
National Semiconductor

LM709 Operational Amplifier

General Description

The LM709 series is a monolithic operational amplifier intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design, in addition to providing high gain, minimizes both offset voltage and bias currents. Further, the class-B output stage gives a large output capability with minimum power drain. External components are used to frequency compensate the amplifier. Although the unity-gain compensation network specified will make the amplifier unconditionally stable in all feedback configurations, compensation can be tailored to optimize high-frequency performance for any gain setting. The LM709C is the commercial-industrial version of the LM709. It is identical to the LM709 except that it is specified for operation from 0°C to +70°C.

©1995 National Semiconductor Corporation TL/H/11477

RRD-B30M115/Printed in U. S. A.

February 1995

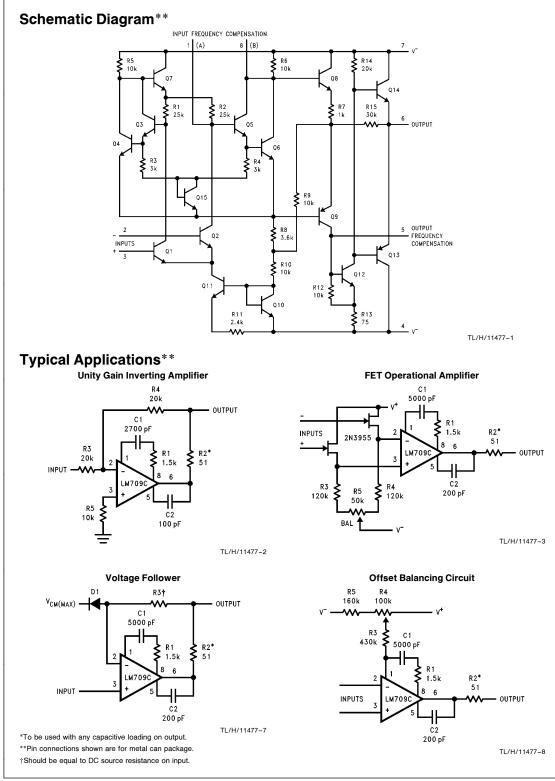
Absolute Maximum Ratings (Note 3)

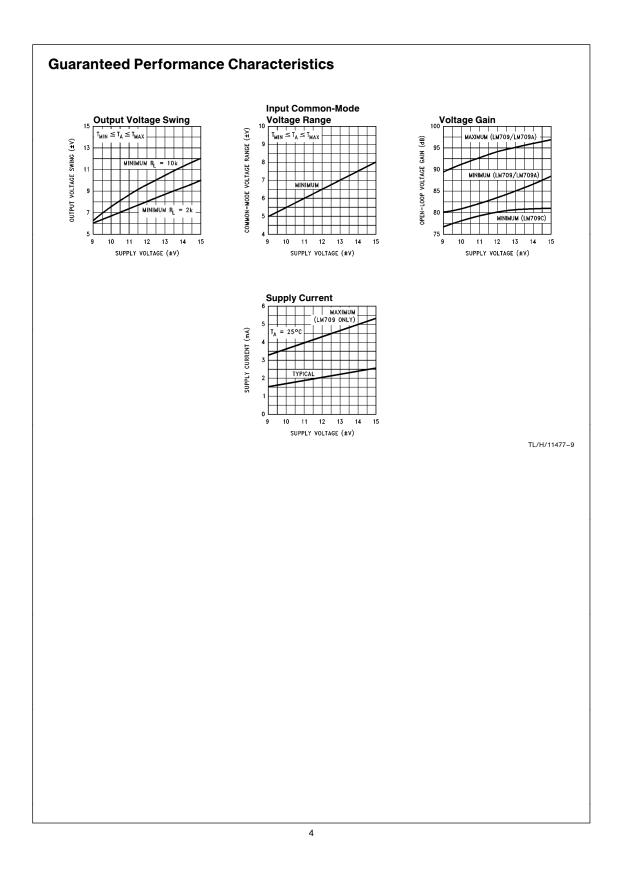
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage

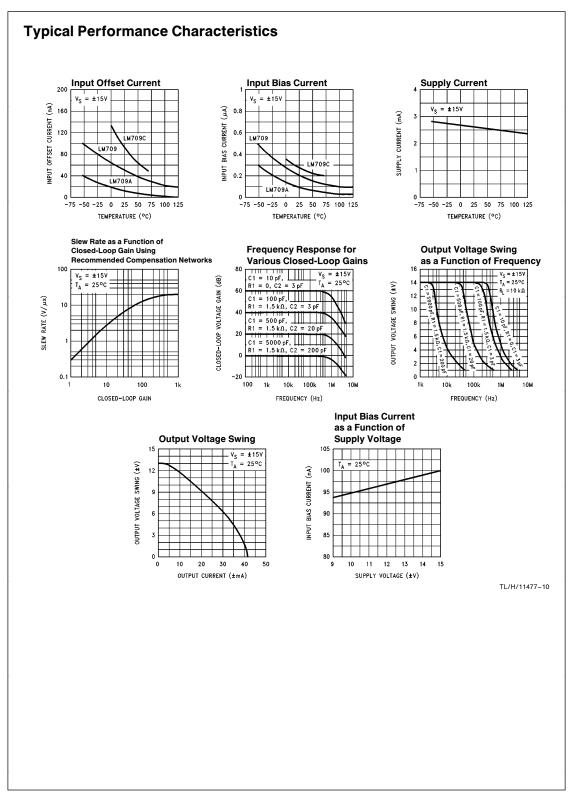
LM709/LM709A/LM709C	±18V
Power Dissipation (Note 1) LM709/LM709A LM709C	300 mW 250 mW
Differential Input Voltage LM709/LM709A/LM709C	±5V
Input Voltage LM709/LM709A/LM709C	$\pm10V$
Output Short-Circuit Duration ($T_A = +25^{\circ}C$) LM709/LM709A/LM709C	5 seconds

Storage Temperature Range LM709/LM709A/LM709C	-65°C to +150°C
Lead Temperature (Soldering, 10 sec.) LM709/LM709A/LM709C	300°C
Operating Ratings (Note 3)	
Junction Temperature Range (Note 1)	

ounction remperature nange (No	10 1)
LM709/LM709A	-55°C to +150°C
LM709C	0°C to +100°C
Thermal Resistance (θ_{JA})	
H Package	150°C/W, (θ _{JC}) 45°C/W
8-Pin N Package	134°C/W
14-Pin N Package	109°C/W

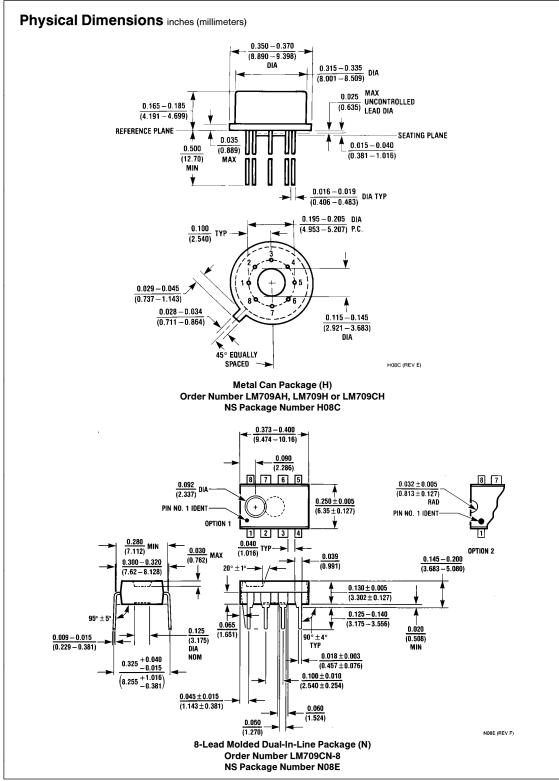

Electrical Characteristics (Note 2)

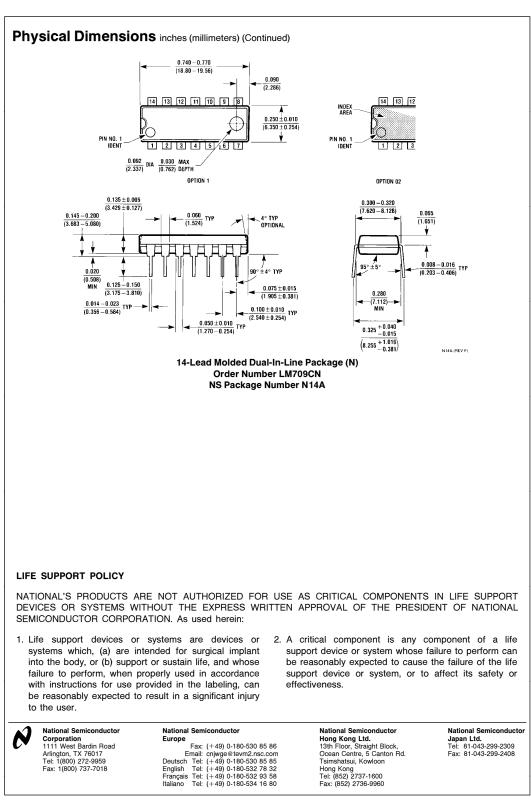

Parameter	Conditions	LM709A		LM709)	LM709C			Unite	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	$T_{A}=25^{\circ}\text{C}, \text{R}_{S}\leq 10 \text{ k}\Omega$		0.6	2.0		1.0	5.0		2.0	7.5	mV
Input Bias Current	$T_A = 25^{\circ}C$		100	200		200	500		300	1500	nA
Input Offset Current	$T_A = 25^{\circ}C$		10	50		50	200		100	500	nA
Input Resistance	$T_A = 25^{\circ}C$	350	700		150	400		50	250		kΩ
Output Resistance	$T_A = 25^{\circ}C$		150			150			150		Ω
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		2.5	3.6		2.6	5.5		2.6	6.6	mA
Transient Response Risetime Overshoot	$\label{eq:VIN} \begin{array}{l} V_{IN} = 20 \text{ mV}, C_L \leq 100 \text{ pF} \\ T_A = 25^\circ\text{C} \end{array}$			1.5 30		0.3 10	1.0 30		0.3 10	1.0 30	μs %
Slew Rate	$T_A = 25^{\circ}C$		0.25			0.25			0.25		V/µs
Input Offset Voltage	$R_{S} \leq 10 \ k\Omega$			3.0			6.0			10	mV
Average Temperature Coefficient of Input Offset Voltage	$ \begin{array}{l} R_S = 50\Omega \qquad & T_A = 25^\circ C \ \text{to} \ T_{MAX} \\ T_A = 25^\circ C \ \text{to} \ T_{MIN} \\ R_S = 10 \ k\Omega \qquad & T_A = 25^\circ C \ \text{to} \ T_{MAX} \\ T_A = 25^\circ C \ \text{to} \ T_{MIN} \\ \end{array} $		1.8 1.8 2.0 4.8	10 10 15 25		3.0 6.0			6.0 12		μV/°C
Large Signal Voltage Gain	$\begin{array}{l} V_S = \ \pm 15 V, R_L \geq 2 k \Omega \\ V_{OUT} = \ \pm 10 V \end{array} \label{eq:VS}$	25		70	25	45	70	15	45		V/mV
Output Voltage Swing	$\label{eq:VS} \begin{array}{l} V_S = \ \pm \ 15 V, \ R_L = \ 10 \ k\Omega \\ V_S = \ \pm \ 15 V, \ R_L = \ 2 \ k\Omega \end{array}$	±12 ±10	±14 ±13		±12 ±10	±14 ±13		±12 ±10	±14 ±13		V
Input Voltage Range	$V_{S} = \pm 15V$	±8			±8	±10		±8	±10		V
Common-Mode Rejection Ratio	$R_{S} \leq 10 \ k\Omega$	80	110		70	90		65	90		dB
Supply Voltage Rejection Ratio	$R_{S} \leq 10 \ k\Omega$		40	100		25	150		25	200	μV/V
Input Offset Current	$T_{A} = T_{MAX}$ $T_{A} = T_{MIN}$		3.5 40	50 250		20 100	200 500		75 125	400 750	nA
Input Bias Current	$T_A = T_{MIN}$		0.3	0.6		0.5	1.5		0.36	2.0	μΑ
Input Resistance	$T_A = T_{MIN}$	85	170		40	100		50	250		kΩ


Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature for LM709/LM709A and 100°C maximum for L709C. For operating at elevated temperatures, the device must be derated based on thermal resistance θ_{JA} , $T_{J(MAX)}$ and T_{A} .

Note 2: These specifications apply for $-55^{\circ}C \le T_A \le +125^{\circ}C$ for the LM709/LM709A and $0^{\circ}C \le T_A \le +70^{\circ}C$ for the LM709C with the following conditions: $\pm 9V \le V_S \le \pm 15V$, C1 = 5000 pF, R1 = 1.5 k Ω , C2 = 200 pF and R2 = 51 Ω .

Note 3: Absolute Maximum Ratings indicate limits which if exceeded may result in damage. Operating Ratings are conditions where the device is expected to be functional but not necessarily within the guaranteed performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.





5

6

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications