

PIC18(L)F25/45K22 Rev. A2/A3/A4 Silicon Errata and Data Sheet Clarification

The PIC18(L)F25/45K22 family devices that you have received conform functionally to the current Device Data Sheet (DS41412**C**), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC18(L)F25/45K22 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A4).

Data Sheet clarifications and corrections start on page 5, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip's programmers, debuggers, and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with MPLAB ICD 2 or PICkit™ 3:

- Using the appropriate interface, connect the device to the MPLAB ICD 2 programmer/ debugger or PICkit™ 3.
- 2. From the main menu in MPLAB IDE, select <u>Configure>Select Device</u>, and then select the target part number in the dialog box.
- Select the MPLAB hardware tool (<u>Debugger>Select Tool</u>).
- Perform a "Connect" operation to the device (<u>Debugger>Connect</u>). Depending on the development tool used, the part number and Device Revision ID value appear in the **Output** window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The DEVREV values for the various PIC18(L)F25/45K22 silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

Part Number	Device ID ⁽¹⁾	Revision ID for Silicon Revision ⁽²⁾			
Part Number	Device ib(*)	A2	А3	A4	
PIC18F25K22	0101 0101 010x xxxx	0 0010	0 0011	0 0100	
PIC18LF25K22	0101 0101 011x xxxx	0 0010	0 0011	0 0100	
PIC18F45K22	0101 0101 000x xxxx	0 0010	0 0011	0 0100	
PIC18LF45K22	0101 0101 001x xxxx	0 0010	0 0011	0 0100	

Note 1: The Device ID is located in the last configuration memory space.

2: Refer to the "PIC18(L)F2XK22/4XK22 Flash Memory Programming Specification" (DS41398) for detailed information on Device and Revision IDs for your specific device.

TABLE 2: SILICON ISSUE SUMMARY

Module	Feature	Item Number	Issue Summary		ffecte vision	
		Number		A2	А3	A4
Voltage Reference	Default Value	1.1	VREFCON0 = 0x00 at Reset.	Х	Х	
Voltage Reference	Internal Reference	1.2	Reference may be unstable at low temperatures.	Х	Х	
HLVD	HLVD module	2.	The HLVD module does not function.	Χ	Χ	
Comparators	CxSYNC Control	3.	The comparator output to the device pin (Cx) always bypasses the Timer1 synchronization latch.	X	X	
HS Oscillator	S Oscillator HS Oscillator Start-up 4. HS oscillator may not start at low voltage/ high temperature.		Х	X		
Clock Switching	ock Switching Fail-Safe mode 5.1 Execution is delayed when waking from Sleep.		Х	Х		
Clock Switching	Fail-safe Clock Monitor	5.2	When the FCMEN Configuration bit is set and the IESO Configuration bit is not set, then a clock failure during Sleep will not be detected.			X
CTMU	Current Source	6.1	Current source is noisy.	Χ	Χ	
СТМИ	Control Register	6.2	Control registers are not cleared by Resets.	Х	Χ	
CCP3, CCP4 and CCP5	PWM mode	7.	Clock selection by CCP2 only.	Х	Х	
ADC	GO/DONE bit	8.	GO/DONE bit gets stuck.	Х	Х	
Power-on Reset (POR)	r-on Reset Power-on Reset 9.1 Transient current spikes on some parts		Х	Х	Х	
Power-on Reset (POR)			Х	X	Х	
Timer1/3/5 Gate	Timer1/3/5 Gate	10.	The Timer1/3/5 gate times cannot be resolved to the two Least Significant bits, when using Fosc as the Timer1/3/5 source.	Х	Х	Х

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Silicon Errata Issues

Note:

This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A4).

1. Module: Voltage Reference

1.1 The default value of VREFCON0 after Reset is 0x00 instead of 0x10.

Work around

Select the desired fixed voltage reference buffer as part of initialization.

Affected Silicon Revisions

A2	А3	A4			
Χ	Χ				

1.2 Internal voltage reference may become unstable at cold temperature.

Work around

None.

Affected Silicon Revisions

A2	А3	A4			
Х	Х				

2. Module: HLVD

Although the HLVDIF flag will be set immediately after enabling the HLVD circuit, the HLVD module is not functional and should not be used.

Work around

None.

Affected Silicon Revisions

A2	А3	A4			
Χ	Χ				

3. Module: Comparators

The CxSYNC controls are inoperative. The comparator output (Cx) always bypasses the Timer1 synchronization latch.

Work around

None.

Affected Silicon Revisions

A2	А3	A4			
Χ	Х				

4. Module: HS Oscillator

The HS oscillator may not start when VDD is less than 3V, especially at high temperatures.

Work around

None.

Affected Silicon Revisions

A2	А3	A 4			
Χ	Х				

5. Module: Clock Switching

5.1 When Clock Fail-Safe mode or Clock Switchover mode is selected, then code execution will be delayed after waking from Sleep by the start-up time of the HFINTOSC.

Work around

Disable HFINTOSC stabilization time by setting the HFOFST bit of the Configuration register 3H.

Affected Silicon Revisions

A2	А3	A4			
Х	Х				

5.2 When the FCMEN Configuration bit is set and the IESO Configuration bit is not set, then a clock failure during Sleep will not be detected.

Work around

The IESO Configuration bit must also be set when the FCMEN Configuration bit is set.

Affected Silicon Revisions

A2	А3	A4			
		Х			

6. Module: CTMU

6.1 Current source may be noisy to the CTMU module.

Work around

None.

Affected Silicon Revisions

A2	А3	A4			
Χ	Χ				

6.2 CTMU control registers <u>are not</u> cleared by the RESET instruction or MCLR Reset.

Work around

Clear the CTMU control registers as part of device initialization.

Affected Silicon Revisions

A2	А3	A4			
Χ	Χ				

7. Module: CCP3, CCP4 and CCP5

PWM mode does not work independently of CCP2. Clock selection is cross-wired with that of CCP2.

Work around

Use CCP1 and/or CCP2 for PWM applications. Reserve CCP3, CCP4 and CCP5 for capture and compare applications.

Affected Silicon Revisions

A2	А3	A4			
Х	Χ				

8. Module: ADC

GO/DONE bit may become stuck in GO mode.

Work around

Use the ADC FRC clock selection to reduce the probability of the GO bit becoming stuck. To capture the events when the GO bit does become stuck, use one of the timers to determine if the GO bit stays set longer than expected. When this occurs, restart the ADC conversion by clearing the GO/DONE bit and then setting the GO/DONE bit.

Affected Silicon Revisions

A2	А3	A4			
Х	Х				

9. Module: Power-on Reset (POR)

9.1 There may be transient current spikes on some parts during power-up. If the application cannot supply enough current to get past these transients, then the part may become stuck in Reset.

Work around

Ensure that the application is capable of supplying at least 30 mA of transient current during power-up.

Affected Silicon Revisions

A2	А3	A4			
Χ	Χ	Χ			

9.2 Min VDD for PIC18F2X/4XK22 parts is limited to 2.3V. Min VDD for PIC18LF2X/4XK22 parts is 1.8V.

Work around

None.

Affected Silicon Revisions

A2	А3	A4			
Χ	Х	Χ			

10. Module: Timer1/3/5 Gate

The Timer gate times cannot be resolved to the two Least Significant timer bits when the source frequency is Fosc (TMRxCS[1:0]=01). This is because the gate edges are synchronized with the Fosc/4 clock.

Work around

None.

Affected Silicon Revisions

A2	А3	A4			
Χ	Х	Χ			

Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS41412**C**):

Note: Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

1. Module: I/O Ports

In Table 10-5, the Buffer Type column listed ST (Schmitt Trigger) for functions RB1-RB7, when the Pin Type was I (Input), should be TTL. The Table below reflects the correction.

TABLE 10-5: PORTB I/O SUMMARY

Pin	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RB0/INT0/CCP4/	RB0	0	1	0	DIG	LATB<0> data output; not affected by analog input.
FLT0/SRI/SS2/ AN12		1	0	I	TTL	PORTB<0> data input; disabled when analog input enabled.
	INT0	1	0	1	ST	External interrupt 0.
	CCP4 ⁽³⁾	0	1	0	DIG	Compare 4 output/PWM 4 output.
		1	0	I	ST	Capture 4 input.
	FLT0	1	0	- 1	ST	PWM Fault input for ECCP auto-shutdown.
	SRI	1	0	1	ST	SR Latch input.
	SS2 ⁽³⁾	1	0	I	TTL	SPI slave select input (MSSP2).
	AN12	1	1	- 1	AN	Analog input 12.
RB1/INT1/P1C/	RB1	0	1	0	DIG	LATB<1> data output; not affected by analog input.
SCK2/SCL2/ C12IN3-/AN10		1	0	I	TTL	PORTB<1> data input; disabled when analog input enabled.
	INT1	1	0	1	ST	External Interrupt 1.
	P1C ⁽³⁾	0	1	0	DIG	Enhanced CCP1 PWM output 3.
	SCK2 ⁽³⁾	0	1	0	DIG	MSSP2 SPI Clock output.
		1	0	1	ST	MSSP2 SPI Clock input.
	SCL2 ⁽³⁾	0	1	0	DIG	MSSP2 I ² C [™] Clock output.
		1	0	I	I ² C	MSSP2 I ² C [™] Clock input.
	C12IN3-	1	1	I	AN	Comparators C1 and C2 inverting input.
	AN10	1	1	I	AN	Analog input 10.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C^{TM} = Schmitt Trigger input with I^2C .

- 2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.
- 3: Function on PORTD and PORTE for PIC18(L)F4XK22 devices.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

TABLE 10-5: PORTB I/O SUMMARY

Pin	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RB2/INT2/CTED1/	RB2	0	1	0	DIG	LATB<2> data output; not affected by analog input.
P1B/SDI2/SDA2/ AN8		1	0	1	TTL	PORTB<2> data input; disabled when analog input enabled.
	INT2	1	0	I	ST	External interrupt 2.
	CTED1	1	0	I	ST	CTMU Edge 1 input.
	P1B ⁽³⁾	0	1	0	DIG	Enhanced CCP1 PWM output 2.
	SDI2 ⁽³⁾	1	0	I	ST	MSSP2 SPI data input.
	SDA2 ⁽³⁾	0	0	0	DIG	MSSP2 I ² C [™] data output.
		1	0	I	I ² C	MSSP2 I ² C™ data input.
	AN8	1	1	I	AN	Analog input 8.
RB3/CTED2/P2A/	RB3	0	1	0	DIG	LATB<3> data output; not affected by analog input.
CCP2/SDO2/ C12IN2-/AN9		1	0	I	TTL	PORTB<3> data input; disabled when analog input enabled.
	CTED2	1	0	I	ST	CTMU Edge 2 input.
	P2A	0	1	0	DIG	Enhanced CCP1 PWM output 1.
	CCP2 ⁽²⁾	0	1	0	DIG	Compare 2 output/PWM 2 output.
		1	0	I	ST	Capture 2 input.
	SDO2 ⁽²⁾	0	1	0	DIG	MSSP2 SPI data output.
	C12IN2-	1	1	I	AN	Comparators C1 and C2 inverting input.
	AN9	1	1	I	AN	Analog input 9.
RB4/IOC0/P1D/	RB4	0	1	0	DIG	LATB<4> data output; not affected by analog input.
T5G/AN11		1	0	I	TTL	PORTB<4> data input; disabled when analog input enabled.
	IOC0	1	0	I	TTL	Interrupt-on-change pin.
	P1D	0	1	0	DIG	Enhanced CCP1 PWM output 4.
	T5G	1	0	I	ST	Timer5 external clock gate input.
	AN11	1	1	I	AN	Analog input 11.
RB5/IOC1/P2B/	RB5	0	1	0	DIG	LATB<5> data output; not affected by analog input.
P3A/CCP3/T3CKI/ T1G/AN13		1	0	I	TTL	PORTB<5> data input; disabled when analog input enabled.
	IOC1	1	0	I	TTL	Interrupt-on-change pin 1.
	P2B ⁽¹⁾⁽³⁾	0	1	0	DIG	Enhanced CCP2 PWM output 2.
	P3A ⁽¹⁾	0	1	0	DIG	Enhanced CCP3 PWM output 1.
	CCP3 ⁽¹⁾	0	1	0	DIG	Compare 3 output/PWM 3 output.
		1	0	I	ST	Capture 3 input.
	T3CKI ⁽²⁾	1	0	I	ST	Timer3 clock input.
	T1G	1	0	I	ST	Timer1 external clock gate input.
	AN13	1	1	I	AN	Analog input 13.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C^{TM} = Schmitt Trigger input with I^2C .

3: Function on PORTD and PORTE for PIC18(L)F4XK22 devices.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

^{2:} Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

TABLE 10-5: PORTB I/O SUMMARY

Pin	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RB6/KBI2/PGC	RB6	0	1	0	DIG	LATB<6> data output; not affected by analog input.
		1	0	I	TTL	PORTB<6> data input; disabled when analog input enabled.
	IOC2	1	0	1	TTL	Interrupt-on-change pin.
	TX2 ⁽³⁾	0	1	0	DIG	EUSART 2 asynchronous transmit data output.
	CK2 ⁽³⁾	0	1	0	DIG	EUSART 2 synchronous serial clock output.
		1	0	1	ST	EUSART 2 synchronous serial clock input.
	PGC	Х	Х	1	ST	In-Circuit Debugger and ICSP™ programming clock input.
RB7/KBI3/PGD	RB7	0	1	0	DIG	LATB<7> data output; not affected by analog input.
		1	0	I	TTL	PORTB<7> data input; disabled when analog input enabled.
	IOC3	1	0	1	TTL	Interrupt-on-change pin.
	RX2 ^{(2), (3)}	1	0	1	ST	EUSART 2 asynchronous receive data input.
	DT2 ^{(2), (3)}	0	1	0	DIG	EUSART 2 synchronous serial data output.
		1	0	1	ST	EUSART 2 synchronous serial data input.
	PGD	Х	Х	0	DIG	In-Circuit Debugger and ICSP™ programming data output.
		Х	Х	I	ST	In-Circuit Debugger and ICSP™ programming data input.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I²CTM = Schmitt Trigger input with I²C.

- Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.
 - 2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.
 - 3: Function on PORTD and PORTE for PIC18(L)F4XK22 devices.

APPENDIX A: DOCUMENT REVISION HISTORY

Rev A Document (5/2010)

Initial release of this document.

Rev B Document (8/2010)

Updated errata to the new format; Updated for Revision A4 silicon release; Added Modules 5.2, 9.1, 9.2 and 10.

Data Sheet Clarifications: Added Module 1.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-457-5

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support:

http://support.microchip.com Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca. IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung

Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828

Fax: 45-4450-2828

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham**

Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/04/10