Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales Office/	
Distributors for availability and specifications.	
Supply Voltage (V V_{CC})	$\pm 7 \mathrm{~V}$
Iout	
Output is Short Circuit protected	
to ground, but maximum reliability	
will be maintained if $\mathrm{I}_{\mathrm{Out}}$ does not	70 mA
exceed...	$\pm \mathrm{V}_{\mathrm{CC}}$
Common Mode Input Voltage	$\pm 10 \mathrm{~V}$
Differential Input Voltage	$+150^{\circ} \mathrm{C}$

Operating Temperature Range Storage Temperature Range Lead Temperature Range (Soldering 10 sec)
ESD Rating (Human Body Model)
$+300^{\circ} \mathrm{C}$
<1000V
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings

Thermal Resistance

Package
MDIP
SOIC
(θ_{JC}) $60^{\circ} \mathrm{C} / \mathrm{W}$ $45^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

$\left(A_{\mathrm{V}}=+6, \mathrm{~V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{R}_{\mathrm{f}}=500 \Omega\right.$; Unless Specified)

Symbol	Parameter	Conditions	Typ	Max/Min (Note 2)			Units
Ambient Temperature		CLC414AJ	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	
Frequency Domain Response							
SSBW	-3dB Bandwidth	$\mathrm{V}_{\text {OUT }}<2 \mathrm{~V}_{\text {PP }}$	90	>60	>60	>45	MHz
LSBW		$\mathrm{V}_{\text {OUT }}<5 \mathrm{~V}_{\text {PP }}$	55	>35	>40	>35	MHz
	Gain Flatness	$\mathrm{V}_{\text {OUT }}<2 \mathrm{~V}_{\text {PP }}$					
GFPL	Peaking	DC to 15 MHz	0	<0.15	<0.15	<0.15	dB
GFPH	Peaking	$>15 \mathrm{MHz}$	0	<0.3	<0.3	<0.3	dB
GFR	Rolloff	DC to 30MHz	0.3	<1.0	<1.0	<1.5	dB
LPD	Linear Phase Deviation	DC to 30 MHz	0.8	<1.2	<1.2	<1.5	deg
DG1	Differential Gain, $\mathrm{A}_{V}=+2$	$\mathrm{R}_{\mathrm{L}}=150 \Omega, 3.58 \mathrm{MHz}$	0.10	<0.15	<0.20	<0.25	\%
DG2		$\mathrm{R}_{\mathrm{L}}=150 \Omega, 4.43 \mathrm{MHz}$	0.12	<0.20	<0.25	<0.30	\%
DP1	Differential Phase, $\mathrm{A}_{\mathrm{V}}=+2$	$\mathrm{R}_{\mathrm{L}}=150 \Omega, 3.58 \mathrm{MHz}$	0.12	<0.15	<0.20	<0.50	deg
DP2		$\mathrm{R}_{\mathrm{L}}=150 \Omega, 4.43 \mathrm{MHz}$	0.15	<0.20	<0.25	<0.60	deg
XT	Crosstalk Input Referred	5 MHz (All Hostile)	60	<58	<58	<56	dB
CXT		5 MHz (Chan. to Chan.)	70	<63	<63	<61	dB

Time Domain Response

TRS	Rise and Fall Time		2V Step	3.3	<5.0	<5.0	<6.5	ns
TRL			5V Step	4.0	<7.0	<6.0	<7.0	ns
TS1	Settling Time	to $\pm 0.1 \%$	2V Step	16	<24	<24	<30	ns
TS2		to 0.02\%	2V Step	60	<80	<80	<100	ns
OS	Overshoot		2V Step	5	<10	<10	<10	\%
SR	Slew Rate			1000	>600	>600	>480	V/ $/$ s

Distortion And Noise Response

HD2	2nd Harmonic Distortion	$2 \mathrm{~V}_{\text {PP }}, 5 \mathrm{MHz}$	-47	<-41	<-41	<-37	dBc
HD3	3rd Harmonic Distortion	$2 \mathrm{~V}_{\text {PP }}, 5 \mathrm{MHz}$	-55	<-47	<-47	<-45	dBc
	Equivalent Noise Input						
VN	Non-Inverting Voltage	$>1 \mathrm{MHz}$	4.2	<5.0	<5.0	<5.5	nV/ $\sqrt{\mathrm{Hz}}$
ICN	Inverting Current	$>1 \mathrm{MHz}$	9.8	<11.8	<11.8	<13.0	$\frac{\mathrm{pA} /}{\sqrt{\mathrm{Hz}}}$
NCN	Non-Inverting Current	$>1 \mathrm{MHz}$	1.3	<1.6	<1.6	<1.8	pA// $\sqrt{\mathrm{Hz}}$
SNF	Total Noise Floor	$>1 \mathrm{MHz}$	-154	<-153	<-153	<-152	$\mathrm{dBm}_{1 \mathrm{~Hz}}$
INV	Total Integrated Noise	$>1 \mathrm{MHz}$ to 75 MHz	37	<44	<44	<48	$\mu \mathrm{V}$

Electrical Characteristics
(Continued)
$\left(A_{V}=+6, V_{C C}= \pm 5 \mathrm{~V}, R_{L}=100 \Omega, R_{f}=500 \Omega\right.$; Unless Specified)

Symbol	Parameter	Conditions	Typ	Max/Min (Note 2)			Units
Static, DC Performance							
VIO	Input Offset Voltage (Note 3)		2	<10.5	<6	<14	mV
DVIO	Average Temperature Coefficient		30	<80	-	<80	$\mu \mathrm{V} / \mathrm{C}^{\circ}$
IBN	Input Bias Current (Note 3)	Non-Inverting	1	<10	<5	<5	$\mu \mathrm{A}$
DIBN	Average Temperature Coefficient		20	<75	-	<30	$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
IBI	Input Bias Current (Note 3)	Inverting	2	<20	<6	<10	$\mu \mathrm{A}$
DIBI	Average Temperature Coefficient		20	<140	-	< 75	$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
PSRR	Power Supply Rejection Ratio		50	>46	>46	>44	dB
CMRR	Common Mode Rejection Ratio		50	>45	>45	>43	dB
ICC	Supply Current (Note 3)	No Load	10	<11.5	<11.5	<11.5	mA
Miscellaneous Performance							
RIN	Non Inverting Input Resistance		2000	>500	>1000	>1000	$\mathrm{k} \Omega$
CIN	Non-Inverting Input Capacitance		1.0	<2.0	<2.0	<2.0	pF
RO	Output Impedance	DC	0.2	<0.6	<0.3	<0.2	Ω
VO	Output Voltage Range	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	± 2.8	± 2.5	± 2.6	± 2.7	V
CMIR	Common Mode Input Range		± 2.2	± 1.4	± 2.0	± 2.0	V
10	Output Current		70	30	50	50	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.
Note 2: Max/min ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.
Note 3: AJ-level: spec. is 100% tested at $+25^{\circ} \mathrm{C}$.

Ordering Information

Package	Temperature Range Industrial	Part Number	Package Marking	NSC Drawing
14-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC414AJP	CLC414AJP	N14A
14-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC414AJE	CLC414AJE	M14A

Typical Performance Characteristics
$\left(T_{A}=25^{\circ}, A_{V}=+6, V_{C C}= \pm 5 V, R_{L}=100 \Omega, R_{f}=500 \Omega ;\right.$ Unless Specified)

Frequency Response for Various $\mathbf{R}_{\mathbf{L}} \mathbf{S}$

Small Signal Pulse Response

Time ($5 \mathrm{~ns} / \mathrm{div}$)

01275016

01275018

Typical Performance Characteristics $\left(T_{A}=25^{\circ}, A_{V}=+6, V_{C C}= \pm 5 \mathrm{~V}, R_{L}=100 \Omega, R_{f}=500 \Omega\right.$ ； Unless Specified）．（Continued）

Typical Performance Characteristics $\left(T_{A}=25^{\circ}, A_{V}=+6, V_{C C}= \pm 5 \mathrm{~V}, R_{L}=100 \Omega, R_{f}=500 \Omega\right.$; Unless Specified). (Continued)

PSRR, CMRR, and Closed Loop $\mathbf{R}_{\mathbf{O}}$

Application Division

FIGURE 1．Recommended Non－Inverting Gain Circuit

FIGURE 2．Recommended Inverting Gain Circuit

Feedback Resistor

The CLC414 achieves its exceptional AC performance while requiring very low quiescent power by using the current feedback topology and an internal slew rate enhancement circuit．The loop gain and frequency response for a current feedback op amp is predominantly set by the feedback resistor value．The CLC414 is optimized for a gain of +6 to use a 500Ω feedback resistor（use a $\mathbf{1 k} \Omega \mathbf{R}_{\mathrm{f}}$ for maximally flat response at a gain of＋2）．Using lower values can lead to excessive ringing in the pulse response while a higher value will limit the bandwidth．Application Note OA－13 pro－ vides a more detailed discussion of choosing a feedback resistor．The equations found in this application note are to be considered a starting point for the determination of R_{f} at any gain．The value of input impedance of the CLC414 is approximately 250Ω ．These equations do not account for parasitic capacitance at the inverting input nor across R_{f} ． The plot found below entitled＂Recommended R_{f} vs．Gain＂ offers values of R_{f} which will optimize the frequency re－
sponse of the CLC414 over its ± 1 to ± 10 gain range．Unlike voltage feedback，current feedback op amps require a non－zero R_{f} for unity gain followers．

FIGURE 3．Recommended R_{f} vs．Gain

Unused Amplifiers

It is recommended that any unused amplifiers in the quad package be connected as unity gain followers（ $R_{f}=500 \Omega$ ） with the non－inverting input tied to ground through a 50Ω resistor．

Slew Rate and Harmonic Distortion

Please see the application information for the CLC406．

Differential Gain and Phase

Differential gain and phase performance specifications are common to composite video distribution applications．These specifications refer to the change in small signal gain and phase of the color subcarrier frequency（ 4.43 MHz for PAL composite video）as the amplifier output is swept over a range of DC voltages．Application Note OA－08 provides an additional discussion of differential gain and phase measure－ ments．

Non－inverting Source Impedance

For best operation，the DC source impedance looking out of the non－inverting input should be less than $3 \mathrm{k} \Omega$ but greater than 20Ω ．Parasitic self oscillations may occur in the input transistors if the DC source impedance is out of this range． This impedance also acts as the gain for the non－inverting input bias and noise currents and therefore can become troublesome for high values of DC source impedance．The inverting configuration of Figure 2 shows a 25Ω resistor to ground on the non－inverting input which insures stability but does not provide bias current cancellation．The input bias currents are unrelated for a current feedback amplifier which eliminates the need for source impedance matching to achieve bias current cancellation．

DC Accuracy and Noise Calculation

Please refer to the application information for the CLC406．

Crosstalk

In any multi－channel integrated circuit there is an undesir－ able tendency for the signal in one channel to couple with and reproduce itself in the output of another channel．This effect is referred to as crosstalk．Crosstalk is expressed as channel separation or channel isolation which indicates the

Application Division (Continued)

magnitude of this undesirable effect. This effect is measured by driving one or more channels and observing the output of the other undriven channel(s). The CLC414 plot page offers two different graphs detailing the effect of crosstalk over frequency. One plot entitled "All-Hostile Crosstalk Isolation" graphs all-hostile input-referred crosstalk. All-hostile crosstalk refers to the condition where three channels are driven simultaneously while observing the output of the undriven fourth channel. Input-referred implies that crosstalk is directly affected by gain and therefore a higher gain increases the crosstalk effect by a factor equal to that gain setting. The plot entitled "Most Susceptible Channel-to-Channel Pulse Coupling" describes the effect of crosstalk when one channel is driven with a $2 \mathrm{~V}_{\mathrm{PP}}$ pulse while the output of the most effected channel is observed.

Printed Circuit Layout

As with any high speed component, a careful attention to the board layout is necessary for optimum performance. Of par-
ticular importance is the careful control of parasitic capacitances on the output pin. As the output impedance plot shows, the closed loop output for the CLC414 eventually becomes inductive as the loop gain rolls off with increasing frequency. Direct capacitive loading on the output pin can quickly lead to peaking in the frequency response, overshoot in the pulse response, ringing or even sustained oscillations. The "Settling Time vs. Capacitive Load" plot should be used as a starting point for the selection of a series output resistor when a capacitive load must be driven. A quad amplifier will require careful attention to signal routing in order to minimize the effects of crosstalk. Signal coupling through the power supplies can be reduced with bypass capacitors placed close to the device supply pins.

Evaluation Board

Evaluation PC boards (part number 730024 for through-hole and 730031 for SOIC) for the CLC414 are available.

Physical Dimensions inches（millimeters）
unless otherwise noted

14－Pin SOIC
NS Package Number M14A

opion

14－Pin MDIP
NS Product Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

