STM6904 # Quad, ultralow voltage supervisor with push-button reset **Preliminary Data** #### **Features** - Quad voltage monitoring - Accurate ±1.8% across temperature voltage threshold (±1% at 25°C) - Primary supply (V_{CC}) monitor. Fixed (factory programmed) reset thresholds: 3.078 V to 2.188 V - Second fixed (V2IN) monitor. Fixed (factoryprogrammed) reset thresholds: 2.333 V to 1.110 V - Two additional adjustable supply monitor inputs (externally adjustable) - 0.6V internal reference - RST output (open drain) - Output guaranteed for V_{CC} ≥ 0.8 V - Reset delay time (t_{rec}) pin selectable - Manual reset input (MR) - Low supply current of 12 µA (typ) - Power supply voltage 0.8 V to 5.5 V - RoHS compliant (green package) - 8-pin MSOP/TSSOP - Operating temperature: -40°C to 85°C (industrial grade) #### **Applications** - Set-top boxes - Multi-voltage systems - Cable/satellite applications - Computer systems - Data storage equipment Table 1. Device summary⁽¹⁾ | Order code | V _{RST1} (V) | V _{RST2} (V) | t _{REC} (ms) | Package | |----------------|-----------------------|-----------------------|-----------------------|---------------| | STM6904TZEDS6F | 3.078 | 2.333 | 210 | MSOP8(TSSOP8) | | STM6904TWEDS6F | 6904TWEDS6F 3.078 | | 210 | MSOP8(TSSOP8) | | STM6904TGEDS6F | 3.078 | 1.110 | 210 | MSOP8(TSSOP8) | | STM6904SYEDS6F | 2.955 | 2.188 | 210 | MSOP8(TSSOP8) | | STM6904SFEDS6F | 2.955 | 1.050 | 210 | MSOP8(TSSOP8) | | STM6904PWEDS6F | 2.866 | 1.683 | 210 | MSOP8(TSSOP8) | Other reset threshold voltages and t_{REC} time-out periods are offered. Minimum order quantities may apply. Contact local ST sales office for availability. January 2008 Rev 2 1/21 Contents STM6904 ## **Contents** | 1 | Desc | cription | 5 | | | | | |----|-------|--|----|--|--|--|--| | 2 | Pin (| descriptions | 7 | | | | | | | 2.1 | Push-button reset input (MR) | | | | | | | | 2.2 | V _{CC} primary supply voltage monitoring input | | | | | | | | 2.3 | V2IN second fixed voltage monitoring input | | | | | | | | 2.4 | V _{SS} | 7 | | | | | | | 2.5 | V3IN and V4IN | | | | | | | | 2.6 | RST active-low, open drain reset output | 7 | | | | | | | 2.7 | TR _{SEL} input | ε | | | | | | 3 | One | eration | 10 | | | | | | | 3.1 | Setting the adjustable voltage levels for V3IN and V4IN inputs | | | | | | | | 3.2 | Power on reset (t _{REC}) | | | | | | | 4 | Volta | age monitoring | 11 | | | | | | 5 | Max | imum rating | 12 | | | | | | 6 | DC a | and AC parameters | 13 | | | | | | 7 | Pack | kage mechanical data | 16 | | | | | | 8 | Part | numbering | 18 | | | | | | 9 | Pack | Package marking information19 | | | | | | | 10 | Revi | Revision history 20 | | | | | | **57** STM6904 List of tables # **List of tables** | Table 1. | Device summary | . 1 | |----------|--------------------------------------|-----| | | Signal names and functions | | | Table 3. | Absolute maximum ratings | 12 | | | DC and AC characteristics | | | Table 5. | TSSOP 8-lead package mechanical data | 17 | | Table 6. | Ordering information scheme | 18 | | Table 7. | Marking description | 19 | | | Document revision history | | List of figures STM6904 # **List of figures** | Figure 1. Logic diagram | | |---|----| | Figure 2. MSOP/TSSOP-8 connections | ! | | Figure 3. Functional block diagram | 8 | | Figure 4. Typical hardware hookup application diagram | | | Figure 5. \overline{MR} timing waveforms | 1 | | Figure 6. Voltage monitoring diagram | 1 | | Figure 7. TSSOP8, 3 x 3mm, package mechanical outline | 10 | **577** STM6904 Description #### 1 Description The STM6904 supervisor is a low voltage/low supply current processor supervisor, designed to monitor up to four system power supply voltages. This device is targeted at applications such as Set-Top Boxes (STBs), portable, battery-powered systems, networking and communication systems. The device supports a push-button type manual reset input ($\overline{\text{MR}}$). Two of the four supply monitors (V_{CC} and V2IN) have fixed (customer-selectable, factory-trimmed) thresholds (V_{RST1} and V_{RST2}). The other two voltage monitor inputs (V3IN and V4IN) are monitored using externally adjustable threshold (0.600V internal reference) to meet specific level requirements. If any of the four monitored voltages drops below its factory-trimmed or adjustable thresholds, or if the $\overline{\text{MR}}$ is asserted to logic low, the reset output $\overline{\text{RST}}$ is asserted (driven low). Once asserted, $\overline{\text{RST}}$ is maintained Low for a minimum delay period (t_{rec}) after ALL monitored supplies rise above their respective thresholds and $\overline{\text{MR}}$ returns to High. This device is in the correct reset output logic state when V_{CC} greater than 0.8V. The STM6904 is available in a standard 8-lead MSOP (TSSOP) package. Figure 1. Logic diagram Figure 2. MSOP/TSSOP-8 connections Description STM6904 Table 2. Signal names and functions | Pin | Name | Туре | Function | |-----|-------------------|--------|---| | 1 | MR | Input | Active-low manual reset input with internal pull-up resistor | | 2 | V _{CC} | Supply | Primary supply voltage input and integrated fixed threshold undervoltage monitor | | 3 | V2IN | Input | Second fixed threshold input monitor | | 4 | V _{SS} | Supply | Ground | | 5 | V3IN | Input | Adjustable third reset comparator input | | 6 | V4IN | Input | Adjustable fourth reset comparator input | | 7 | TR _{SEL} | Input | Controls selectable t_{REC} . Two t_{REC} options available. If pin is tied HIGH (V_{CC}), t_{REC} = 420ms If pin is tied LOW (V_{SS}), t_{REC} = 210ms Note: Pin must be tied to V_{CC} or V_{SS} (Do not float) | | 8 | RST | Output | Active-low open-drain reset output (10k ohm internal pull-up) | STM6904 Pin descriptions #### 2 Pin descriptions #### 2.1 Push-button reset input (MR) When \overline{MR} goes low the \overline{RST} output is driven low, \overline{RST} remains low as long as \overline{MR} is low and for t_{REC} after \overline{MR} returns to high. The active-low input has an internal 10k ohm pull-up resistor to V_{CC} . It can be driven from a TTL or CMOS logic line, or with open drain/collector outputs, or connected to V_{SS} through a switch. If unused, leave this pin open or connect it to V_{CC} . Connect a normally open momentary switch from $\overline{\text{MR}}$ to V_{SS} ; external debounce circuitry is not required. (If $\overline{\text{MR}}$ is driven from long cables or if the device is used in noisy environments, connecting a 0.1 uF capacitor from $\overline{\text{MR}}$ to V_{SS} provides additional noise immunity). #### 2.2 V_{CC} primary supply voltage monitoring input The V_{CC} pin is also the input for the primary reset threshold monitor. Fixed (customer-selectable, factory programmed) reset thresholds include 3.078 V to 2.866 V. #### 2.3 V2IN second fixed voltage monitoring input The V2IN input is the second fixed-voltage input for reset threshold monitoring. Available fixed (customer-selectable, factory programmed) reset thresholds include 2.333 V to 1.050 V. #### 2.4 V_{SS} This pin is the ground pin for the power supply. #### 2.5 V3IN and V4IN The V3IN and V4IN are high impedance inputs. \overline{RST} is driven low when the voltage (V_{TRIP}) at the pin falls below 600 mV (internal reference voltage at their respective comparators). The monitored voltage reset threshold is set with an external resistor-divider network. #### 2.6 RST active-low, open drain reset output The reset output (\overline{RST}) pin is driven low and stays low whenever V_{CC} or V2IN, or V3IN, or V4IN falls below its factory-trimmed or adjustable reset threshold or when \overline{MR} goes to logic low. It remains low for t_{rec} after all supply voltages being monitored rise above their reset thresholds and \overline{MR} goes from low to high. Connect an external pull-up resistor to V_{CC} . A 10k ohms pull-up resistor should be sufficient for most applications. Pin descriptions STM6904 ## 2.7 TR_{SEL} input Allows user to select between two values of t_{REC} timing (210 ms or 420 ms). Pin must be tied to V_{SS} (210 ms) or V_{CC} (420 ms). Figure 3. Functional block diagram 1. Internal pull-up on $\overline{\text{MR}}$ input of 10k ohm (typ). 477 STM6904 Pin descriptions Figure 4. Typical hardware hookup application diagram 1. TR_{SEL} must be tied to V_{CC} (t_{rec} = 420 ms) or to V_{SS} (t_{rec} = 210 ms). Operation STM6904 #### 3 Operation The STM6904 provides the ability to monitor critical voltages such as power-supply and battery voltage levels, while interfacing easily to the system controllers/microprocessors. Figure 4 shows typical hardware hookup for monitoring four voltages; two fixed thresholds (customer-selectable, factory-programmed) and two adjustable monitor inputs. $\overline{\text{RST}}$ output is open drain and requires a 10k ohms pull-up resistor tied to V_{CC} . #### 3.1 Setting the adjustable voltage levels for V3IN and V4IN inputs The user can customize the minimum voltage levels for the two adjustable voltage inputs by connecting an external resistor divider network to the V3IN and V4IN pins in order to set the trip point at some voltage above the 600 mv ($V_{\rm RFF}$) according to the following formula: $$VTRIP = 0.6V \times \frac{R1 + R2}{R2}$$ During normal operation, the STM6904 monitors the voltage levels at all four pins (V_{CC} , V2IN, V3IN, and V4IN). #### 3.2 Power on reset (t_{REC}) On power up, the STM690 $\underline{4}$ activates a power on reset circuit which asserts the reset pin (i.e. $\overline{\text{RST}}$ goes low). The $\overline{\text{RST}}$ signal remains active until V_{CC} (and V2IN, V3IN, V4IN and $\overline{\text{MR}}$) rises above the minimum voltage level for the time period t_{REC} thereby ensuring that the supply voltage has stabilized to sufficient operating levels. #### **Voltage monitoring** 4 Figure 5. MR timing waveforms Figure 6. Voltage monitoring diagram Maximum rating STM6904 ## 5 Maximum rating Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 3. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |---------------------------------|---|------------------------------|------| | T _{STG} | Storage temperature (V _{CC} off) | -55 to +150 | °C | | T _{SLD} ⁽¹⁾ | Lead solder temperature for 10 seconds | 260 | °C | | V _{IO} | Input or output voltage | -0.3 to V _{CC} +0.3 | V | | V _{CC} | Supply voltage | -0.3 to 7.0 | V | | I _O | Output current | 20 | mA | | $\theta_{\sf JA}$ | Thermal resistance (junction to ambient) | 146 | °C/W | Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 to 150 seconds). ## 6 DC and AC parameters This section summarizes the operating measurement conditions and the DC and AC characteristics of the device. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters. Table 4. DC and AC characteristics | Sym | Alter-
native | Description | Test condition ⁽¹⁾ | | Min | Тур | Max | Unit | |----------------------------------|------------------|--|--|--------------------------------|-------|-------|-------|------| | V _{CC} | | Operating voltage | | | 0.8 | | 5.5 | V | | | | V aupply aurrent | V _C | _C < 5.5 V | | 10 | 14 | | | I _{CC} | | V _{CC} supply current | V _C | _C = 3.3 V | | 9 | 13 | μA | | I2IN | | V2IN supply curent | V2I | N = 3.3 V | | 3 | 5 | μA | | | | Input leakage current - (MR) ⁽²⁾ | V | _N = V _{SS} | | 500 | 800 | μА | | ILI | | Input leakage current - (TR _{SEL}) | V _{IN} = V _{SS} or V _{CC} | | -0.5 | | +0.5 | μА | | I _{LO} ⁽³⁾ | | Open drain RST output leakage current | V _{CC} > VRST;
RST not asserted | | -0.5 | | +0.5 | μA | | | | | $V_{CC} \ge 0.8V$, $I_{SINK} = 1\mu A$ | | | | 0.3 | V | | | | Output low voltage (RST; open drain) | $V_{CC} \ge 1.0V$, $I_{SINK} = 50\mu A$ | | | | 0.3 | V | | V _{OL} | | | $V_{CC} \ge 1.2V$, $I_{SINK} = 100\mu A$ | | | | 0.3 | V | | | | (1101, open diam) | $V_{CC} \ge 2.7V$, $I_{SINK} = 1.2mA$ | | | | 0.3 | V | | | | | V _{CC} ≥ 4.5 | V, I _{SINK} = 3.2mA | | | 0.4 | V | | | | | T (falling) | 25°C | 3.047 | 3.078 | 3.109 | ٧ | | | | | i (lalling) | -40°C to 85°C | 3.023 | | 3.133 | | | V (4) | ., | V _{CC} reset threshold | C (falling) | 25°C | 2.925 | 2.955 | 2.985 | V | | V _{RST1} ⁽⁴⁾ | VTH1 | | S (falling) | -40°C to 85°C | 2.902 | | 3.008 | | | | | | D (fallian) | 25°C | 2.837 | 2.866 | 2.895 | V | | | | | P (falling) | -40°C to 85°C | 2.814 | | 2.918 | | Table 4. DC and AC characteristics (continued) | Sym | Alter-
native | Description | Test condition ⁽¹⁾ | | Min | Тур | Max | Unit | |----------------------------------|------------------|---|--|--|-----------------------|-------|-----------------------|------| | | | | 7 (6 11) | 25°C | 2.310 | 2.333 | 2.356 | V | | | | | Z (falling) | -40°C to 85°C | 2.291 | | 2.375 | | | | | | M (fallings) | 25°C | 2.166 | 2.188 | 2.210 | ٧ | | | | | Y (falling) | -40°C to 85°C | 2.149 | | 2.227 | | | v (4) | \ \ \ | V2IN reset threshold | M (falling) | 25°C | 1.666 | 1.683 | 1.700 | ٧ | | V _{RST2} ⁽⁴⁾ | V _{TH2} | VZIIN Teset tillesiloid | W (falling) | -40°C to 85°C | 1.653 | | 1.713 | | | | | | G (falling) | 25°C | 1.099 | 1.110 | 1.121 | V | | | | | G (lalling) | -40°C to 85°C | 1.090 | | 1.130 | | | | | | F (falling) | 25°C | 1.040 | 1.050 | 1.061 | V | | | | | r (lalling) | -40°C to 85°C | 1.031 | | 1.069 | | | V _{HYST} | | Reset threshold hysteresis | Reference | d to V _{RST1} /V _{RST2}
typical | | 0.5 | | % | | | | V to DOT dalay | | $V_{CC} = (V_{RST1} + 100 \text{ mV}) \text{ to}$
$(V_{RST1} - 100 \text{ mV})$ | | 20 | | μs | | t _{RD} | | V _{CC} to RST delay | $V2IN = (V_{RST2} + 75 \text{ mV}) \text{ to}$
$(V_{RST2} - 75 \text{ mV})$ | | | 20 | | μs | | t _{REC} ⁽⁵⁾ | | DOT the second and select | TR _{SEL} = LOW (V _{SS}) | | 140 | 210 | 280 | ms | | | t _{RP} | RST time-out period | TR _{SEL} : | = HIGH (V _{CC}) | 280 | 420 | 560 | ms | | Adjustat
VRSTIN | ole reset | V3IN, V4IN input | nd V4IN) | | 589 | 600 | 611 | mV | | I3IN, | | threshold | | | | | | | | I4IN | | V3IN, V4IN input current | V3IN, | V4IN > 0.8 V | -25 | | +25 | nA | | | | V3IN, V4IN hysteresis | | | | 3 | | mV | | t _{RSTIND} | | V3IN, V4IN to RST output delay | VRSTIN to (| VRSTIN – 30 mV) | | 22 | | μs | | Manual (| push-bı | utton) reset input | | | | | | | | V _{IL} | | MR input voltage | | | | | 0.3 x V _{CC} | V | | V _{IH} | | ıvın iriput voitage | | | 0.7 x V _{CC} | | | ٧ | | t _{MLMH} | t _{MR} | MR minimum pulse width | | | 1 | | | μs | | t _{MLRL} | t _{MRD} | MR to RST output delay | | | | 200 | | ns | Table 4. DC and AC characteristics (continued) | Sym | Alter-
native | Description | Test condition ⁽¹⁾ | Min | Тур | Max | Unit | |-----|------------------|-----------------------|-------------------------------|-----|-----|-----|------| | | | MR glitch immunity | | | 100 | | ns | | | | MR pull-up resistance | | | 10 | | kΩ | - 1. Valid for ambient operating temperature: $T_A = -40^{\circ}C$ to $+85^{\circ}C$; $V_{CC} = 0.8V$ to 5.5V (except where noted). - 2. 10k ohm (typ) internal pull-up resistor. - 3. The leakage current measured on the $\overline{\text{RST}}$ pin is tested with the reset de-asserted (output high impedance). - 4. Other reset threshold voltages are offered. Minimum order quantities may apply. Contact local sales office for availability. - 5. Other t_{REC} time-out periods are offered. Minimum order quantities may apply. Contact local sales office for availability. ## 7 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. B 5 E1 E A2 E3_ME Figure 7. TSSOP8, 3 x 3mm, package mechanical outline Table 5. TSSOP 8-lead package mechanical data | Cumbal | mm | | | inches | | | |--------|------|------|------|--------|-------|-------| | Symbol | Min | Тур | Max | Min | Тур | Max | | Α | | | 1.10 | | | 0.043 | | A1 | 0.00 | | 0.15 | 0.000 | | 0.006 | | A2 | 0.75 | 0.85 | 0.95 | 0.030 | 0.034 | 0.037 | | b | 0.22 | | 0.40 | 0.009 | | 0.016 | | С | 0.08 | | 0.23 | 0.003 | | 0.009 | | ccc | | | 0.10 | | | 0.004 | | D | 2.80 | 3.00 | 3.20 | 0.110 | 0.118 | 0.126 | | е | | 0.65 | | | 0.026 | | | E | 4.65 | 4.90 | 5.15 | 0.183 | 0.193 | 0.203 | | E1 | 2.80 | 3.00 | 3.10 | 0.110 | 0.118 | 0.122 | | L | 0.40 | 0.60 | 0.80 | 0.016 | 0.024 | 0.032 | | L1 | | 0.95 | | | 0.037 | | | L2 | | 0.25 | | | 0.010 | | | k | 0° | 4 | 6° | 0° | 4 | 6° | | N | | 8 | | | 8 | | Part numbering STM6904 ## 8 Part numbering E = ECOPACK® package, tubes F = ECOPACK® package, tape & reel Other reset threshold voltages and t_{REC} time-out periods are offered. Minimum order quantities may apply. Contact local sales office for availability. # 9 Package marking information Table 7. Marking description | Part marking | V _{RST1} (V) | V _{RST2} (V) | Package | Topside marking | |----------------|-----------------------|-----------------------|---------------|-----------------| | STM6904TZEDS6F | 3.078 | 2.333 | MSOP (TSSOP8) | STZ4 | | STM6904TWEDS6F | 3.078 | 1.683 | MSOP (TSSOP8) | STW4 | | STM6904TGEDS6F | 3.078 | 1.110 | MSOP (TSSOP8) | STG4 | | STM6904SFEDS6F | 2.955 | 1.050 | MSOP (TSSOP8) | SSF4 | | STM6904SYEDS6F | 2.955 | 2.188 | MSOP (TSSOP8) | SSY4 | | STM6904PWEDS6F | 2.866 | 1.683 | MSOP (TSSOP8) | SPW4 | Revision history STM6904 # 10 Revision history Table 8. Document revision history | Date | Revision | Changes | | |-------------|----------|---|--| | 19-Dec-2007 | 1 | Initial release. | | | 28-Jan-2008 | 2 | Updated cover page, Figure 6 and Table 4. | | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com