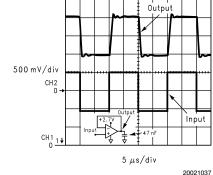
Features $(V_{c} = 5V T_{b} = 25^{\circ}C$ Typical values unless specified)

$(v_{\rm S} = 5v, r_{\rm A} = 250, rypical values unless$	specifieu).
■ GBWP	21MHz
 Wide supply voltage range 	2.5V to 22V
Slew rate	12V/µs
Supply current/channel	1.15 mA
Cap load limit	Unlimited
 Output short circuit current 	+53mA/-75mA
■ +/-5% Settling time 400ns (500pF	, 100mV _{PP} step)
Input common mode voltage	.3V beyond rails
Input voltage noise	15nV/ √Hz
Input current noise	$1nA/\sqrt{Hz}$

- Input current noise 1pA/√Hz THD+N < 0.05%

Applications


- TFT-LCD flat panel V_{COM} driver
- A/D converter buffer
- High side/low side sensing
- Headphone amplifier

Ordering Information

© 2002 National Semiconductor Corporation

Package	Part Number	Package Marking	Media Transport	NSC Drawing
8-Pin MSOP	LM8262MM	A46	1k Units Tape and Reel	MUA08A
	LM8262MMX	A40	3.5k Units Tape and Reel	IVIOA08A

DS200210

8-Pin MSOP Output A Inverting 🗖 Output B Input A 6 Non-Inverting Inverting Input B Input A Non-Inverting v⁻ Input B 20021001

Top View

Connection Diagram

LM8262 Dual **RRIO, High Output Current & Unlimited Cap Load Op** Amp in MSOP

General Description

The LM8262 is a Rail-to-Rail input and output Op Amp which can operate with a wide supply voltage range. This device has high output current drive, greater than Rail-to-Rail input common mode voltage range, unlimited capacitive load drive capability, and provides tested and guaranteed high speed and slew rate. It is specifically designed to handle the requirements of flat panel TFT panel V_{COM} driver applications as well as being suitable for other low power, and medium speed applications which require ease of use and enhanced performance over existing devices.

Greater than Rail-to-Rail input common mode voltage range with 50dB of Common Mode Rejection, allows high side and low side sensing, among many applications, without having any concerns over exceeding the range and no compromise in accuracy. In addition, most device parameters are insensitive to power supply variations; this design enhancement is yet another step in simplifying its usage. The output stage has low distortion (0.05% THD+N) and can supply a respectable amount of current (15mA) with minimal headroom from either rail (300mV).

The LM8262 is offered in the space saving MSOP package.

Output Response with Heavy Capacitive Load

June 2002

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance	2KV (Note 2)
	200V(Note 9)
V _{IN} Differential	+/-10V
Output Short Circuit Duration	(Notes 3, 11)
Supply Voltage (V ⁺ - V ⁻)	24V
Voltage at Input/Output pins	V^+ +0.8V, V^- -0.8V
Storage Temperature Range	–65°C to +150°C
Junction Temperature (Note 4)	+150°C

Soldering Information:

Infrared or Convection (20 sec.)	235°C
Wave Soldering (10 sec.)	260°C

Operating Ratings

Supply Voltage (V ⁺ - V ⁻)	2.5V to 22V
Junction Temperature Range(Note 4)	–40°C to +85°C
Package Thermal Resistance, θ_{JA} ,(Note	4)
8-Pin MSOP	235°C/W

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = 0.5V$, $V_O = V^+/2$, and $R_L > 1M\Omega$ to V^- . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{OS}	Input Offset Voltage	V _{CM} = 0.5V & V _{CM} = 2.2V	-	+/-0.7	+/-5 +/-7	mV
TC V _{os}	Input Offset Average Drift	V _{CM} = 0.5V & V _{CM} = 2.2V (Note 12)	-	+/-2	-	μV/C
I _B Inpu	Input Bias Current	V _{CM} = 0.5V (Note 7)	-	-1.20	-2.00 -2.70	
		V _{CM} = 2.2V (Note 7)	-	+0.49	+1.00 +1.60	μA
I _{os}	Input Offset Current	$V_{CM} = 0.5V \& V_{CM} = 2.2V$	-	20	250 400	nA
CMRR	MRR Common Mode Rejection Ratio	V _{CM} stepped from 0V to 1.0V	76 60	100	-	
		V_{CM} stepped from 1.7V to 2.7V	-	100	-	dB
		V _{CM} stepped from 0V to 2.7V	58 50	70	-	
+PSRR	Positive Power Supply Rejection Ratio	V ⁺ = 2.7V to 5V	78 74	104	-	dB
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	-	-0.3	-0.1 0.0	V
			2.8 2.7	3.0	-	V
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 0.5 \text{ to } 2.2V,$ $R_{L} = 10k \text{ to } V^{-}$	70 67	78	-	dB
		$V_{O} = 0.5$ to 2.2V, $R_{L} = 2k$ to V ⁻	67 63	73	-	dB
Vo	Output Swing High	$R_L = 10k \text{ to } V^-$	2.49 2.46	2.59	-	V
		$R_L = 2k \text{ to } V^-$	2.45 2.41	2.53	-	v
	Output Swing Low	$R_L = 10k \text{ to } V^-$	-	90	100 120	mV
I _{sc}	Output Short Circuit Current	Sourcing to V ⁻ V _{ID} = 200mV (Note 10)	30 20	48	-	mÅ
		Sinking to V ⁺ V _{ID} = -200 mV (Note 10)	50 30	65	-	mA

2.7V Electrical Characteristics (Continued)			
Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, V ⁺ = 2.7V, V ⁻ =	= 0V, V _{CM} = 0	$0.5V, V_{O} = V^{2}$	⁺/2, and
$R_L > 1M\Omega$ to V ⁻ . Boldface limits apply at the temperature extremes.			
		_	

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
I _S	Supply Current (both amps)	No load, $V_{CM} = 0.5V$	-	2.0	2.5 3.0	mA
SR	Slew Rate (Note 8)	$A_{V} = +1, V_{I} = 2V_{PP}$	-	9	_	V/µs
f _u	Unity Gain-Frequency	$V_{I} = 10mV$, $R_{L} = 2k\Omega$ to $V^{+}/2$	-	10	_	MHz
GBWP	Gain Bandwidth Product	f = 50KHz	15.5 14	21	-	MHz
Phi _m	Phase Margin	$V_1 = 10mV$	-	50	_	Deg
e _n	Input-Referred Voltage Noise	$f = 2KHz, R_S = 50\Omega$	-	15	-	nV/ √Hz
i _n	Input-Referred Current Noise	f = 2KHz	-	1	-	pA/ √Hz
f _{max}	Full Power Bandwidth	$Z_{L} = (20 \text{pF II } 10 \text{k}\Omega) \text{ to V}^{+}/2$	-	1	_	MHz

5V Electrical Characteristics

Unless otherwise specified, all limited guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 1V$, $V_O = V^+/2$, and $R_L > 1M\Omega$ to V^- . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{os}	Input Offset Voltage	$V_{CM} = 1V \& V_{CM} = 4.5V$	-	+/-0.7	+/-5 +/- 7	mV
TC V _{OS}	Input Offset Average Drift	V _{CM} = 1V & V _{CM} = 4.5V (Note 12)	-	+/-2	-	µV/°C
I _B	Input Bias Current	V _{CM} = 1V (Note 7)	-	-1.18	-2.00 - 2.70	
		V _{CM} = 4.5V (Note 7)	-	+0.49	+1.00 + 1.60	μA
I _{os}	Input Offset Current	$V_{CM} = 1V \& V_{CM} = 4.5V$	-	20	250 400	nA
CMRR	Common Mode Rejection Ratio	V _{CM} stepped from 0V to 3.3V	84 72	110	-	
		V _{CM} stepped from 4V to 5V	_	100	_	dB
		V_{CM} stepped from 0V to 5V	64 61	80	-	
+PSRR	Positive Power Supply Rejection Ratio	$V^+ = 2.7V$ to 5V, $V_{CM} = 0.5V$	78 74	104	-	dB
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	-	-0.3	-0.1 0.0	V
			5.1 5.0	5.3	-	V
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 0.5 \text{ to } 4.5 \text{V},$ $R_{L} = 10 \text{k to V}^{-}$	74 70	84	-	dB
		$V_{O} = 0.5 \text{ to } 4.5 \text{V},$ $R_{L} = 2 \text{k to V}^{-}$	70 66	80	-	dB
Vo	Output Swing High	$R_L = 10k \text{ to } V^-$	4.75 4.72	4.87	-	V
		$R_L = 2k \text{ to } V^-$	4.70 4.66	4.81	-	v
	Output Swing Low	$R_{L} = 10k \text{ to } V^{-}$	-	86	125 135	mV

LM8262

5V Electrical Characteristics (Continued)

Unless otherwise specified, all limited guaranteed for $T_J = 25^{\circ}$ C, V⁺ = 5V, V⁻ = 0V, V_{CM} = 1V, V_O = V⁺/2, and R_L > 1M Ω to V⁻. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
I _{SC}	Output Short Circuit Current	Sourcing to V ⁻	35	53	_	
		V _{ID} = 200mV (Note 10)	20			mA
		Sinking to V ⁺	60	75	-	
		$V_{ID} = -200 mV$ (Note 10)	50			
I _S	Supply Current (both amps)	No load, $V_{CM} = 1V$	-	2.3	2.8	mA
					3.5	
SR	Slew Rate (Note 8)	$A_{V} = +1, V_{I} = 5V_{PP}$	10	12	_	V/µs
			7			
f _u	Unity Gain Frequency	$V_{I} = 10 mV,$	_	10.5	_	MHz
		$R_L = 2k\Omega$ to V ⁺ /2				
GBWP	Gain-Bandwidth Product	f = 50KHz	16	21	-	MHz
			15			
Phi _m	Phase Margin	$V_{I} = 10mV$	-	53	-	Deg
e _n	Input-Referred Voltage Noise	f = 2KHz, $R_S = 50\Omega$	-	15	-	nV/ √Hz
i _n	Input-Referred Current Noise	f = 2KHz	-	1	-	pA/Hz
f _{max}	Full Power Bandwidth	$Z_L = (20 \text{pF} \parallel 10 \text{k}\Omega) \text{ to V}^+/2$	_	900	_	KHz
t _s	Settling Time (+/-5%)	100mV _{PP} Step, 500pF load	-	400	-	ns
THD+N	Total Harmonic Distortion +	$R_L = 1k\Omega$ to V ⁺ /2	-	0.05	_	%
	Noise	$f = 10$ KHz to $A_V = +2$, $4V_{PP}$ swing				

+/-11V Electrical Characteristics

Unless otherwise specified, all limited guaranteed for $T_J = 25^{\circ}C$, V⁺ = 11V, V⁻ = -11V, V_{CM} = 0V, V_O = 0V, and $R_L > 1M\Omega$ to 0V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{OS}	Input Offset Voltage	$V_{CM} = -10.5V \& V_{CM} = 10.5V$	-	+/-0.7	+/-7 +/- 9	mV
TC V _{OS}	Input Offset Average Drift	V _{CM} = -10.5V & V _{CM} = 10.5V (Note 12)	-	+/-2	-	µV/°C
Ι _Β	Input Bias Current	V _{CM} = -10.5V (Note 7)	-	-1.05	-2.00 -2.80	
		V _{CM} = 10.5V (Note 7)	-	+0.49	+1.00 +1.50	μA
l _{os}	Input Offset Current	$V_{CM} = -10.5V \& V_{CM} = 10.5V$	-	30	275 550	nA
CMRR	Common Mode Rejection Ratio	V _{CM} stepped from –11V to 9V	84 80	100	-	
		V _{CM} stepped from 10V to 11V	_	100	_	dB
		V _{CM} stepped from –11V to 11V	74 72	88	-	
+PSRR	Positive Power Supply Rejection Ratio	V ⁺ = 9V to 11V	70 66	100	-	dB
-PSRR	Negative Power Supply Rejection Ratio	$V^{-} = -9V$ to $-11V$	70 66	100	-	dB

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	_	-11.3	-11.1 -11.0	V
			11.1 11.0	11.3	-	V
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 0V$ to +/-9V, $R_{L} = 10k\Omega$	78 74	85	-	dB
	Output Swing	$V_{O} = 0V$ to +/-9V, $R_{L} = 2k\Omega$	72 66	79	-	uв
V _o	Output Swing High	$R_{L} = 10k\Omega$	10.65 10.61	10.77	-	V
	$R_L = 2k\Omega$	10.6 10.55	10.69	-	v	
	Output Swing Low	$R_L = 10k\Omega$	-	-10.98	-10.75 -10.65	Ň
		$R_{L} = 2k\Omega$	-	-10.91	-10.65 -10.6	V
I _{SC}	Output Short Circuit Current	Sourcing to ground $V_{ID} = 200 \text{mV}$ (Note 10)	40 25	60	-	mA
		Sinking to ground $V_{ID} = 200 \text{mV}$ (Note 10)	65 55	100	-	
I _S	Supply Current	No load, V _{CM} = 0V	-	2.5	4 5	mA
SR	Slew Rate (Note 8)	$A_{V} = +1, V_{I} = 16V_{PP}$	10 8	15	-	V/µs
f _U	Unity Gain Frequency	$V_I = 10 \text{mV}, R_L = 2 \text{k}\Omega$	-	13	_	MHz
GBWP	Gain-Bandwidth Product	f = 50KHz	18 16	24	-	MHz
Phi _m	Phase Margin	$V_{I} = 10mV$	-	58	-	Deg
e _n	Input-Referred Voltage Noise	f = 2KHz, $R_S = 50\Omega$	-	15	-	nV/ √H
i _n	Input-Referred Current Noise	f = 2KHz	-	1	-	pA/ √H
t _s	Settling Time (+/-1%, $A_V =$	Positive Step, 5V _{PP}	-	320	_	
	+1)	Negative Step, 5V _{PP}	-	600	-	ns
THD+N	Total Harmonic Distortion +Noise	$ \begin{array}{l} R_{L} = 1 k \Omega, \ f = 10 KHz, \\ A_{V} = +2, \ 15 V_{PP} \ swing \end{array} $	-	0.01	-	%
CT _{REJ}	Cross-Talk Rejection	f = 5MHz, Driver $R_L = 10k\Omega$	-	68	-	dB

www.national.com

LM8262

+/-11V Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Rating indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, $1.5k\Omega$ in series with 100pF.

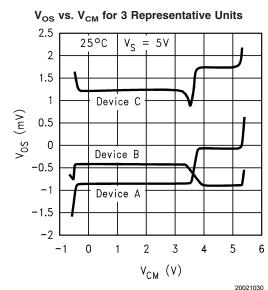
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

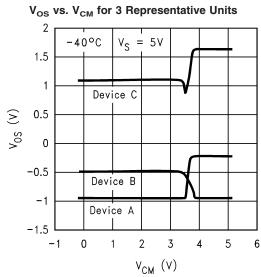
Note 4: The maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

Note 5: Typical Values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

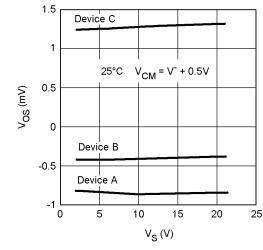
Note 7: Positive current corresponds to current flowing into the device.

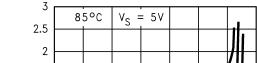

Note 8: Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.


Note 9: Machine Model, 0Ω is series with 200pF.

Note 10: Short circuit test is a momentary test. See Note 11.

Note 11: Output short circuit duration is infinite for $V_S \le 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5ms. Note 12: Offset voltage average drift determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.


Typical Performance Characteristics $T_A = 25^{\circ}C$, Unless Otherwise Noted



20021029

V_{OS} vs. V_S for 3 Representative Units

20021034

Device C

Device B

Device A

1

2

V_{CM} (V)

3

5

6

20021031

1.5

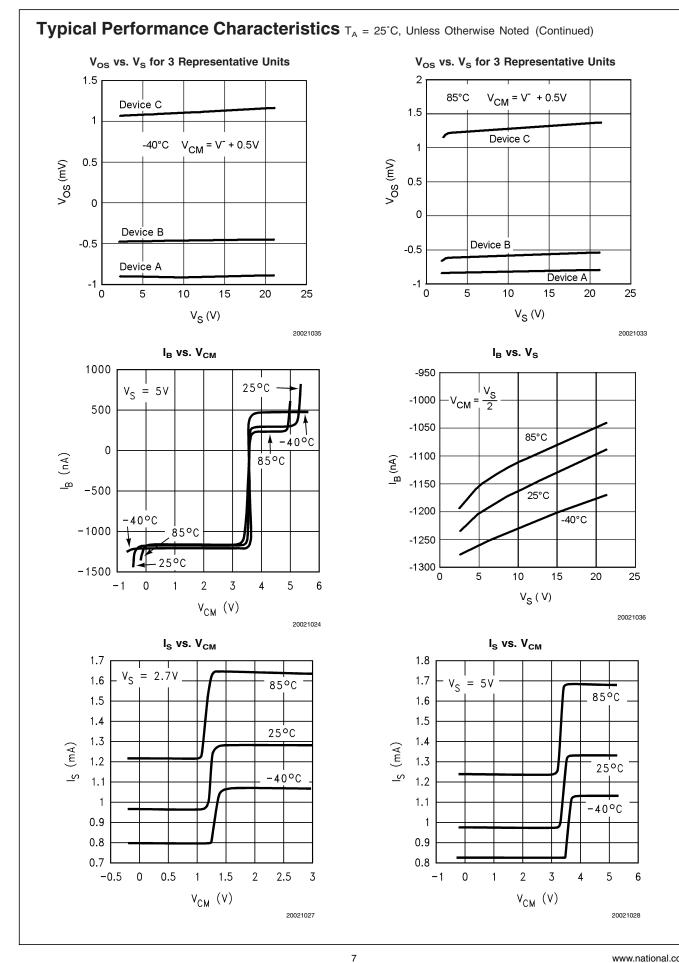
1 0.5

0

-0.5

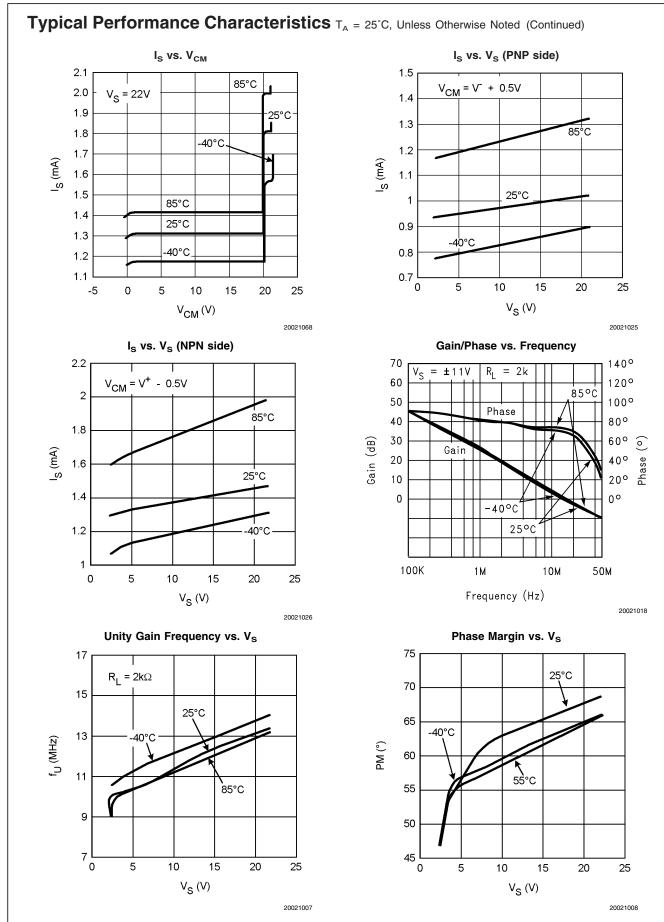
-1

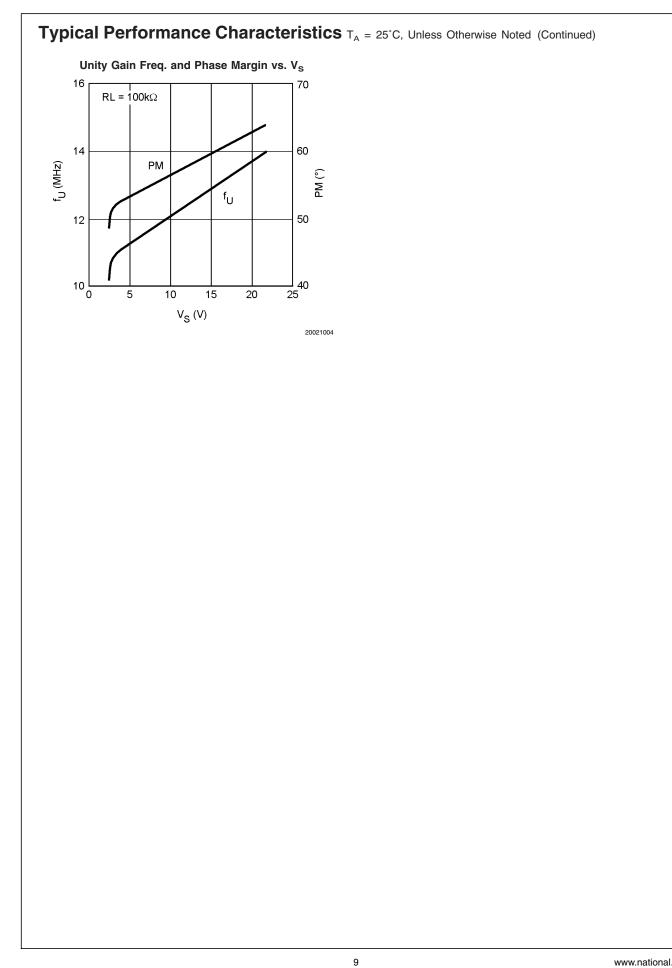
-1.5

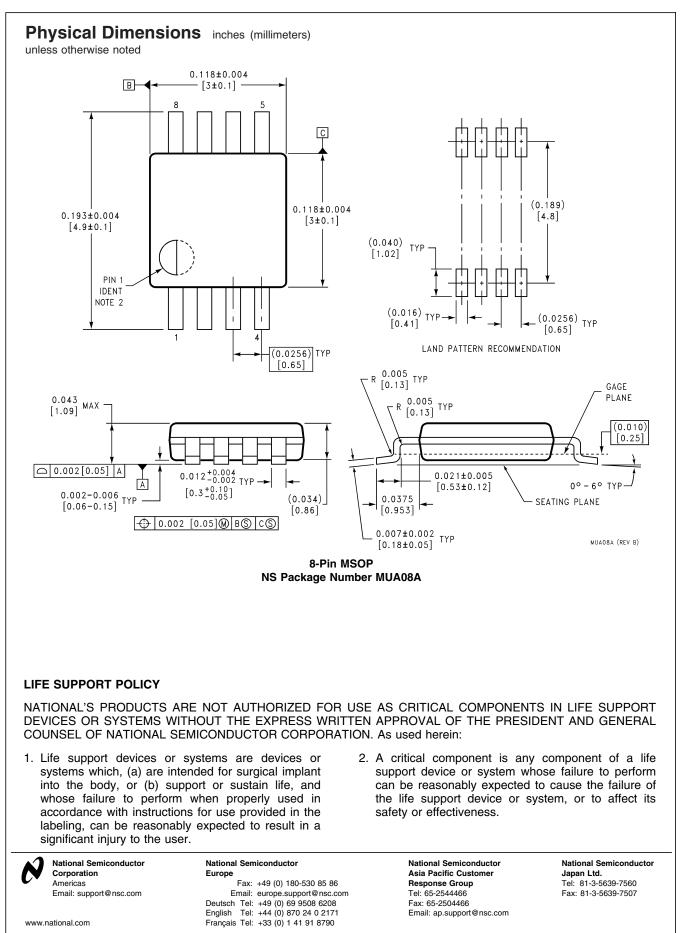

-1

0

V_{0S} (mV)


Vos vs. V_{CM} for 3 Representative Units


LM8262


LM8262

LM8262

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.