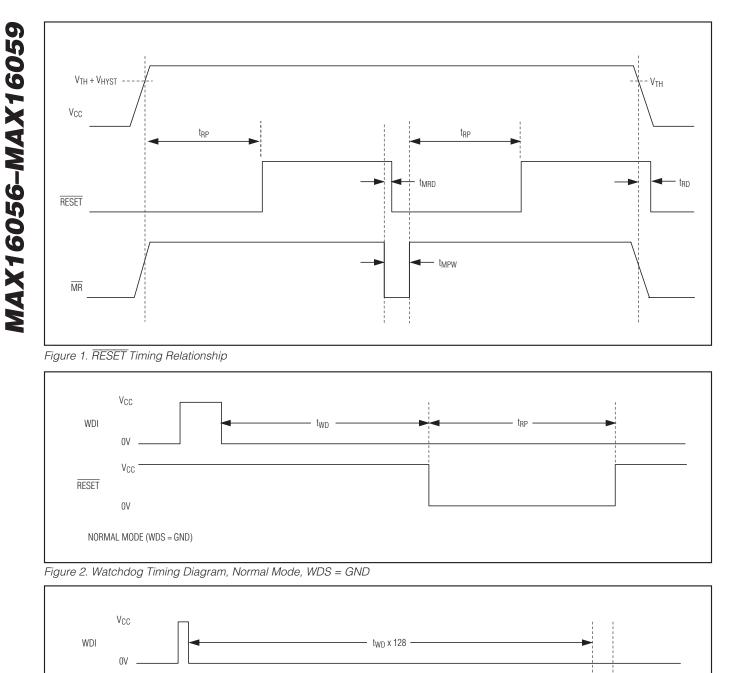


Figure 3. Watchdog Timing Diagram, Extended Mode, $WDS = V_{CC}$

t_{RP}

Vcc

0V

EXTENDED MODE (WDS = V_{CC})

RESET

Applications Information

Selecting the Reset Timeout Capacitor

The reset timeout period is adjustable to accommodate a variety of μ P applications. To adjust the reset timeout period (t_{RP}), connect a capacitor (C_{SRT}) between SRT and ground. The reset timeout capacitor is calculated as follows:

 $C_{SRT} = t_{RP}/(5.15 \times 10^6)$

with t_{RP} in seconds and C_{SRT} in Farads.

C_{SRT} must be a low-leakage (< 10nA) type capacitor. A ceramic capacitor with low temperature coefficient dielectric (i.e., X7R) is recommended.

Selecting Watchdog Timeout Capacitor

The watchdog timeout period is adjustable to accommodate a variety of μ P applications. With this feature, the watchdog timeout can be optimized for software execution. The programmer can determine how often the watchdog timer should be serviced. Adjust the watchdog timeout period (twD) by connecting a capacitor (C_{SWT}) between SWT and GND. For normal mode operation, calculate the watchdog timeout as follows:

 $t_{WD} = Floor[C_{SWT} \times 5.15 \times 10^{6}/6.4ms] \times 6.4ms + 3.2ms$

with twp in seconds and CSWT in Farads.

(Floor: take the integral value) (Figures 2 and 3)

The maximum twp is 296s. If the capacitor sets twp greater than the 296s, t_{WD} = infinite and the watchdog timer is disabled.

C_{SWT} must be a low-leakage (< 10nA) type capacitor. A ceramic capacitor with low temperature coefficient dielectric (i.e., X7R) is recommended.

Watchdog Timeout Accuracy

The watchdog timeout period is affected by the SWT ramp current (I_{RAMP2}) accuracy, the SWT ramp threshold (V_{RAMP2}) and the watchdog timeout clock period (twDPER). In the equation above, the constant 5.15 x 10^6 is equal to V_{RAMP2}/I_{RAMP2}, and 6.4ms equals the watchdog timeout clock period. Calculate the timeout

accuracy by substituting the minimum, typical, and maximum values into the equation.

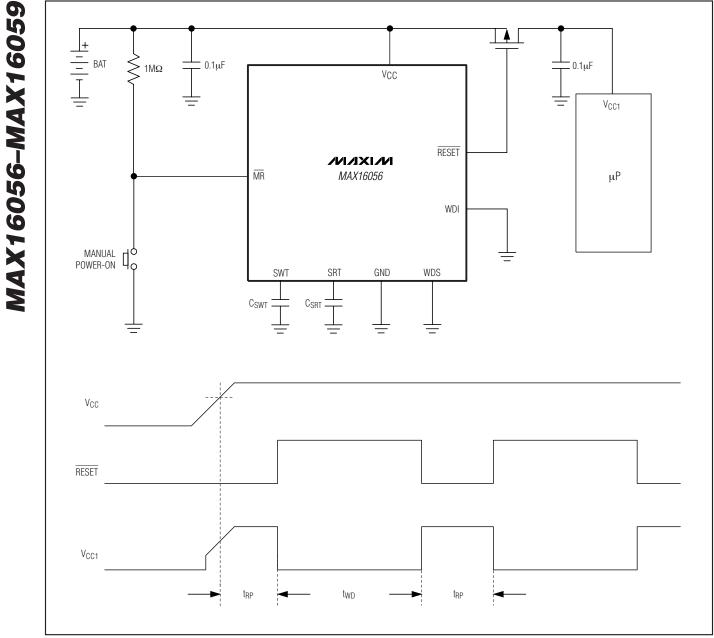
For example, if $C_{SWT} = 100$ nF.

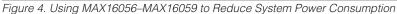
twDMIN = Floor[100 x 10^{-9} x $1.173/(282 \times 10^{-9})/9.5ms$] x 3.5ms + 0.5 x 3.2ms = 141.7ms

 $t_{WDNOM} = Floor[100 \times 10^{-9} \times 1.235/(240 \times 10^{-9})/6.4ms] \times 6.4ms + 0.5 \times 6.4ms = 515.2ms$

twDMAX = Floor[100 x 10^{-9} x 1.297/(197 x 10^{-9})/3.5ms] x 9.5ms + 0.5 x 9.5ms = 1790.75ms

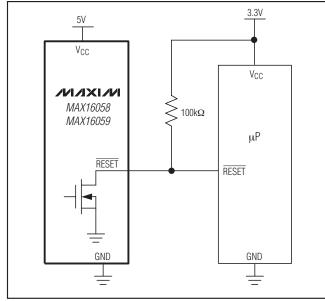
Transient Immunity


For applications with higher slew rates on V_{CC} during power-up, additional bypass capacitance may be required.


The MAX16056–MAX16059 are relatively immune to short-duration supply voltage transients, or glitches on V_{CC}. The Maximum V_{CC} Transient Duration vs. Reset Threshold Overdrive graph in the *Typical Operating Characteristics* shows this transient immunity. The area below the curve of the graph is the region where these devices typically do not generate a reset pulse. This graph was generated using a falling pulse applied to V_{CC}, starting 100mV above the actual reset threshold (VTH) and ending below this threshold (reset threshold overdrive). As the magnitude of the transient increases, the maximum allowable pulse width decreases. Typically, a 100mV V_{CC} transient duration of 40µs or less does not cause a reset.

Using the MAX16056–MAX16059 for Reducing System Power Consumption

Using the RESET output to control an external p-channel MOSFET to control the on-time of a power supply can result in lower system power consumption in systems that can be regularly put to sleep. By tying the WDI input to ground, the RESET output becomes a low-frequency clock output. When RESET is low, the MOSFET is turned on and power is applied to the system. When RESET is high, the MOSFET is turned off and no power is consumed by the system. This effectively reduces the shutdown current of the system to zero (Figure 4).



125nA Supervisory Circuits with Capacitor-Adjustable Reset and Watchdog Timeouts Ensuring a Valid RESET Down to Vcc = 0V (Push-Pull RESET)

When V_{CC} falls below 1.1V, the current-sinking capability of **RESET** decreases drastically. The high-impedance CMOS logic inputs connected to RESET can drift to undetermined voltages. This presents no problems in most applications, since most µPs and other circuitry do not operate with VCC below 1.1V. In those applications where RESET must be valid down to 0, add a pulldown resistor between the MAX16056/MAX16057 push-pull **RESET** output and GND. The resistor sinks any stray leakage currents, holding RESET low (Figure 6). Choose a pulldown resistor that accommodates leakages, such that RESET is not significantly loaded and is capable of pulling to GND. The external pulldown cannot be used with the open-drain RESET output of the MAX16058/MAX16059.

Interfacing to Other Voltages

The open-drain RESET output can be used to interface

to a µP with other logic levels. The open-drain output is

connected to a voltage from 0V to 5.5V as shown in

Figure 5. Generally, the pullup resistor connected to

RESET connects to the supply voltage that is being

monitored at the device's VCC input. However, some

systems use the open-drain output to level-shift from

the supervisor's monitored supply to another supply

voltage. As the supervisor's VCC decreases, so does

the device's ability to sink current at RESET.

for Logic Compatibility

Figure 5. Interfacing with Other Voltage Levels

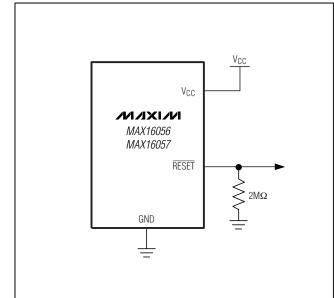


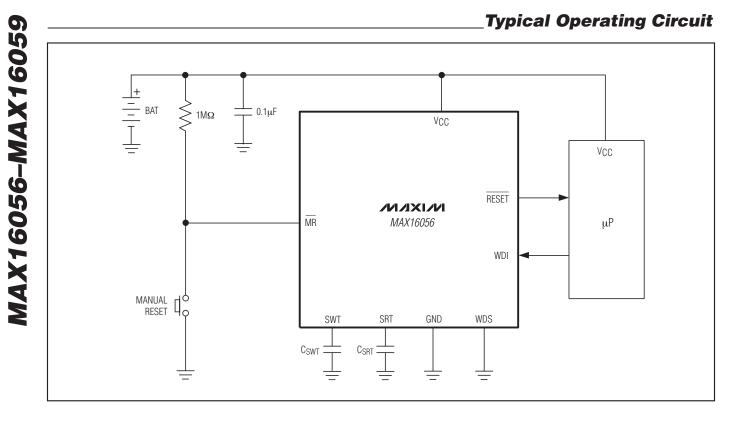
Figure 6. Ensuring RESET Valid to VCC = GND

MIN TYP MAX 46 4.509 4.625 4.741 45 4.388 4.500 4.613 44 4.266 4.375 4.484 42 4.095 4.200 4.305 41 3.998 4.100 4.203 40 3.900 4.000 4.100 39 3.802 3.900 3.900 38 3.705 3.800 3.895 37 3.608 3.700 3.793 36 3.510 3.600 3.690 35 3.413 3.500 3.588 34 3.315 3.400 3.485 33 3.218 3.300 3.383 322 3.120 3.200 3.280 31 2.998 3.075 3.152 30 2.925 3.000 3.075 31 2.998 3.075 3.152 30 2.925 2.601 2.768	SUFFIX	V _{CC} THRESHOLD FALLING (V)			
45 4.388 4.500 4.613 44 4.266 4.375 4.484 43 4.193 4.300 4.408 42 4.095 4.200 4.305 41 3.998 4.100 4.203 40 3.900 4.000 4.100 39 3.802 3.900 3.998 38 3.705 3.800 3.895 37 3.608 3.700 3.793 36 3.510 3.600 3.690 35 3.413 3.500 3.883 32 3.120 3.200 3.280 31 2.998 3.075 3.152 30 2.925 3.000 3.075 31 2.998 3.075 3.152 30 2.925 3.000 3.075 28 2.730 2.800 2.870 27 2.633 2.700 2.768 26 2.559 2.625 2.691	JUFFIA	MIN	ТҮР	MAX	
44 4.266 4.375 4.484 43 4.193 4.300 4.408 42 4.095 4.200 4.305 41 3.998 4.100 4.203 40 3.900 4.000 4.100 39 3.802 3.900 3.998 37 3.608 3.700 3.895 37 3.608 3.700 3.793 36 3.510 3.600 3.690 35 3.413 3.500 3.883 33 3.218 3.300 3.383 32 3.120 3.200 3.280 31 2.998 3.075 3.152 30 2.925 3.000 3.075 29 2.852 2.925 2.998 26 2.730 2.800 2.870 27 2.633 2.700 2.768 24 2.340 2.400 2.460 23 2.255 2.313 2.371	46	4.509	4.625	4.741	
43 4.193 4.300 4.408 42 4.095 4.200 4.305 41 3.998 4.100 4.203 40 3.900 4.000 4.100 39 3.802 3.900 3.998 38 3.705 3.800 3.895 37 3.608 3.700 3.793 36 3.510 3.600 3.690 35 3.413 3.500 3.588 34 3.315 3.400 3.485 33 3.218 3.300 3.383 32 3.120 3.200 3.280 31 2.998 3.075 3.152 30 2.925 2.925 2.998 28 2.730 2.800 2.870 27 2.633 2.700 2.768 26 2.559 2.625 2.691 25 2.438 2.500 2.563 24 2.340 2.400 2.460	45	4.388	4.500	4.613	
42 4.095 4.200 4.305 41 3.998 4.100 4.203 40 3.900 4.000 4.100 39 3.802 3.900 3.998 38 3.705 3.800 3.895 37 3.608 3.700 3.793 36 3.510 3.600 3.690 35 3.413 3.500 3.588 34 3.315 3.400 3.485 33 3.218 3.300 3.383 32 3.120 3.200 3.280 31 2.998 3.075 3.152 30 2.925 3.000 3.075 29 2.852 2.925 2.998 28 2.730 2.800 2.870 27 2.633 2.700 2.768 26 2.559 2.625 2.691 25 2.438 2.500 2.563 24 2.340 2.400 2.460	44	4.266	4.375	4.484	
41 3.998 4.100 4.203 40 3.900 4.000 4.100 39 3.802 3.900 3.998 38 3.705 3.800 3.895 37 3.608 3.700 3.793 36 3.510 3.600 3.690 35 3.413 3.500 3.683 34 3.315 3.400 3.485 33 3.218 3.300 3.383 32 3.120 3.200 3.280 31 2.998 3.075 3.152 30 2.925 3.000 3.075 29 2.852 2.925 2.998 28 2.730 2.800 2.870 27 2.633 2.700 2.768 26 2.559 2.625 2.691 25 2.438 2.500 2.563 24 2.340 2.400 2.460 23 2.255 2.313 2.371 225 2.180 2.235 2.290 22 2.133 2.243 2.148 2.148 2.243 2.100 2.163 20 1.950 2.000 2.050 19 1.853 1.900 1.948 18 1.755 1.800 1.845	43	4.193	4.300	4.408	
40 3.900 4.000 4.100 39 3.802 3.900 3.998 38 3.705 3.800 3.895 37 3.608 3.700 3.793 36 3.510 3.600 3.690 35 3.413 3.500 3.588 34 3.315 3.400 3.485 33 3.218 3.300 3.383 32 3.120 3.200 3.280 31 2.998 3.075 3.152 30 2.925 3.000 3.075 29 2.852 2.925 2.998 28 2.730 2.800 2.870 27 2.633 2.700 2.768 26 2.559 2.625 2.691 25 2.438 2.500 2.563 24 2.340 2.400 2.460 23 2.255 2.313 2.371 25 2.180 2.235 2.290	42	4.095	4.200	4.305	
39 3.802 3.900 3.998 38 3.705 3.800 3.895 37 3.608 3.700 3.793 36 3.510 3.600 3.690 35 3.413 3.500 3.588 34 3.315 3.400 3.485 33 3.218 3.300 3.280 31 2.998 3.075 3.152 30 2.925 3.000 3.075 31 2.998 3.075 3.152 30 2.925 3.000 3.075 29 2.852 2.925 2.998 28 2.730 2.800 2.870 27 2.633 2.700 2.768 26 2.559 2.625 2.691 25 2.438 2.500 2.430 24 2.340 2.400 2.460 23 2.255 2.313 2.371 225 2.180 2.235 2.290	41	3.998	4.100	4.203	
38 3.705 3.800 3.895 37 3.608 3.700 3.793 36 3.510 3.600 3.690 35 3.413 3.500 3.588 34 3.315 3.400 3.485 33 3.218 3.300 3.383 32 3.120 3.200 3.280 31 2.998 3.075 3.152 30 2.925 3.000 3.075 29 2.852 2.925 2.998 28 2.730 2.800 2.870 27 2.633 2.700 2.768 26 2.559 2.625 2.691 25 2.438 2.500 2.563 24 2.340 2.400 2.460 23 2.255 2.313 2.371 225 2.180 2.235 2.290 22 2.133 2.188 2.243 21 2.048 2.100 2.153	40	3.900	4.000	4.100	
37 3.608 3.700 3.793 36 3.510 3.600 3.690 35 3.413 3.500 3.588 34 3.315 3.400 3.485 33 3.218 3.300 3.383 32 3.120 3.200 3.280 31 2.998 3.075 3.152 30 2.925 3.000 3.075 29 2.852 2.925 2.998 28 2.730 2.800 2.870 27 2.633 2.700 2.768 26 2.559 2.625 2.691 25 2.438 2.500 2.563 24 2.340 2.400 2.460 23 2.255 2.313 2.371 225 2.180 2.235 2.290 22 2.133 2.188 2.243 21 2.048 2.100 2.153 20 1.950 2.000 2.050	39	3.802	3.900	3.998	
363.5103.6003.690353.4133.5003.588343.3153.4003.485333.2183.3003.383323.1203.2003.280312.9983.0753.152302.9253.0003.075292.8522.9252.998282.7302.8002.870272.6332.7002.768262.5592.6252.691252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	38	3.705	3.800	3.895	
353.4133.5003.588343.3153.4003.485333.2183.3003.383323.1203.2003.280312.9983.0753.152302.9253.0003.075292.8522.9252.998282.7302.8002.870272.6332.7002.768262.5592.6252.691252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	37	3.608	3.700	3.793	
343.3153.4003.485333.2183.3003.383323.1203.2003.280312.9983.0753.152302.9253.0003.075292.8522.9252.998282.7302.8002.870272.6332.7002.768262.5592.6252.691252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	36	3.510	3.600	3.690	
333.2183.3003.883323.1203.2003.280312.9983.0753.152302.9253.0003.075292.8522.9252.998282.7302.8002.870272.6332.7002.768262.5592.6252.691252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	35	3.413	3.500	3.588	
323.1203.2003.280312.9983.0753.152302.9253.0003.075292.8522.9252.998282.7302.8002.870272.6332.7002.768262.5592.6252.691252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	34	3.315	3.400	3.485	
312.9983.0753.152302.9253.0003.075292.8522.9252.998282.7302.8002.870272.6332.7002.768262.5592.6252.691252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0001.948181.7551.8001.845171.6231.6651.707	33	3.218	3.300	3.383	
302.9253.0003.075292.8522.9252.998282.7302.8002.870272.6332.7002.768262.5592.6252.691252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948171.6231.6651.707	32	3.120	3.200	3.280	
292.8522.9252.998282.7302.8002.870272.6332.7002.768262.5592.6252.691252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948171.6231.6651.707	31	2.998	3.075	3.152	
282.7302.8002.870272.6332.7002.768262.5592.6252.691252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	30	2.925	3.000	3.075	
272.6332.7002.768262.5592.6252.691252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948171.6231.6651.707	29	2.852	2.925	2.998	
262.5592.6252.691252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	28	2.730	2.800	2.870	
252.4382.5002.563242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	27	2.633	2.700	2.768	
242.3402.4002.460232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	26	2.559	2.625	2.691	
232.2552.3132.3712252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	25	2.438	2.500	2.563	
2252.1802.2352.290222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	24	2.340	2.400	2.460	
222.1332.1882.243212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	23	2.255	2.313	2.371	
212.0482.1002.153201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	225	2.180	2.235	2.290	
201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	22	2.133	2.188	2.243	
201.9502.0002.050191.8531.9001.948181.7551.8001.845171.6231.6651.707	21	2.048	2.100	2.153	
18 1.755 1.800 1.845 17 1.623 1.665 1.707	20	1.950			
17 1.623 1.665 1.707	19	1.853	1.900	1.948	
	18	1.755	1.800	1.845	
16 1.536 1.575 1.614	17	1.623	1.665	1.707	
	16	1.536	1.575	1.614	

Table 1. Threshold Suffix Guide

CAPACITANCE (pF)	t _{RP} (ms)	t _{WD} (ms)	t _{WD} x 128 (ms)
39			
47			
56			
68			
82			
100			
120			0
150		(no capacito	r is connected)
180			
220			
270	Not recommended		
330	Not recommended		
390			
470			
560			
680			
820			
1000		Indeterminate	Indeterminate
1200		(0, 9.6, or 16)	(0, 1228.8, or 1636)
1500			
1800			
2200			
2700	14.18	16	1641
3300	16.99	16	1641
3900	20.1	22.4	2460
4700	24.21	22.4	2460
5600	28.84	28.8	3280
6800	35.00	35.2	4099
8200	42.23	41.6	4918
10,000	51.5	54.4	6556
12,000	61.8	60.8	7376
15,000	77.25	80	9833
18,000	92.7	92.8	11,472

Table 2. Capacitor Selection Guide


MAX16056-MAX16059

CAPACITANCE (pF)	t _{RP} (ms)	t _{WD} (ms)	t _{WD} x 128 (ms)
22,000	113.3	112	13,929
27,000	139.05	137.6	17,206
33,000	169.95	169.6	21,302
39,000	200.85	201.6	25,398
47,000	242.05	240	30,313
56,000	288.4	291.2	36,867
68,000	350.2	348.8	44,240
82,000	422.3	419.2	53,251
100,000	515	515.2	65,539
120,000	618	617.6	78,646
150,000	772.5	771.2	98,307
180,000	927	924.8	117,968
220,000	1133	1129.6	144,182
270,000	1390.5	1392	177,769
330,000	1699.5	1699.2	217,091
390,000	2008.5	2006.4	256,412
470,000	2420.5	2416	308,841
680,000	3502		
820,000	4223		
1,000,000	5150	Indeterminate (may be infinite and watchdog is disabled)	
1,500,000	7725		
2,200,000	11,330		
3,300,000	16,995	lr	nfinite
4,700,000	24,205	(watchdog	g is disabled)

Table 2. Capacitor Selection Guide (continued)

Table 3. Standard Versions

PART	TOP MARK	
MAX16056ATA17+	BKZ	
MAX16056ATA23+	BLA	
MAX16056ATA26+	BLB	
MAX16056ATA29+	BLC	
MAX16056ATA31+	BLD	
MAX16056ATA46+	BLE	
MAX16057ATT17+	ATQ	
MAX16057ATT23+	ATR	
MAX16057ATT26+	ATS	
MAX16057ATT29+	ATT	
MAX16057ATT31+	AUC	
MAX16057ATT46+	AUD	
MAX16058ATA16+	BLF	
MAX16058ATA22+	BLG	
MAX16058ATA26+	BLH	
MAX16058ATA29+	BLI	
MAX16058ATA31+	BLJ	
MAX16058ATA44+	BLK	
MAX16059ATT16+	ATW	
MAX16059ATT22+	ATX	
MAX16059ATT26+	ATY	
MAX16059ATT29+	ATZ	
MAX16059ATT31+	AUA	
MAX16059ATT44+	AUB	

Chip Information

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 TDFN-EP	T833-2	<u>21-0137</u>	<u>90-0059</u>
6 TDFN-EP	T633-2	<u>21-0137</u>	<u>90-0058</u>

PROCESS: BiCMOS

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/09	Initial release	—
1	6/10	Updated Absolute Maximum Ratings, Electrical Characteristics, and Table 3.	2, 3, 15

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2010 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

____ 17