Ultralow Distortion, Low Power, Low Noise, High Speed Op Amp

FEATURES

High speed
$850 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth ($\mathrm{G}=+1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, LFCSP)
$750 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth ($\mathrm{G}=+1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, SOIC)
2800 V/ $\mu \mathrm{s}$ slew rate
Low distortion: - $\mathbf{8 8} \mathbf{~ d B c} @ 10 \mathrm{MHz}\left(\mathrm{G}=+1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$)
Low power: 5 mA/amplifier @ 10 V
Low noise: $4.4 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Wide supply voltage range: 5 V to 10 V
Power-down feature
Available in $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ 8-lead LFCSP (single), 8-lead SOIC
(single), and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ 16-lead LFCSP (dual)

APPLICATIONS

Instrumentation

IF and baseband amplifiers
Active filters
ADC drivers
DAC buffers

ADA4857-1/ADA4857-2

TABLE OF CONTENTS

Features 1
Applications 1
Connection Diagrams 1
General Description 1
Revision History 2
Specifications 3
± 5 V Supply 3
+5 V Supply 4
Absolute Maximum Ratings 6
Thermal Resistance 6
Maximum Power Dissipation 6
ESD Caution. 6
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 9
REVISION HISTORY
11/08—Rev. 0 to Rev. A
Changes to Table 5 7
Changes to Table 7 8
Changes to Figure 32 13
Added Figure 44; Renumbered Sequentially 15
Changes to Layout 15
Changes to Table 8 16
Added Active Low-Pass Filter (LFP) Section. 17
Added Figure 48 and Figure 49; Renumbered Sequentially 17
Changes to Grounding Section 18
Exposed Paddle Notation Added to Outline Dimensions 19
Changes to Ordering Guide 20
Test Circuits 15
Applications Information 16
Power-Down Operation 16
Capacitive Load Considerations 16
Recommended Values for Various Gains. 16
Active Low-Pass Filter (LPF) 17
Noise 18
Circuit Considerations 18
PCB Layout 18
Power Supply Bypassing 18
Grounding 18
Outline Dimensions 19
Ordering Guide 20

5/08-Revision 0: Initial Version

SPECIFICATIONS

± 5 V SUPPLY

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=+2, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{F}}=499 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to ground, $\mathrm{PD}=$ no connect, unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth (LFCSP/SOIC) Full Power Bandwidth Bandwidth for 0.1 dB Flatness (LFCSP/SOIC) Slew Rate (10\% to 90\%) Settling Time to 0.1\%	$\begin{aligned} & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p, THD }<-40 \mathrm{dBc} \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p, } \mathrm{R} \text { L }=150 \Omega \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=4 \mathrm{~V} \text { step } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \end{aligned}$	650	$850 / 750$ $600 / 550$ $400 / 350$ 110 $75 / 90$ 2800 15		MHz MHz MHz MHz MHz V/ $\mu \mathrm{s}$ ns
NOISE/HARMONIC PERFORMANCE Harmonic Distortion Input Voltage Noise Input Current Noise			-108 -108 -88 -93 -65 -62 4.4 1.5		dBc dBc dBc dBc dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Bias Current Drift Input Bias Offset Current Open-Loop Gain	Vout $=-2.5 \mathrm{~V}$ to +2.5 V		$\begin{aligned} & \pm 2 \\ & 2.3 \\ & -2 \\ & 24.5 \\ & 50 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 4.5 \\ & -3.3 \end{aligned}$	mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $n A /{ }^{\circ} \mathrm{C}$ nA dB
PD (POWER-DOWN) PIN PD Input Voltage Turn-Off Time Turn-On Time PD Pin Leakage Current	Chip powered down Chip enabled 50% off PD to $<10 \%$ of final $\mathrm{V}_{\text {out }}, \mathrm{V}_{\mathbb{N}}=1 \mathrm{~V}, \mathrm{G}=+2$ 50% off PD to $<10 \%$ of final $\mathrm{V}_{\text {out, }} \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}, \mathrm{G}=+2$ Chip enabled Chip powered down		$\begin{aligned} & \geq\left(V_{c c}-2\right) \\ & \leq\left(V_{c c}-4.2\right) \\ & 55 \\ & 33 \\ & 58 \\ & 80 \end{aligned}$		V V $\mu \mathrm{s}$ ns $\mu \mathrm{A}$ $\mu \mathrm{A}$
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	Common mode Differential mode Common mode $V_{C M}= \pm 1 \mathrm{~V}$		$\begin{aligned} & 8 \\ & 4 \\ & 2 \\ & \pm 4 \\ & -86 \\ & \hline \end{aligned}$		$\mathrm{M} \Omega$ $\mathrm{M} \Omega$ pF V dB
OUTPUT CHARACTERISTICS Output Overdrive Recovery Time Output Voltage Swing Output Current Short-Circuit Current Capacitive Load Drive	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}= \pm 2.5 \mathrm{~V}, \mathrm{G}=+2 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$ Sinking and sourcing 30% overshoot, $\mathrm{G}=+2$		$\begin{aligned} & 10 \\ & \pm 4 \\ & \pm 3.7 \\ & 50 \\ & 125 \\ & 10 \\ & \hline \end{aligned}$		ns V V mA mA pF

ADA4857-1/ADA4857-2

Parameter	Conditions	Min	Typ	Max	Unit
POWER SUPPLY					
Operating Range		4.5		10.5	V
Quiescent Current	$\mathrm{PD} \geq \mathrm{V}_{c \mathrm{C}}-2 \mathrm{~V}$		5	5.5	mA
Quiescent Current (Power Down)	$+\mathrm{V}_{s}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V},-\mathrm{V}_{s}=-5 \mathrm{~V}$	350	450	$\mu \mathrm{~A}$	
Positive Power Supply Rejection	$+V_{s}=5 \mathrm{~V},-\mathrm{V}_{s}=-4.5 \mathrm{~V}$ to -5.5 V	-59	-62		dB
Negative Power Supply Rejection	-65	-68			

+5 V SUPPLY

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=+2, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=499 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to midsupply, $\mathrm{PD}=$ no connect, unless otherwise noted.
Table 2.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth (LFCSP/SOIC) Full Power Bandwidth Bandwidth for 0.1 dB Flatness (LFCSP/SOIC) Slew Rate (10\% to 90\%) Settling Time to 0.1\%	$\begin{aligned} & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p, THD }<-40 \mathrm{dBc} \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p, } \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \end{aligned}$	595	$\begin{aligned} & 800 / 750 \\ & 500 / 400 \\ & 360 / 300 \\ & 95 \\ & 50 / 40 \\ & 1500 \\ & 15 \end{aligned}$		MHz MHz MHz MHz MHz V/ $\mu \mathrm{s}$ ns
NOISE/HARMONIC PERFORMANCE Harmonic Distortion Input Voltage Noise Input Current Noise			$\begin{aligned} & -92 \\ & -90 \\ & -81 \\ & -71 \\ & -69 \\ & -55 \\ & 4.4 \\ & 1.5 \end{aligned}$		dBc dBc dBc dBc dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Bias Current Drift Input Bias Offset Current Open-Loop Gain	$\mathrm{V}_{\text {Out }}=1.25 \mathrm{~V}$ to 3.75 V		$\begin{aligned} & \pm 1 \\ & 4.6 \\ & -1.7 \\ & 24.5 \\ & 50 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 4.2 \\ & -3.3 \end{aligned}$	mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $n A /{ }^{\circ} \mathrm{C}$ nA dB
PD (POWER-DOWN) PIN PD Input Voltage Turn-Off Time Turn-On Time PD Pin Leakage Current	Chip powered down Chip enabled 50% off PD to $<10 \%$ of final $V_{\text {out }}, V_{\mathbb{N}}=1 \mathrm{~V}, \mathrm{G}=+2$ 50% off PD to $<10 \%$ of final $V_{\text {out }}, V_{\mathbb{N}}=1 \mathrm{~V}, \mathrm{G}=+2$ Chip enable Chip powered down		$\begin{aligned} & \geq\left(V_{c \mathrm{cc}}-2\right) \\ & \leq\left(\mathrm{V}_{\mathrm{cc}}-4.2\right) \\ & 38 \\ & 30 \\ & 8 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~s} \\ & \mathrm{~ns} \\ & \mu \mathrm{~A} \end{aligned}$ $\mu \mathrm{A}$
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	Common mode Differential mode Common mode $\mathrm{V}_{\mathrm{CM}}=2 \mathrm{~V} \text { to } 3 \mathrm{~V}$	-76	$\begin{aligned} & 8 \\ & 4 \\ & 2 \\ & 1 \text { to } 4 \\ & -84 \end{aligned}$		$\mathrm{M} \Omega$ $\mathrm{M} \Omega$ pF V dB

ADA4857-1/ADA4857-2

Parameter	Conditions	Min	Typ	Max	Unit
OUTPUT CHARACTERISTICS					
Overdrive Recovery Time	$\mathrm{G}=+2$		15		ns
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		1 to 4		V
	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		1.1 to 3.9		V
Output Current			50		mA
Short-Circuit Current	Sinking and sourcing		75		mA
Capacitive Load Drive	30% overshoot, G = +2		10		pF
POWER SUPPLY					
Operating Range		4.5		10.5	V
Quiescent Current			4.5	5	mA
Quiescent Current (Power Down)	$\mathrm{PD} \geq \mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$		250	350	$\mu \mathrm{A}$
Positive Power Supply Rejection	$+\mathrm{V}_{5}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$	-58	-62		dB
Negative Power Supply Rejection	$+\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-0.5 \mathrm{~V}$ to +0.5 V	-65	-68		dB

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	11 V
Power Dissipation	See Figure 4
Common-Mode Input Voltage	$-\mathrm{V}_{\mathrm{s}}+0.7 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{s}}-0.7 \mathrm{~V}$
Differential Input Voltage	$\pm \mathrm{V}_{\mathrm{s}}$
Exposed Paddle Voltage	$-\mathrm{V}_{\mathrm{s}}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec$)$	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, θ_{JA} is specified for device soldered in circuit board for surface-mount packages.

Table 4.

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}$	$\boldsymbol{\theta}_{\mathbf{\prime}}$	Unit
8-Lead SOIC	115	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead LFCSP	94.5	34.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP	68.2	19	${ }^{\circ} \mathrm{C} / \mathrm{W}$

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation for the ADA4857 is limited by the associated rise in junction temperature (T_{J}) on the die. At approximately $150^{\circ} \mathrm{C}$, which is the glass transition temperature, the properties of the plastic change. Even temporarily exceeding this temperature limit may change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4857. Exceeding a junction temperature of $175^{\circ} \mathrm{C}$ for an extended period can result in changes in silicon devices, potentially causing degradation or loss of functionality.

The power dissipated in the package $\left(\mathrm{P}_{\mathrm{D}}\right)$ is the sum of the quiescent power dissipation and the power dissipated in the die due to the ADA4857 drive at the output. The quiescent power is the voltage between the supply pins (V_{s}) times the quiescent current (I_{s}).

$$
\begin{aligned}
P_{D} & =\text { Quiescent Power }+(\text { Total Drive Power }- \text { Load Power }) \\
P_{D} & =\left(V_{S} \times I_{S}\right)+\left(\frac{V_{S}}{2} \times \frac{V_{\text {OUT }}}{R_{L}}\right)-\frac{V_{\text {OUT }}{ }^{2}}{R_{L}}
\end{aligned}
$$

RMS output voltages should be considered. If R_{L} is referenced to $-\mathrm{V}_{\mathrm{s}}$, as in single-supply operation, the total drive power is $\mathrm{V}_{\mathrm{s}} \times$ Iout. If the rms signal levels are indeterminate, consider the worst case, when $V_{\text {out }}=V_{S} / 4$ for R_{L} to midsupply.

$$
P_{D}=\left(V_{S} \times I_{S}\right)+\frac{\left(V_{S} / 4\right)^{2}}{R_{L}}
$$

In single-supply operation with R_{L} referenced to $-\mathrm{V}_{\mathrm{S}}$, the worst case is $V_{\text {out }}=V_{s} / 2$.

Airflow increases heat dissipation, effectively reducing θ_{JA}. In addition, more metal directly in contact with the package leads and exposed paddle from metal traces, through holes, ground, and power planes reduces θ_{IA}.
Figure 4 shows the maximum power dissipation in the package vs. the ambient temperature for the SOIC and LFCSP packages on a JEDEC standard 4-layer board. θ_{IA} values are approximations.

Figure 4. Maximum Power Dissipation vs. Temperature for a 4-Layer Board

ESD CAUTION

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 5. 8-Lead LFCSP Pin Configuration

Figure 6. 8-Lead SOIC Pin Configuration

Table 5. 8-Lead LFCSP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	PD	Power Down.
2	FB	Feedback.
3	- IN	Inverting Input.
4	+ IN	Noninverting Input.
5	$-V_{S}$	Negative Supply.
6	NC	No Connect.
7	OUT	Output.
8	$+V_{S}$	Positive Supply.
EP	GND or V_{S}	Exposed Pad. The exposed pad may be connected to GND or V_{S}.

Table 6. 8-Lead SOIC Pin Function Descriptions

Pin No.	Mnemonic	Description
1	FB	Feedback
2	- IN	Inverting Input
3	+ IN	Noninverting Input
4	$-V_{S}$	Negative Supply
5	NC	No Connect
6	OUT	Output
7	$+V_{S}$	Positive Supply
8	PD	Power Down

ADA4857-1/ADA4857-2

Figure 7. 16-Lead LFCSP Pin Configuration

Table 7. 16-Lead LFCSP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	- IN1	Inverting Input 1.
2	+ IN1	Noninverting Input 1.
3,11	NC	No Connect.
4	- Vs 2	Negative Supply 2.
5	OUT2	Output 2.
6	$+V_{s 2}$	Positive Supply 2.
7	PD2	Power Down 2.
8	FB2	Feedback 2.
9	- IN2	Inverting Input 2.
10	+ IN2	Noninverting Input 2.
12	$-V_{s 1}$	Negative Supply 1.
13	OUT1	Output 1.
14	$+V_{s 1}$	Positive Supply 1.
15	PD1	Power Down 1.
16	FB1	Feedback 1.
EP	GND or Vs	Exposed Pad. The exposed pad may be connected to GND or Vs.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}=25^{\circ} \mathrm{C}\left(\mathrm{G}=+1, \mathrm{R}_{\mathrm{F}}=0 \Omega\right.$, and, R_{G} open; $\mathrm{G}=+2$, and $\left.\mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=499 \Omega\right)$, unless otherwise noted.

Figure 8. Small Signal Frequency Responses for Various Gains (LFCSP)

Figure 9. Small Signal Frequency Response for Various Supply Voltages (LFCSP)

Figure 10. Small Signal Frequency Response for Various Temperatures (LFCSP)

Figure 11. Large Signal Frequency Responses for Various Gains (LFCSP)

Figure 12. Small Signal Frequency Response for Various Capacitive Loads (LFCSP)

Figure 13. Large Signal Frequency Response vs. Vout (LFCSP)

ADA4857-1/ADA4857-2

Figure 14. Small Signal Frequency Response for Various Resistive Loads (LFCSP)

Figure 15. Small Signal Frequency Response for Various Gains (LFCSP)

Figure 16. Harmonic Distortion vs. Frequency and Gain (LFCSP)

Figure 17. Large Signal Frequency Response for Various Resistive Loads (LFCSP)

Figure 18. Small Signal Frequency Response for Various Gains (SOIC)

Figure 19. Harmonic Distortion vs. Frequency and Load (LFCSP)

Figure 20. Harmonic Distortion vs. Output Voltage

Figure 21. 0.1 dB Flatness vs. Frequency for Various Output Voltages (SOIC)

Figure 22. Large Signal Transient Response for Various Output Voltages (SOIC)

Figure 23. Short-Term Settling Time (LFCSP)

Figure 24.0.1 dB Flatness vs. Frequency for Various Output Voltages (LFCSP)

Figure 25. Large Signal Transient Response for Various Output Voltages (LFCSP)

ADA4857-1/ADA4857-2

Figure 26. Small Signal Transient Response for Various Capacitive Loads (LFCSP)

Figure 27. Small Signal Transient Response for Various Supply Voltages (LFCSP)

Figure 28. Closed-Loop Output Impedance vs. Frequency for Various Gains

Figure 29. Large Signal Transient Response for Various Load Resistances (SOIC)

Figure 30. Large Signal Transient Response for Various Load Resistances (LFCSP)

Figure 31. Closed-Loop Input Impedance vs. Frequency

Figure 32. Open-Loop Gain and Phase vs. Frequency

Figure 33. Input Overdrive Recovery for Various Resistive Loads

Figure 34. Power Supply Rejection Ratio (PSRR) vs. Frequency

Figure 35. PD Isolation vs. Frequency

Figure 36. Output Overdrive Recovery for Various Resistive Loads

Figure 37. Common-Mode Rejection Ratio (CMRR) vs. Frequency

ADA4857-1/ADA4857-2

Figure 38. Input Current Noise vs. Frequency

Figure 39. Supply Current

Figure 40. Input Voltage Noise vs. Frequency

Figure 41. Disable/Enable Switching Speed

ADA4857-1/ADA4857-2

TEST CIRCUITS

Figure 42. Noninverting Load Configuration

Figure 43. Positive Power Supply Rejection

Figure 44. Typical Capacitive Load Configuration (LFCSP)

Figure 45. Common-Mode Rejection

Figure 46. Negative Power Supply Rejection

Figure 47. Typical Capacitive Load Configuration (SOIC)

ADA4857-1/ADA4857-2

APPLICATIONS INFORMATION POWER-DOWN OPERATION

The PD pin is used to power down the chip, which reduces the quiescent current and the overall power consumption. It is low enabled, which means that the chip is on with full power when the PD pin input voltage is low (see Table 8). Note that PD does not put the output in a high-Z state, which means that the ADA4857 should not be used as a multiplexer.

Table 8. PD Operation Table Guide

Condition	Supply Voltage		
	$\mathbf{5 5} \mathbf{~ V}$	$\mathbf{\pm 2 . 5} \mathbf{~ V}$	$\mathbf{+ 5} \mathbf{~ V}$
Enabled	$\leq+0.8 \mathrm{~V}$	$\leq-1.7 \mathrm{~V}$	$\leq+0.8 \mathrm{~V}$
Powered down	$\geq+3 \mathrm{~V}$	$\geq+0.5 \mathrm{~V}$	$\geq+3 \mathrm{~V}$

CAPACITIVE LOAD CONSIDERATIONS

When driving a capacitive load using the SOIC package, Rssub is used to reduce the peaking (see Figure 47). An optimum resistor value of 40Ω is found to maintain the peaking within 1 dB for any capacitive load up to 40 pF .

RECOMMENDED VALUES FOR VARIOUS GAINS

Table 9 provides a useful reference for determining various gains and associated performance. R_{F} and R_{G} are kept low to minimize their contribution to the overall noise performance of the amplifier.

Table 9. Various Gain and Recommended Resistor Values Associated with Conditions; $\mathrm{V}_{\mathrm{s}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{T}}=49.9 \Omega$

Gain	RF($\mathbf{\Omega}$)	$\mathbf{R G}_{\mathrm{G}}(\mathbf{\Omega})$	$\begin{aligned} & \hline-3 \mathrm{~dB} \text { SS BW (MHz), } \\ & \mathrm{V}_{\text {out }}=200 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \hline \end{aligned}$	Slew Rate (V/ $\mu \mathrm{s}$), Vout = 2 V Step	ADA4857 Voltage Noise (nV/VHz), RTO	Total System Noise (nV/VHz), RTO
+1	0	N/A	850	2350	4.4	4.49
+2	499	499	360	1680	8.8	9.89
+5	499	124	90	516	22.11	23.49
+10	499	56.2	43	213	43.47	45.31

ADA4857-1/ADA4857-2

ACTIVE LOW-PASS FILTER (LPF)

Active filters are used in many applications such as antialiasing filters and high frequency communication IF strips. With a 410 MHz gain bandwidth product and high slew rate, the ADA4857-2 is an ideal candidate for active filters. Figure 48 shows the frequency response of 90 MHz and 45 MHz LPFs. In addition to the bandwidth requirements, the slew rate must be capable of supporting the full power bandwidth of the filter. In this case, a 90 MHz bandwidth with a 2 V p-p output swing requires at least $2800 \mathrm{~V} / \mu \mathrm{s}$.
The circuit shown in Figure 49 is a 4-pole, Sallen-Key LPF. The filter comprises two identical cascaded Sallen-Key LPF sections, each with a fixed gain of $G=2$. The net gain of the filter is equal to $G=4$ or 12 dB . The actual gain shown in Figure 48 is 12 dB . This does not take into account the output voltage being divided in half by the series matching termination resistor, R_{T}, and the load resistor.

Setting the resistors equal to each other greatly simplifies the design equations for the Sallen-Key filter. To achieve 90 MHz , the value of R should be set to 182Ω. However, if the value of R is doubled, the corner frequency is cut in half to 45 MHz . This would be an easy way to tune the filter by simply multiplying the value of $\mathrm{R}(182 \Omega)$ by the ratio of 90 MHz and the new corner frequency in megahertz.

Figure 48 shows the output of each stage is of the filter and the two different filters corresponding to $\mathrm{R}=182 \Omega$ and $\mathrm{R}=365 \Omega$. Resistor values are kept low for minimal noise contribution, offset voltage, and optimal frequency response. Due to the low capacitance values used in the filter circuit, the PCB layout and minimization of parasitics is critical. A few picofarads can detune the corner frequency, f_{c} of the filter. The capacitor values shown in Figure 49 actually incorporate some stray PCB capacitance.

Capacitor selection is critical for optimal filter performance. Capacitors with low temperature coefficients, such as NPO ceramic capacitors and silver mica, are good choices for filter elements.

Figure 48. Low-Pass Filter Response

07040-075
Figure 49. 4-Pole, Sallen-Key Low-Pass Filter (ADA4857-2)

ADA4857-1/ADA4857-2

NOISE

To analyze the noise performance of an amplifier circuit, identify the noise sources and determine if the source has a significant contribution to the overall noise performance of the amplifier. To simplify the noise calculations, noise spectral densities were used rather than actual voltages to leave bandwidth out of the expressions (noise spectral density, which is generally expressed in $n V / \sqrt{H z}$, is equivalent to the noise in a 1 Hz bandwidth).
The noise model shown in Figure 50 has six individual noise sources: the Johnson noise of the three resistors, the op amp voltage noise, and the current noise in each input of the amplifier. Each noise source has its own contribution to the noise at the output. Noise is generally referred to input (RTI), but it is often easier to calculate the noise referred to the output (RTO) and then divide by the noise gain to obtain the RTI noise.

All resistors have Johnson noise that is calculated by

$$
\sqrt{(4 k B T R)}
$$

where:
k is Boltzmann's Constant $\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$.
B is the bandwidth in Hertz.
T is the absolute temperature in Kelvin.
R is the resistance in ohms.
A simple relationship that is easy to remember is that a 50Ω resistor generates a Johnson noise of $1 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at $25^{\circ} \mathrm{C}$.
In applications where noise sensitivity is critical, care must be taken not to introduce other significant noise sources to the amplifier. Each resistor is a noise source. Attention to the following areas is critical to maintain low noise performance: design, layout, and component selection. A summary of noise performance for the amplifier and associated resistors can be seen in Table 9.

CIRCUIT CONSIDERATIONS

Careful and deliberate attention to detail when laying out the ADA4857 board yields optimal performance. Power supply bypassing, parasitic capacitance, and component selection all contribute to the overall performance of the amplifier.

PCB LAYOUT

Because the ADA4857 can operate up to 850 MHz , it is essential that RF board layout techniques be employed. All ground and power planes under the pins of the ADA4857 should be cleared of copper to prevent the formation of parasitic capacitance between the input pins to ground and the output pins to ground. A single mounting pad on the SOIC footprint can add as much as 0.2 pF of capacitance to ground if the ground plane is not cleared from under the mounting pads. The low distortion pinout of the ADA4857 increases the separation distance between the inputs and the supply pins, which improves the second harmonics. In addition, the feedback pin reduces the distance between the output and the inverting input of the amplifier, which helps minimize the parasitic inductance and capacitance of the feedback path, reducing ringing and peaking.

POWER SUPPLY BYPASSING

Power supply bypassing for the ADA4857 was optimized for frequency response and distortion performance. Figure 42 shows the recommended values and location of the bypass capacitors. The $0.1 \mu \mathrm{~F}$ bypassing capacitors should be placed as close as possible to the supply pins. Power supply bypassing is critical for stability, frequency response, distortion, and PSR performance. The capacitor between the two supplies helps improve PSR and distortion performance. The $10 \mu \mathrm{~F}$ electrolytic capacitors should be close to the $0.1 \mu \mathrm{~F}$ capacitors; however, it is not as critical. In some cases, additional paralleled capacitors can help improve frequency and transient response.

GROUNDING

Ground and power planes should be used where possible. Ground and power planes reduce the resistance and inductance of the power planes and ground returns. The returns for the input, output terminations, bypass capacitors, and R_{G} should all be kept as close to the ADA4857 as possible. The output load ground and the bypass capacitor grounds should be returned to the same point on the ground plane to minimize parasitic trace inductance, ringing, and overshoot and to improve distortion performance. The ADA4857 LFSCP packages feature an exposed paddle. For optimum electrical and thermal performance, solder this paddle to the ground plane or the power plane. For more information on high speed circuit design, see A Practical Guide to High-Speed Printed-Circuit-Board Layout at www.analog.com.

OUTLINE DIMENSIONS

Figure 51. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Thin, Dual Lead (CP-8-2)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 52. 8-Lead Standard Small Outline Package [SOIC_N] ($R-8$)
Dimensions shown in millimeters and (inches)

ADA4857-1/ADA4857-2

COMPLIANT TO JEDEC STANDARDS MO-220-VGGC
Figure 53.16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Thin Quad (CP-16-4)
Dimensions shown in millimeters

Model	Temperature Range	Package Description	Package Option	Ordering Quantity	Branding
ADA4857-1YCPZ-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead LFCSP_VD	CP-8-2	250	H15
ADA4857-1YCPZ-RL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead LFCSP_VD	CP-8-2	5,000	H15
ADA4857-1YCPZ-R7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead LFCSP_VD	CP-8-2	1,500	H15
ADA4857-1YRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	1	
ADA4857-1YRZ-R71 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	2,500	
ADA4857-1YRZ-RL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	1,000	
ADA4857-2YCPZ-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP_VQ	CP-16-4	250	
ADA4857-2YCPZ-RL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP_VQ	CP-16-4	5,000	
ADA4857-2YCPZ-R7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP_VQ	CP-16-4	1,500	

[^0]
[^0]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

