Features

- Utilizes the ARM7TDMI[™] ARM Thumb Processor Core
 - High-performance 32-bit RISC Architecture
 - High-density 16-bit Instruction Set
 - Leader in MIPS/Watt
 - Embedded ICE (In-circuit Emulation)
- 2K Bytes (M63200) or 3K Bytes (M43300) Internal RAM
- Fully-programmable External Bus Interface (EBI)
 - Maximum External Address Space of 64M Bytes
 - Up to 8 Chip Selects
 - Software Programmable 8/16-bit External Data Bus
- Multi-processor Interface (M63200 Only)
 - High-performance External Processor Interface
 - 512 x 16-bit Dual-port RAM
- 8-channel Peripheral Data Controller
- 8-level Priority, Individually Maskable, Vectored Interrupt Controller
 - 5 External Interrupts, Including a High-priority, Low-latency Interrupt Request
- 58 Programmable I/O Lines
- 6-channel 16-bit Timer/Counter
 - 6 External Clock Inputs
 - 2 Multi-purpose I/O Pins per Channel
- 3 USARTs
 - 2 Dedicated Peripheral Data Controller (PDC) Channels per USART
 - Support for up to 9-bit Data Transfers
- Master/Slave SPI Interface
 - 2 Dedicated Peripheral Data Controller (PDC) Channels
 - 8- to 16-bit Programmable Data Length
 - 4 External Slave Chip Selects
- Programmable Watchdog Timer
- Power Management Controller (PMC)
 - CPU and Peripherals Can be Deactivated Individually
- IEEE 1149.1 JTAG Boundary-scan on All Active Pins
- Fully Static Operation: 0 Hz to 25 MHz (12 MHz at 1.8V Core, 25 MHz at 2.7V Core)
- 1.8V to 3.6V Core Operating Voltage Range
- 2.7V to 5.5V I/O Operating Voltage Range
- -40°C to +85°C Operating Temperature Range
- AT91M63200 in a 176-lead TQFP Package; AT91M43300 in a 144-ball BGA Package

Description

The AT91M63200 and AT91M43300 are members of the Atmel AT91 16/32-bit microcontroller family which is based on the ARM7TDMI processor core.

This processor has a high-performance 32-bit RISC architecture with a high-density 16-bit instruction set and very low power consumption. In addition, a large number of internally banked registers result in very fast exception handling, making the device ideal for real-time control applications. The AT91 ARM-based MCU family also features Atmel's high-density, in-system programmable, nonvolatile memory technology.

Both products have a direct connection to off-chip memory, including Flash, through the External Bus Interface.

For the AT91M63200, the Multi-processor Interface (MPI) provides a high-performance interface with an external coprocessor or a high bandwidth peripheral.

Both products are manufactured using Atmel's high-density CMOS technology. By combining the ARM7TDMI microcontroller core with on-chip SRAM, a multi-processor interface and a wide range of peripheral functions on a monolithic chip, the AT91M63200 and AT91M43300 provide a highly-flexible and cost-effective solution to many compute-intensive real-time applications.

AT91 ARM® Thumb® Microcontrollers

AT91M63200 AT91M43300

Electrical Characteristics

Rev. 1090B-06/00

Absolute Maximum Ratings*

Operating Temperature (Industrial)-40°C to +85°C

Voltage on Any Input Pin
with Respect to Ground-0.5V to +5.5V

Maximum Operating Voltage (Core)3.6V

Maximum Operating Voltage (I/Os)5.5V

DC Output Current4 mA

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{DDCORE} ⁽¹⁾	DC Supply Voltage Core		1.8		3.6	V
V_{DDIO}	DC Supply I/Os	$2.7V \le V_{DDCORE} \le 3.6V$	V _{DDCORE}		V _{DDCORE} + 2.0 or 5.5	V
DDIO		1.8V ≤ V _{DDCORE} ≤ 2.7V	2.7		3.3	
T _A	Ambient Temperature		-40		85	°C
V _{IL}	Low-level Input Voltage		-0.3		0.8	V
V _{IH}	High-level Input Voltage		2		V _{DDIO} + 0.3	V
		$2.7 \le V_{DDIO} \le 3.6$; $I_{O}^{(2)} = 2 \text{ mA}$			0.4	V
V _{OL}	Low-level Output Voltage	$V_{DDCORE} \le V_{DDIO} \le 5.5V;$ $I_{O}^{(2)} = 4 \text{ mA}$			0.4	V
		$2.7 \le V_{DDIO} \le 3.6$; $I_{O}^{(2)} = 2 \text{ mA}$	V _{DDIO} - 0.4			V
V _{OH}	High-level Output Voltage	$V_{DDCORE} \le V_{DDIO} \le 5.5V;$ $I_O^{(2)} = 4 \text{ mA}$	V _{DDIO} - 0.4			V
I _{LEAK}	Input-leakage Current				100	nA
I _{PULL}	Input Pull-up Current				100	μΑ
I _{CAP}	Input Capacitance				12	pF
I _{SC}	Static Current	V _{DDIO} = V _{DDCORE} = 3.6V MCKI = 0 Hz, NRST = 1		60		μΑ

Notes: 1. See Table 4.

2. I_0 = Output current.

Power Consumption

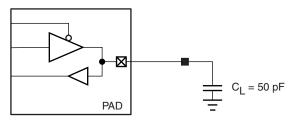
The values in the following tables are measured values in the operating conditions indicated (i.e. $V_{DDIO} = 3.3V$, $V_{DDCORE} = 3.3V$ or 1.8V; $T = 25^{\circ}$). They represent the power consumption on the V_{DDCORE} power supply.

Table 1. Core Power Consumption

		V _{DDCORE}		
Mode	Conditions	1.8V	3.3V	Unit
Reset		0.05	0.41	
Normal	Fetch in ARM mode out of Internal SRAM All peripheral clocks activated	3.1	13.3	
	Fetch in ARM mode out of Internal SRAM All peripheral clocks deactivated	1.8	7.4	mW/MHz
	All peripheral clocks activated	2.0	8.7	
Idle	All peripheral clocks deactivated	0.54	2.4	

 Table 2. Core Power Consumption per Peripheral

	V _{DDCORE}		
Peripheral	1.8V	3.3V	Unit
PIO Controller	0.07	0.32	
Timer Counter channel	0.07	0.28	
Timer Counter Block (3 channels)	0.18	0.75	mW/MHz
USART	0.22	0.99	
SPI	0.22	1.02	



Conditions

Environment Constraints

The output delays are valid for a capacitive load of 50 pF as shown in Figure 1.

Figure 1. Output/Bidir Pad Capacitive Load

Timing Results

The output delays are for a capacitive load of 50 pF as shown in Figure 1.

In order to obtain the timing for other capacitance values, the following equation should be used.

$$t = t_{datasheet} + factor \times (C_{load} - 50pF)$$

Table 3. Derating Factor Due to Capacitive Load Variation

Parameter	Industrial	Units
Factor	0.058	ns/pF

In the tables that follow, the output delays are for industrial conditions only.

Voltage Ranges

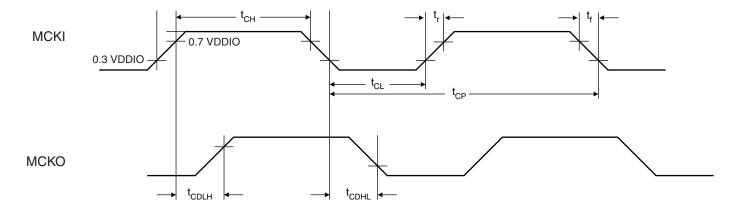
Although the core may be supplied between 1.8V and 3.6V, there are two voltage ranges that have been characterized for timing purposes.

These are from 1.8V to 2.2V (core at 2V), and 2.7V to 3.6V (core at 3.3V). Timing values are given for both sets of conditions, as in Table 4.

Table 4. Voltage Ranges for Timing Characterization

	V _{DD0}	V _{DDCORE}		DIO	
Condition	Minimum	Maximum	Minimum	Maximum	Unit
Core at 2V	1.8	2.2	2.7	3.3	V
Core at 3.3V	2.7	3.6	2.7	5.5	V

Clock Waveforms


Table 5. Clock Waveform Parameters

		Mini	Minimum		Maximum	
Symbol	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
1/(t _{CP})	Oscillator Frequency			12	25	MHz
t _{CP}	Main Clock Period	83	40			
t _{CH}	High Time	TBD	18			
t _{CL}	Low Time	TBD	18			ns
t _r	Rising Edge			TBD	7	
t _f	Falling Edge			TBD	7	

Table 6. Clock Propagation Times

		Mini	mum	Maxi	mum	
Symbol	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
t _{CDLH}	Rising Edge Propagation Time	TBD	20	TBD	TBD	
t _{CDHL}	Falling Edge Propagation Time	TBD	18	TBD	TBD	ns

Figure 2. Clock Waveform

AC Characteristics

EBI Signals Relative to MCKI

The following tables show timings relative to operating condition limits defined in Table 4. See Figure 3.

Table 7. General Purpose EBI Signals

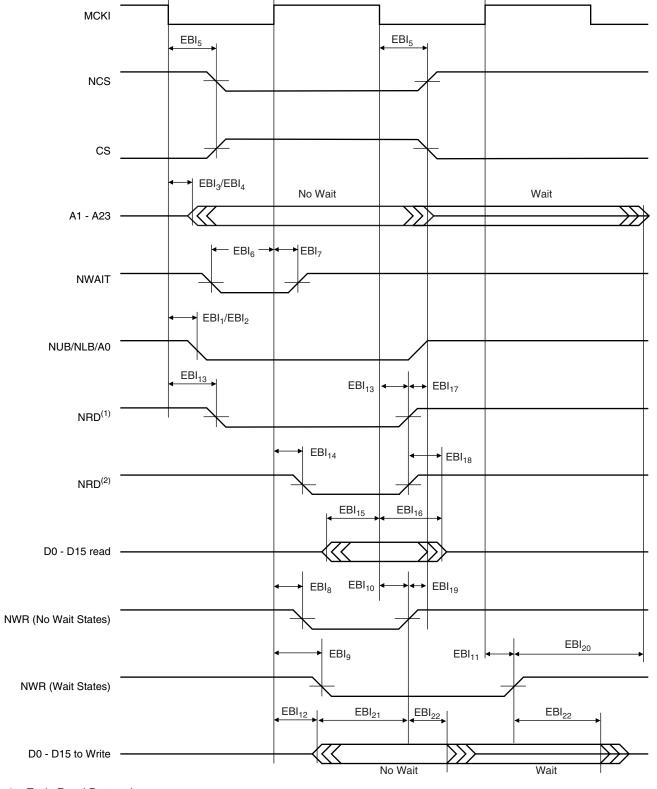
		Minimum Maximum		mum		
Symbol	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
EBI ₁	MCKI Falling to NUB Valid			TBD	20	ns
EBI ₂	MCKI Falling to NLB/A0 Valid			TBD	20	ns
EBI ₃	MCKI Falling to A7 - A1 Valid			TBD	20	ns
EBI ₄	MCKI Falling to A23 - A8 Valid			TBD	20	ns
EBI ₅	MCKI Falling to Chip Select	TBD	5	TBD	20	ns
EBI ₆	NWAIT Setup before MCKI Rising	TBD	5			ns
EBI ₇	NWAIT Hold after MCKI Rising	TBD	4			ns

Table 8. EBI Write Signals

		Mini	mum	Maxi	mum	
Symbol	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
EBI ₈	MCKI Rising to NWR Active (No Wait States)			TBD	20	ns
EBI ₉	MCKI Rising to NWR Active (Wait States)			TBD	20	ns
EBI ₁₀	MCKI Falling to NWR Inactive (No Wait States)			TBD	20	ns
EBI ₁₁	MCKI Rising to NWR Inactive (Wait States)			TBD	20	ns
EBI ₁₂	MCKI Rising to D0 - D15 Out Valid			TBD	20	ns
EBI ₁₉	NWR High to A23 - A1, NUB/NLB/A0, NCS, CS Changes (No Wait States)	TBD	2			ns
EBI ₂₀	NWR High to A23 - A1, NCS, CS Changes (Wait States)	t _{CP/2}				ns
EBI ₂₁	Data Out Valid before NWR High	t _{CH} - 5				ns
EBI ₂₂	Data Out Valid after NWR High	t _C	P/2			ns

Table 9. EBI Read Signals

		Minimum		Maxi	mum	
Symbol	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
EBI ₁₃	MCKI Falling to NRD Valid ⁽¹⁾	TBD	5	TBD	18	
EBI ₁₄	MCKI Rising to NRD Valid ⁽²⁾			TBD	20	
EBI ₁₅	D0 - D15 in Setup before MCKI Falling	TBD	0			
EBI ₁₆	D0 - D15 in Hold after MCKI Falling	TBD	3			ns
EBI ₁₇	NRD High to A23 - A1, NCS, CS Changes	TBD	0			
EBI ₁₈	Data Hold after NRD High	TBD	0			


Notes: 1. Early Read Protocol

2. Standard Read Protocol

Figure 3. EBI Signals Relative to MCKI

Notes: 1. Early Read Protocol

2. Standard Read Protocol

8 AT91M63200/M43300

Peripheral Signals Relative to MCKI

USART Signals

Table 10. USART Outputs

		Mini	mum	Maximum		
Symbol	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
US ₁	MCKI Rising to SCK Output Rising/Falling	TBD	TBD	TBD	25	ns
US ₂	MCKI Rising to TXD Toggling	TBD	TBD	TBD	35	ns
US ₃	SCK Output Falling to TXD Toggling	TBD	TBD	TBD	10	ns
US ₄	SCK Input Falling to TXD Toggling	TBD	TBD	TBD	2(t _{CP}) + 35	ns

The inputs can be used synchronously or asynchronously (in relation to MCKI).

For synchronous and asynchronous USART inputs, certain setup/hold constraints must be met. These constraints are shown in Tables 11 and 12 and are represented in Figure 4.

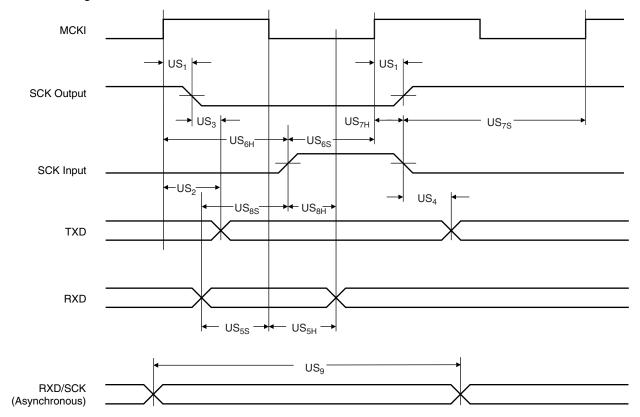
For asynchronous inputs, a minimum pulse-width is necessary as shown in Table 13 and as represented in Figure 4.

Table 11. USART Synchronous Input Setup/Hold Constraints

Symbol	Type of Input	Parameter	Setup	Hold	Units
US ₅	Synchronous	RXD Toggling Relative to MCKI Falling	0	5	ns
US ₆	Synchronous	SCK Input Rising Relative to MCKI Rising	0	5	ns
US ₇	Synchronous	SCK Input Falling Relative to MCKI Rising	0	5	ns

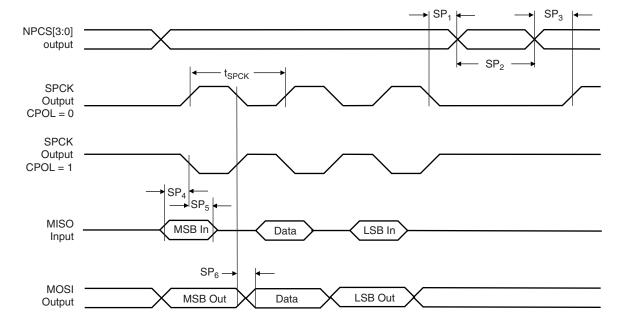
Table 12. USART Asynchronous Input Setup/Hold Constraints

Symbol	Type of Input	Parameter	Setup	Hold	Units
US ₈	Asynchronous	RXD Toggling Relative to SCK Input Rising	t _{CP/2} - 2	t _{CP/2} + 2	ns


Table 13. USART Asynchronous Input Minimum Pulse-width

Symbol	Type of Input	Parameter	Pulse-width	Units
US ₉	Asynchronous	RXD/SCK Minimum Pulse-width	3(t _{CP} /2)	ns

Figure 4. USART Signals Relative to MCKI



SPI Signals

Table 14. SPI Signals in Master Mode

		Minimum		Maximum		
Symbol	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
t _{SPCK}	SPI Operating Period	4(1	t _{CP})	16320(t _{CP})		ns
f _{SPCK}	SPI Operating Frequency	1/163	20(t _{CP})	1/4(t _{CP})		GHz
SP ₁	Delay before NPCS[3:0]	4(t _{CP})		261120(t _{CP})		ns
SP ₂	Delay between Chip Selects	6(1	t _{CP})	8160(t _{CP})		ns
SP ₃	Delay before SPCK	2(t _{CP})		8160(t _{CP})		ns
SP ₄	MISO/SPCK Setup Time			TBD	18	ns
SP ₅	MISO/SPCK Hold Time	TBD	0			ns
SP ₆	MOSI Valid after SPCK Edge			TBD	7	ns

Figure 5. SPI Signals

Timer Counter Signals

Due to internal synchronization of input signals, there is a delay between an input event and a corresponding output event. This delay is $3(t_{CP})$ in Waveform Event Detection mode and $4(t_{CP})$ in Waveform Total-count Detection mode. In addition there are the following delays relative to MCKI waveforms.

Table 15. Timer Outputs

		Maximum		
Symbol	Parameter	Core at 2V	Core at 3.3V	Units
TC ₁	MCKI Rising to TIOA Rising	TBD	22	
TC ₂	MCKI Rising to TIOA Falling	TBD	22	
TC ₃	MCKI Rising to TIOB Rising	TBD	22	ns
TC ₄	MCKI Rising to TIOB Falling	TBD	22	

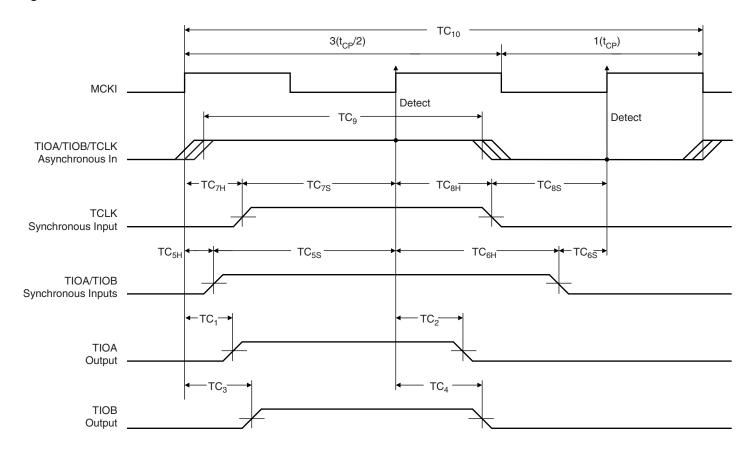
The inputs can be used synchronously or asynchronously (in relation to MCKI).

For synchronous Timer inputs, certain setup/hold constraints must be met. These constraints are shown in the Table 16 and are represented in Figure 6.

For asynchronous inputs, a minimum pulse-width and a minimum input period are necessary as shown in Tables 17 and 18 and as represented in Figure 6.

Table 16. Synchronous Timer Inputs

			Setup		Ho		
Symbol	Type of Input	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
TC ₅	Synchronous	TIOA/TIOB Rising Relative to MCKI Rising	TBD	2	TBD	5	
TC ₆	Synchronous	TIOA/TIOB Falling Relative to MCKI Rising	TBD	2	TBD	5	ns
TC ₇	Synchronous	TCLK Rising Relative to MCKI Rising	TBD	2	TBD	5	
TC ₈	Synchronous	TCLK Falling Relative to MCKI Rising	TBD	2	TBD	5	

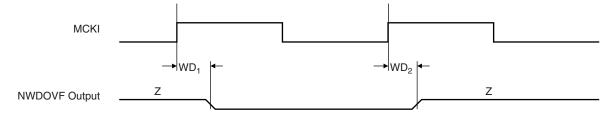

 Table 17. Asynchronous Timer Input Minimum Pulse-width

Symbol Type of Inputs		Parameter	Pulse-width	Units
TC ₉	Asynchronous	TCLK/TIOA/TIOB Minimum Pulse-width	3(t _{CP} /2)	ns

Table 18. Asynchronous Timer Input Minimum Input Period

Symbol	Type of Inputs	Parameter	Input Period	Units
TC ₁₀	Asynchronous	TCLK/TIOA/TIOB Minimum Input Period	5(t _{CP} /2)	ns

Figure 6. Timer Relative to MCKI



Watchdog Timer Signals

Table 19. Watchdog Timer Outputs

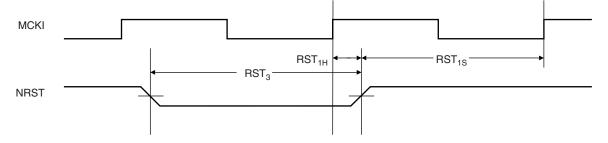
		Maximum		
Symbol	Parameter	Core at 2V	Core at 3.3V	Units
WD ₁	MCKI Rising to NWDOVF Rising	TBD	20	20
WD ₂	MCKI Rising to NWDOVF Falling	TBD	20	ns

Figure 7. Watchdog Signals Relative to MCKI

Reset Signals

Certain setup constraints must be met. These constraints are shown in Table 20 and are represented in Figure 8.

Table 20. Reset Setup Constraints


		Setup		
Symbol	Parameter	Core at 2V	Core at 3.3V	Units
RST ₁	NRST Rising Related to MCKI Rising	TBD	5	ns

A minimum pulse width is necessary as shown in Table 21 and as represented in Figure 8.

Table 21. Reset Minimum Pulse-width

Symbol Parameter		Pulse-width	Units
RST ₃	NRST Minimum Pulse-width	10(t _{CP})	ns

Figure 8. Reset Signals Relative to MCKI

Only the NRST rising edge is synchronized. The falling edge is asynchronous.

14 AT91M63200/M43300

Advanced Interrupt Controller Signals

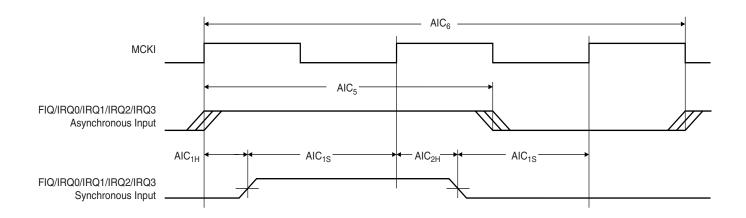
The inputs can be used synchronously or asynchronously (in relation to MCKI).

For synchronous AIC inputs, certain setup/hold constraints must be met. These constraints are shown in Table 22 and are represented in Figure 9.

For asynchronous inputs, a minimum pulse width is necessary as shown in Table 23 and as represented in Figure 9.

Table 22. AIC Synchronous Input Setup/Hold Constraints

			Se	Setup		Hold	
Symbol	Туре	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
AIC ₁	Synchronous	FIQ/IRQ0/IRQ1/IRQ2/IRQ3 Rising. Relative to MCKI Rising	TBD	0	TBD	4	ns
AIC ₂	Synchronous	FIQ/IRQ0/IRQ1/IRQ2/IRQ3 Falling. Related to MCKI Rising	TBD	0	TBD	4	ns


Table 23. AIC Asynchronous Input Minimum Pulse-width

Symbol	Туре	Parameter	Pulse-width	Units
AIC ₅	Asynchronous	FIQ/IRQ0/IRQ1/IRQ2/IRQ3 Minimum Pulse-width	3(t _{CP} /2)	ns

Table 24. AIC Asynchronous Input Minimum Input Period

Symbol	Туре	Parameter	Input Period	Units
AIC ₆	Asynchronous	AIC Minimum Input Period	5(t _{CP} /2)	ns

Figure 9. AIC Signals Relative to MCKI

Parallel I/O Signals

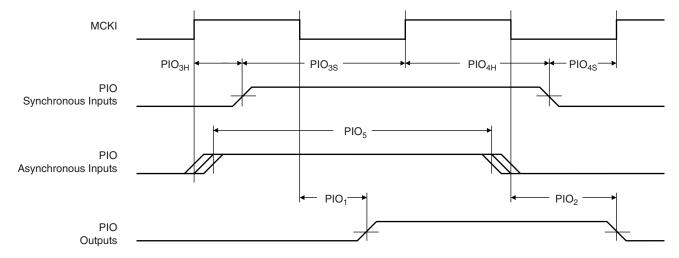
Table 25. PIO Outputs

		Maxi	mum	
Symbol	Parameter	Core at 2V	Core at 3.3V	Units
PIO ₁	MCKI Falling to PIO Output Rising	TBD	22	ns
PIO ₂	MCKI Falling to PIO Output Falling	TBD	22	ns

The inputs can be used synchronously or asynchronously (in relation to MCKI).

For synchronous PIO inputs, certain setup/hold constraints must be met. These constraints are shown in the Table 26 and are represented in Figure 10.

For asynchronous inputs, a minimum pulse width is necessary as shown in Table 27 and as represented in Figure 10.


Table 26. PIO Synchronous Input Setup/Hold Constraints

			Se	tup	Н	old	
Symbol	Туре	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
PIO ₃	Synchronous	PIO Input Rising Related to MCKI Rising	TBD	2	TBD	5	ns
PIO ₄	Synchronous	PIO Input Falling Related to MCKI Rising	TBD	2	TBD	5	ns

Table 27. PIO Asynchronous Input Minimum Pulse-width

Symbol	Туре	Parameter	Pulse-width	Units
PIO ₅	Asynchronous	PIO Input Minimum Pulse-width	3(t _{CP} /2)	ns

Figure 10. PIO Signals Relative to MCKI

Multi-processor Interface Signals (AT91M63200 Only)

Figure 11. External Arbitration

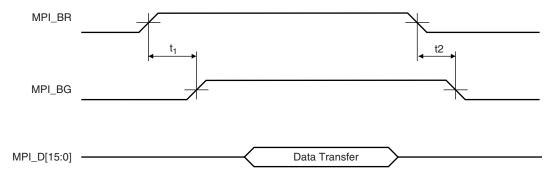


Table 28. External Arbitration

		Minimum		Maxi		
Symbol	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
t ₁	MPI_BR High to MPI_BG High Delay (30 pf)	t _c	CP	2 x t _{Cl}	_{>} + 12	ns
t ₂	MPI_BR Low to MPI_BG Low			TBD	12	

Table 29. MPI Read Access

		Mini	mum	Maxi	mum	
Symbol	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Units
t _{RC}	Read Cycle Time	TBD	22			ns
t _{AA}	Address Access Time			TBD	22	ns
t _{ACS}	Chip Select Access Time			TBD	22	ns
t _{OE}	Output Enable to Output Valid			TBD	10	ns
t _{LB,} t _{UB}	Byte Select to Output Valid			TBD	10	ns
t _{OH}	Output Hold from Address Change	TBD	0			ns
t _{CLZ}	Chip Select to Output in Low-Z	TBD	0			ns
t _{OLZ}	Output Enable to Output in Low-Z	TBD	0			ns
t _{LBLZ,} t _{UBLZ}	Byte Select to Output in Low-Z	TBD	0			ns
t _{CHZ}	Chip Deselect to Output in High-Z			TBD	7	ns
t _{OHZ}	Output Disable to Output in High-Z			TBD	7	ns
t _{LBHZ,} t _{UBHZ}	Byte Deselect to Output in High-Z			TBD	7	ns

Figure 12. MPI Read Access

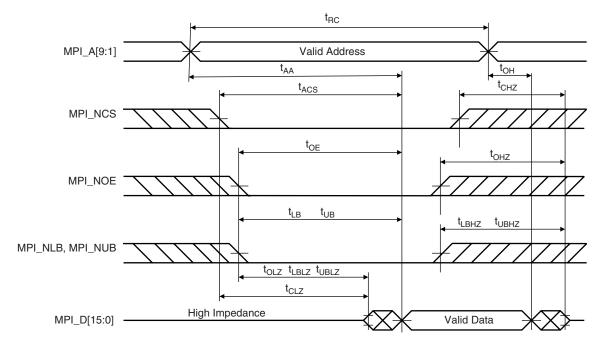


Table 30. MPI Write Access

		Mini	mum	Maximum		
Symbol	Parameter	Core at 2V	Core at 3.3V	Core at 2V	Core at 3.3V	Unit
t _{WC}	Write Cycle Time	TBD	10			ns
t _{AW}	Address Valid to End of Write	TBD	10			ns
t _{CW}	Chip Select to End of Write	TBD	10			ns
t _{WP}	Write pulse-width	TBD	10			ns
t _{LBW} , t _{UBW}	Byte Select to End of Write	TBD	10			ns
t _{AS}	Address Setup Time	TBD	0			ns
t _{WR}	Write Recovery Time	TBD	0			ns
t _{DW}	Data Valid to End of Write	TBD	10			ns
t _{DH}	Data Hold Time from End of Write	TBD	0			ns
t _{OW}	Write Disable to Output in Low-Z	TBD	10			ns
t _{WHZ}	Write Enable to Output in High-Z			TBD	7	ns

Figure 13. MPI Write Access (MPI_RNW Controlled)

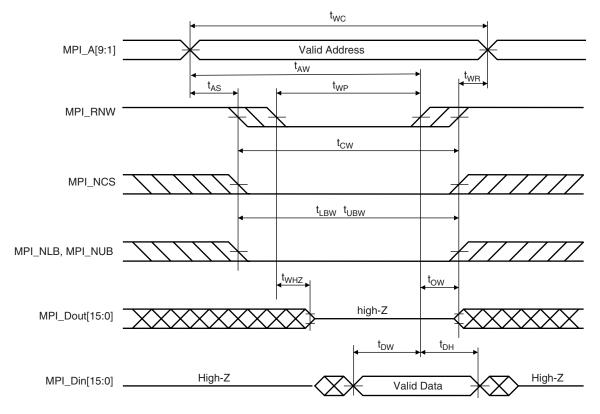


Figure 14. MPI Write Access (MPI_NCS Controlled)

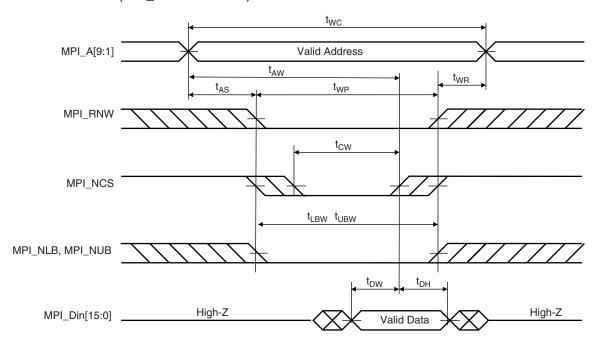
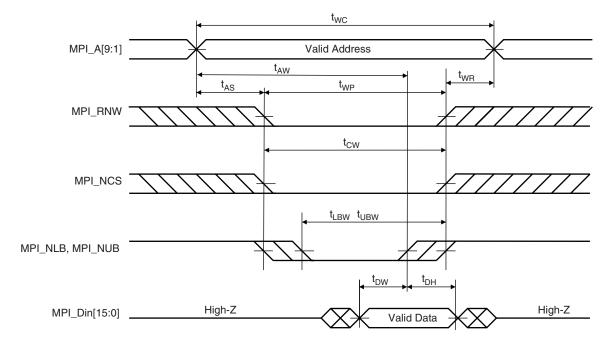



Figure 15. MPI Write Access (MPI_NLB, MPI_NUB Controlled)

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686-677
FAX (44) 1276-686-697

Asia

Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

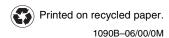
Atmel Rousset

Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

> Fax-on-Demand North America: 1-(800) 292-8635 International: 1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com


BBS 1-(408) 436-4309

© Atmel Corporation 2000.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ARM, Thumb and ARM Powered are registered trademarks of ARM Limited.
ARM7TDMI is a trademark of ARM Ltd.
All other marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.
Terms and product names in this document may be trademarks of others.

