

LM6161/LM6261/LM6361

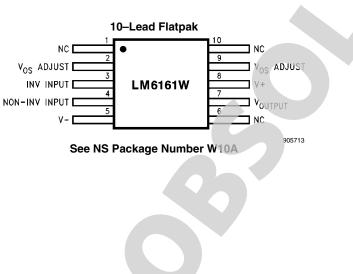
OBSOLETE September 25, 2009

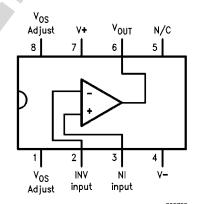
High Speed Operational Amplifier

General Description

The LM6161 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300 V/ μ s and 50 MHz unity gain stability with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5V. These amplifiers are built with National's VIP® (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features


- High slew rate 300 V/µs
- High unity gain freq 50 MHz


Connection Diagrams

- Low supply current 5 mA
- Fast settling 120 ns to 0.1%
- Low differential gain <0.1%
- Low differential phase 0.1°
- Wide supply range 4.75V to 32V
- Stable with unlimited capacitive load
- Well behaved; easy to apply

Applications

- Video amplifier
- High-frequency filter
- Wide-bandwidth signal conditioning
- Radar
- Sonar

See NS Package Number J08A, N08E or M08A

Temperature Range					
Military	Industrial	Commercial	Package	NSC Drawing	
–55°C ≤ T _A ≤ +125°C	–25°C ≤ T _A ≤ +85°C	0°C ≤ T _A ≤ +70°C			
	LM6261N	LM6361N	8-Pin	N08E	
			Molded DIP		
LM6161J/883		LM6361J	8-Pin	J08A	
5962-8962101PA			Ceramic DIP		
	LM6261M	LM6361M	8-Pin Molded	M08A	
			Surface Mt.		
LM6161WG/883			10-Lead	WG10A	
5962-8962101XA			Ceramic SOIC		
LM6161W/883			10-Pin	W10A	
5962-8962101HA			Ceramic Flatpak		

VIP® is a registered trademark of National Semiconductor Corporation.

© 2009 National Semiconductor Corporation 9057

Absolute Maximum Ratings (Note 12)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V+ – V-)	36V
Differential Input Voltage	
(Note 8)	±8V
Common-Mode Voltage Range	
(<i>Note 10</i>)	$(V^+ - 0.7V)$ to $(V^- + 0.7V)$
Output Short Circuit to GND	
(Note 1)	Continuous
Soldering Information	
Dual-In-Line Package (N,	
J) Soldering (10 sec.)	260°C
Small Outline Package (M)	
Vapor Phase (60 sec.)	215°C
Infrared (15 sec.)	220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Storage Temp Range	–65°C to +150°C
Max Junction Temperature	150°C
ESD Tolerance (Note 6, Note	
7)	±700V

Operating Ratings (Note 12)

–55°C ≤ T _J ≤ +125°C
–25°C ≤ T _J ≤ +85°C
$0^{\circ}C \le T_{J} \le +70^{\circ}C$
4.75V to 32V

DC Electrical Characteristics

The following specifications apply for Supply Voltage = $\pm 15V$, $V_{CM} = 0$, $R_L \ge 100 \text{ k}\Omega$ and $R_S = 50\Omega$ unless otherwise noted. **Boldface** limits apply for $T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_J = 25^{\circ}C$.

Symbol	Parameter	Conditions	Тур	LM6161	LM6261	LM6361	Units
				Limit	Limit	Limit	1
				(Note 3, Note 11)	(<i>Note 3</i>)	(<i>Note 3</i>)	
V _{os}	Input Offset Voltage		5	7	7	20	mV
				10	9	22	Max
V _{os}	Input Offset Voltage		10				μV/°(
Drift	Average Drift						
l _b	Input Bias Current		2	3	3	5	μA
				6	5	6	Max
I _{os}	Input Offset Current		150	350	350	1500	nA
				800	600	1900	Max
I _{os}	Input Offset Current		0.4				nA/°
Drift	Average Drift						
R _{IN}	Input Resistance	Differential	325				kΩ
C _{IN}	Input Capacitance	A _V = +1 @ 10 MHz	1.5				pF
A _{VOL}	Large Signal	$V_{OUT} = \pm 10V,$	750	550	550	400	V/V
	Voltage Gain	R _L = 2 kΩ (<i>Note 9</i>)		300	400	350	Min
		R _L = 10 kΩ (<i>Note 9</i>)	2900				V/V
V _{CM}	Input Common-Mode	Supply = $\pm 15V$	+14.0	+13.9	+13.9	+13.8	Volte
Voltage Rang	Voltage Range			+13.8	+13.8	+13.7	Min
			-13.2	-12.9	-12.9	-12.8	Volts
				-12.7	-12.7	-12.7	Min
		Supply = $+5V$	4.0	3.9	3.9	3.8	Volte
		(<i>Note 4</i>)		3.8	3.8	3.7	Min
			1.8	2.0	2.0	2.1	Volt
				2.2	2.2	2.2	Max
CMRR	Common-Mode	$-10V \le V_{CM} \le +10V$	94	80	80	72	dB
	Rejection Ratio			74	76	70	Min
PSRR	Power Supply	$\pm 10V \le V^{\pm} \le \pm 16V$	90	80	80	72	dB
	Rejection Ratio			74	76	70	Min

www.national.com

Symbol	Parameter	Conditions	Тур	LM6161 Limit	LM6261 Limit	LM6361 Limit	Units
				(Note 3, Note 11)	(<i>Note 3</i>)	(Note 3)	
Vo	Output Voltage	Supply = $\pm 15V$	+14.2	+13.5	+13.5	+13.4	Volts
	Swing	and $R_L = 2 k\Omega$		+13.3	+13.3	+13.3	Min
			-13.4	-13.0	-13.0	-12.9	Volts
				-12.7	-12.8	-12.8	Min
		Supply = $+5V$	4.2	3.5	3.5	3.4	Volts
		and $R_L = 2 k\Omega$		3.3	3.3	3.3	Min
		(<i>Note 4</i>)	1.3	1.7	1.7	1.8	Volts
				2.0	1.9	1.9	Max
	Output Short	Source	65	30	30	30	mA
	Circuit Current			20	25	25	Min
		Sink	65	30	30	30	mA
				20	25	25	Min
I _S	Supply Current		5.0	6.5	6.5	6.8	mA
				6.8	6.7	6.9	Max

AC Electrical Characteristics

The following specifications apply for Supply Voltage = $\pm 15V$, $V_{CM} = 0$, $R_{L} \ge 100 \text{ k}\Omega$ and $R_{S} = 50\Omega$ unless otherwise noted. **Boldface** limits apply for $T_{J} = T_{MIN}$ to T_{MAX} ; all other limits $T_{J} = 25^{\circ}C$.

				LM6161	LM6261	LM6361	
Symbol	Parameter	Conditions	Тур	Limit	Limit	Limit	Units
				(Note 3, Note 11)	(Note 3)	(<i>Note 3</i>)	
GBW	Gain-Bandwidth	@ f = 20 MHz	50	40	40	35	MHz
	Product			30	35	32	Min
		Supply = ±5V	35				MHz
SR	Slew Rate	A _V = +1 (<i>Note 8</i>)	300	200	200	200	V/µs
				180	180	180	Min
		Supply = $\pm 5V$ (<i>Note 8</i>)	200				V/µs
PBW	Power Bandwidth	$V_{OUT} = 20 V_{PP}$	4.5				MHz
t _s	Settling Time	10V Step to 0.1%	120				ns
		$A_V = -1, R_L = 2 k\Omega$					
φm	Phase Margin		45				Deg
A _D	Differential Gain	NTSC, $A_V = +4$	<0.1				%
φD	Differential Phase	NTSC, $A_V = +4$	0.1				Deg
e _{np-p}	Input Noise Voltage	f = 10 kHz	15				nV/√Hz
i _{np-p}	Input Noise Current	f = 10 kHz	1.5				pA/√Hz

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is 105°C/W, the molded plastic SO (M) package is 155°C/W, and the

cerdip (J) package is 125°C/W. All numbers apply for packages soldered directly into a printed circuit board.

Note 3: Limits are guaranteed by testing or correlation.

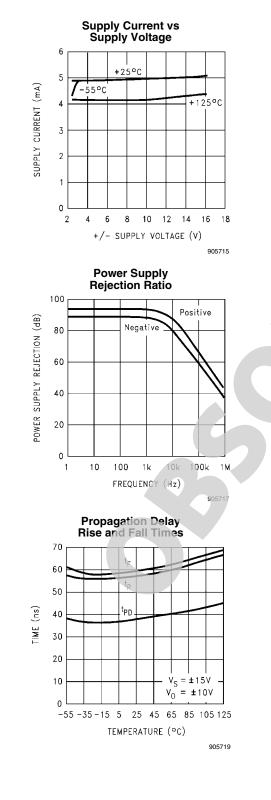
Note 4: For single supply operation, the following conditions apply: $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 2.5V$, $V_{OUT} = 2.5V$. Pin 1 & Pin 8 (Vos Adjust) are each connected to Pin 4 (V⁻) to realize maximum output swing. This connection will degrade V_{OS} , V_{OS} Drift, and Input Voltage Noise.

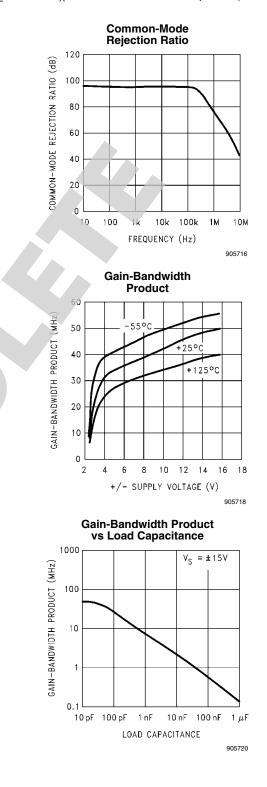
Note 5: $C_L \leq 5 \text{ pF}$.

Note 6: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially Vos, los, and Noise).

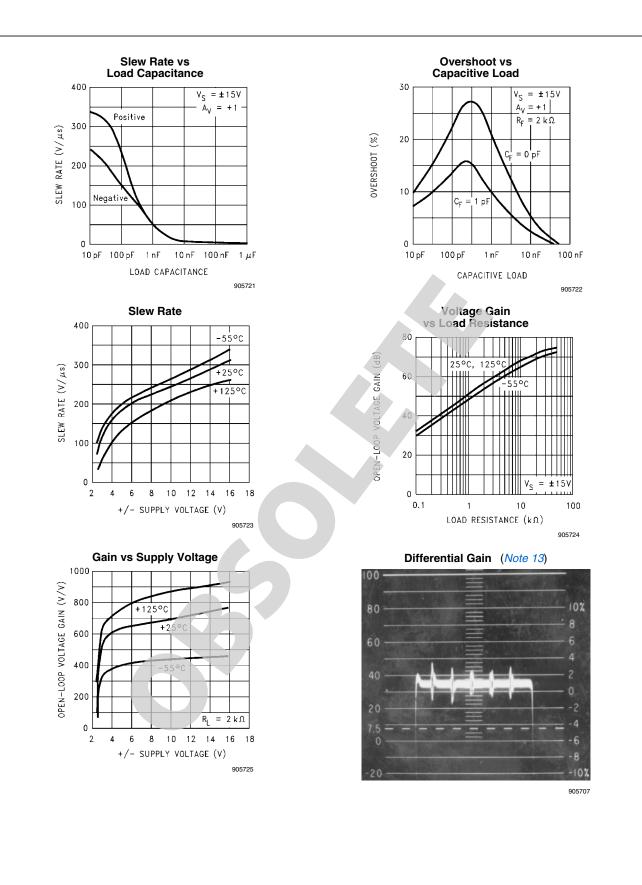
Note 7: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.

Note 8: $V_{IN} = 8V$ step. For supply = ±5V, $V_{IN} = 5V$ step.

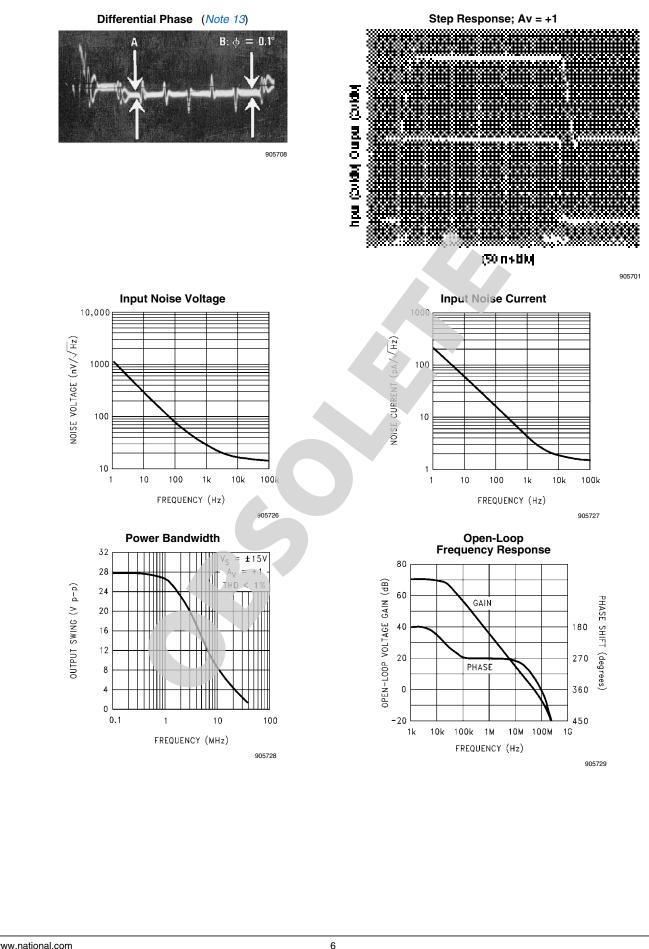

Note 9: Voltage Gain is the total output swing (20V) divided by the input signal required to produce that swing.

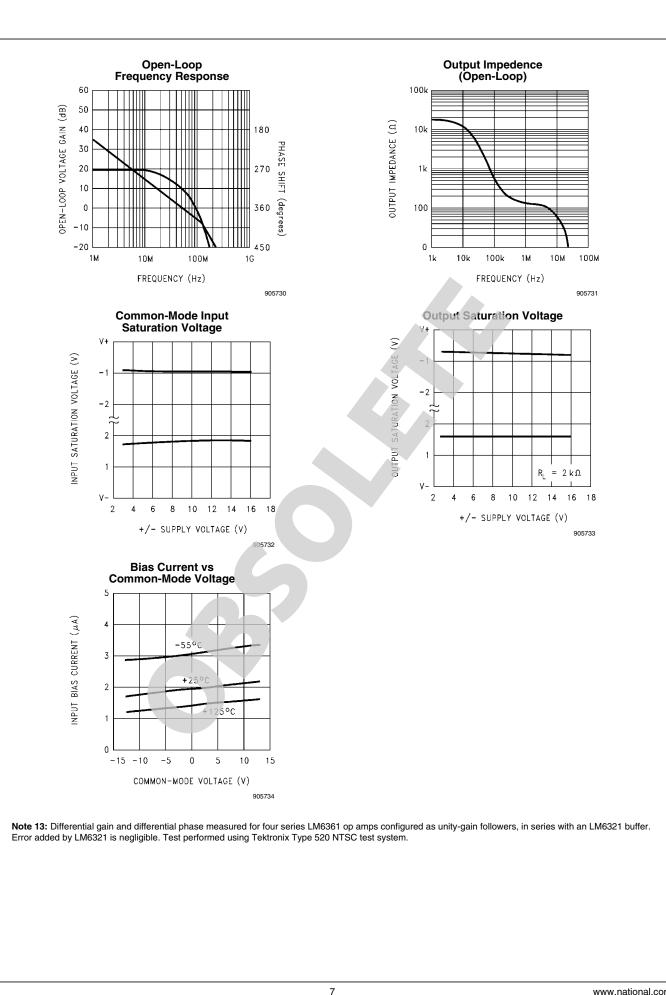

Note 10: The voltage between V+ and either input pin must not exceed 36V.

Note 11: A military RETS electrical test specification is available on request. At the time of printing, the RETS6161X specs complied with all Boldface limits in this column.


Note 12: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Typical Performance Characteristics ($R_L = 10 \text{ k}\Omega$, $T_A = 25^{\circ}C$ unless otherwise specified)




www.national.com

5

LM6161/LM6261/LM6361

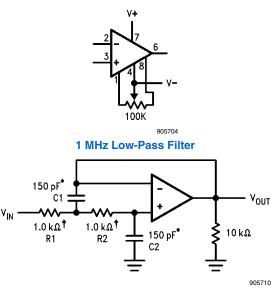
Simplified Schematic

Applications Tips

The LM6361 has been compensated for unity-gain operation. Since this compensation involved adding emitter-degeneration resistors to the op amp's input stage, the open-loop gain was reduced as the stability increased. Gain error due to reduced A_{VOL} is most apparent at high gains; thus, for gains between 5 and 25, the less-compensated LM6364 should be used, and the uncompensated LM6365 is appropriate for gains of 25 or more. The LM6361, LM6364, and LM6365 have the same high slew rate, regardless of their compensation.

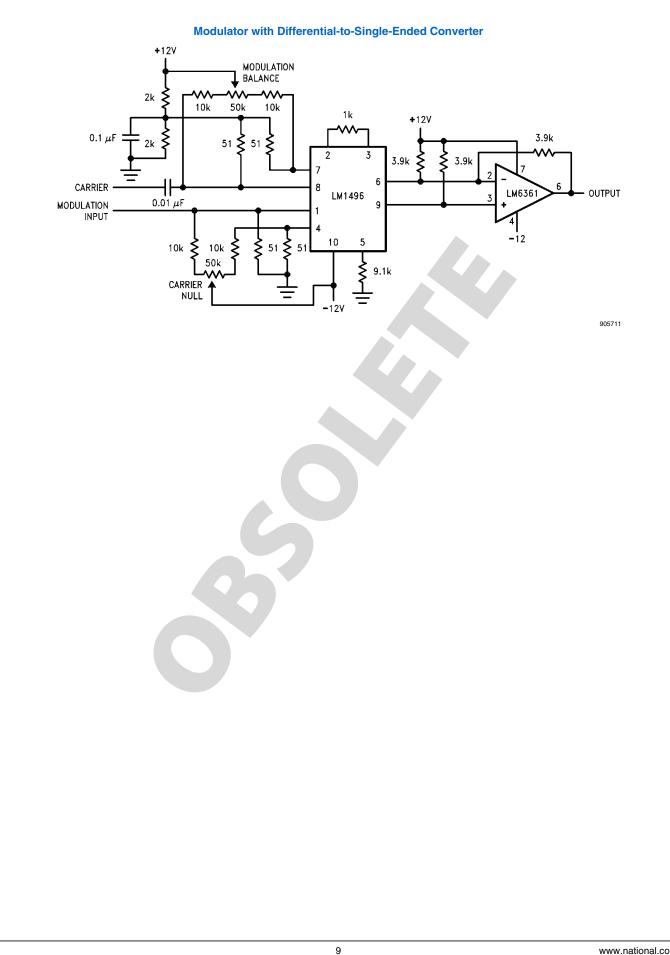
The LM6361 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capacitance is greater than about 200 pF (especially in low-gain circuits). The LM6361's compensation is effectively increased with load capacitance, reducing its bandwidth and increasing its stability.

Power supply bypassing is not as critical for the LM6361 as it is for other op amps in its speed class. Bypassing will, however, improve the stability and transient response and is recommended for every design. 0.01 µF to 0.1 µF ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional 2.2 µF to 10 µF of tantalum may provide extra noise reduction.

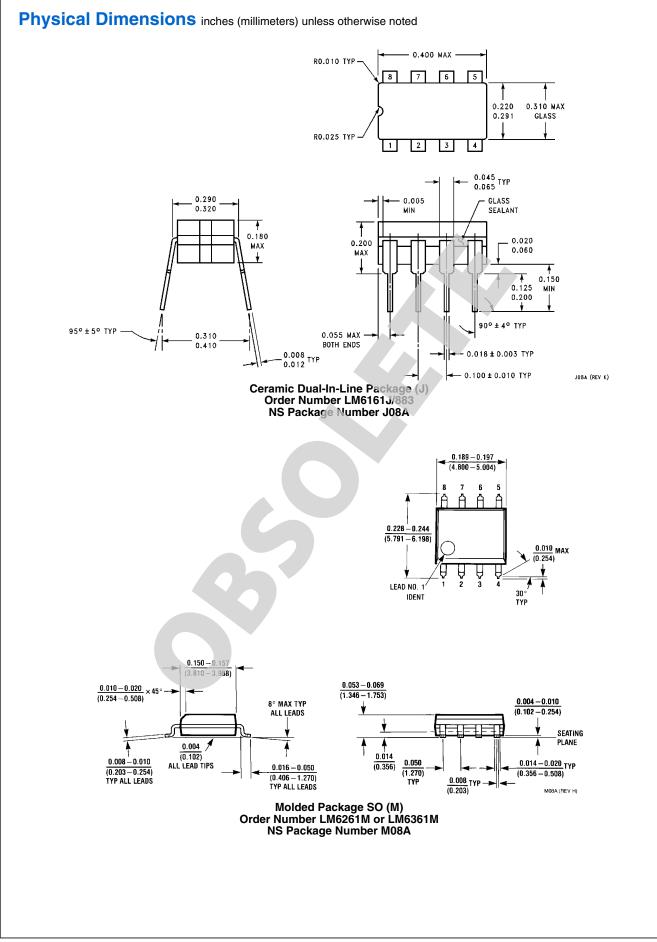

Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling across adjacent nodes and can cause gain to unintentionally vary with frequency.

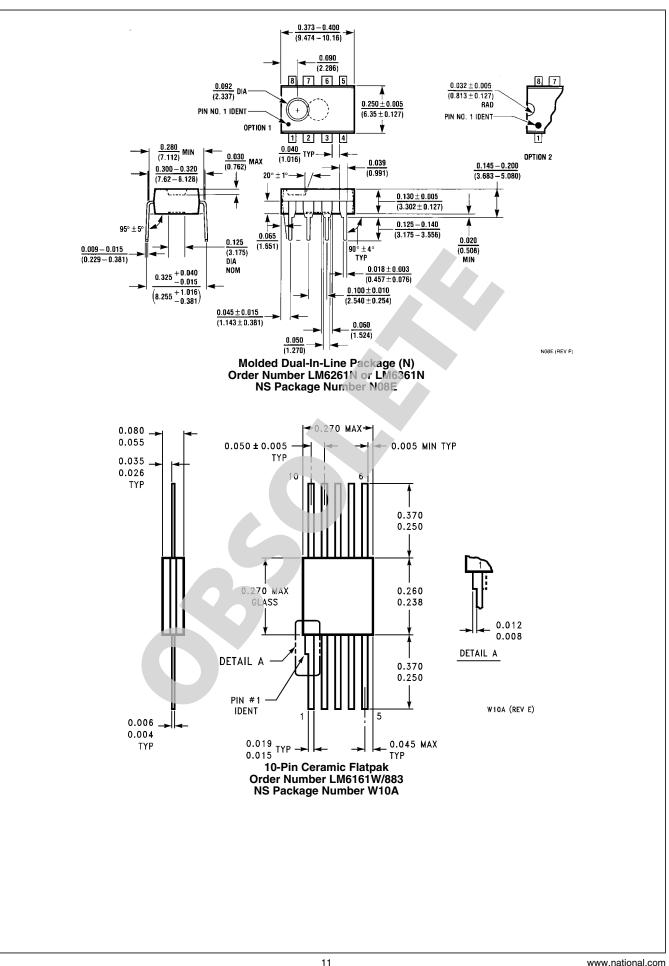
Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps

are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.


Typical Applications

Offset Voltage Adjustment




†1% tolerance *Matching determines filter precision $f_c = (2\pi \sqrt{(R1 R2 C1 C2)})^{-1}$

www.national.com

www.national.com

LM6161/LM6261/LM6361

Notes

Products		Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
Wireless (PLL/VCO)	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: ipn.feedback@nsc.com