

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

H8S, H8/300 Series C/C++
Compiler, Assembler,
Optimizing Linkage Editor
Compiler Package Ver.6.01 User’s Manual

U
ser’s M

anual

 Rev.1.00 2005.01

Renesas Microcomputer
Development Environment
System

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

i

This manual describes the facilities and operating procedures for the H8S, H8/300 series C/C++
compiler (hereinafter H8S, H8/300 compiler or simply the compiler). The compiler translates
source programs written in C/C++ into object programs and load modules for Renesas H8SX
series, H8S/2600 series, H8S/2000 series, H8/300H series, H8/300 series, and H8/300L series
microcomputers. Please read this H8S, H8/300 Series C/C++ Compiler User’s Manual before
using the compiler to fully understand the system.

Notes on Symbols: The following symbols are used in this manual.

Symbols Used in This Manual

Symbol Explanation

< > Indicates an item to be specified.

[] Indicates an item that can be omitted.

... Indicates that the preceding item can be repeated.

∆ Indicates one or more blanks.

(RET) Indicates the carriage return key (return key).

| Indicates that one of the items must be selected.

(CNTL) Indicates that the control key should be held down while pressing the key
that follows.

This manual is intended for UNIX*1, Microsoft® Windows® 98 operating system, Microsoft®
Windows® Millennium Edition operating system, Microsoft® Windows NT® operating system,
Microsoft® Windows® 2000 operating system, Microsoft® Windows® XP operating system*2
and other compatible systems. In this document, the compiler functioning on a UNIX system is
referred to as the UNIX version. The compiler operating in IBM PC*3 and other compatible
computers are referred to as the PC version.

Notes: 1. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

 2. Microsoft®, Windows®, and WindowsNT® are registered trademarks of Microsoft
Corporation in the United States and/or other countries.

 3. IBM is a registered trademark of International Business Machines Corporation.

ii

Contents

Section 1 Overview ...1
1.1 Procedures for Developing Programs ... 1
1.2 Compiler ... 3
1.3 Assembler ... 3
1.4 Optimizing Linkage Editor ... 4
1.5 Prelinker.. 4
1.6 Standard Library Generator .. 4
1.7 Stack Analysis Tool .. 5
1.8 Format Converter .. 5

Section 2 C/C++ Compiler Operating Method..7
2.1 Command Line Format ... 7
2.2 Interpretation of Options... 7

2.2.1 Source Options... 8
2.2.2 Object Options ... 12
2.2.3 List Options.. 22
2.2.4 Optimize Options... 25
2.2.5 Other Options... 41
2.2.6 CPU Options .. 50
2.2.7 Options Other Than Above.. 60

Section 3 Assembler Options ..65
3.1 Command Line Format ... 65
3.2 List of Options .. 65

3.2.1 Source Options... 66
3.2.2 Object Options ... 71
3.2.3 List Options.. 78
3.2.4 Tuning Options .. 84
3.2.5 Other Options... 86
3.2.6 CPU Options .. 87
3.2.7 Options Other Than Above.. 93

Section 4 Optimizing Linkage Editor Options ..101
4.1 Option Specifications.. 101

4.1.1 Command Line Format .. 101
4.1.2 Subcommand File Format.. 101

4.2 List of Options .. 101
4.2.1 Input Options ... 102
4.2.2 Output Options... 107

iii

4.2.3 List Options..117
4.2.4 Optimize Options ...119
4.2.5 Section Options..125
4.2.6 Verify Options ...127
4.2.7 Other Options...129
4.2.8 Subcommand File Option ..137
4.2.9 CPU Option..138
4.2.10 Options Other Than Above ..139

Section 5 Standard Library Generator Operating Method.............................. 141
5.1 Comand Line Format ..141
5.2 Option Descriptions ..141

5.2.1 Additional Options...142
5.2.2 Options Unavailable for Standard Library Generator ..145
5.2.3 Notes on Specifying Options ...146

Section 6 Operating Stack Analysis Tool ... 147
6.1 Overview...147
6.2 Starting the Stack Analysis Tool...147

Section 7 Environment Variables ... 149
7.1 Environment Variables List ..149
7.2 Compiler Implicit Declaration ..153

Section 8 File Specifications... 155
8.1 Naming Files ...155
8.2 Compiler Listings..157

8.2.1 Structure of Compiler Listings...157
8.2.2 Source Listing ..158
8.2.3 Error Information ...160
8.2.4 Symbol Allocation Information ...161
8.2.5 Object Information...164
8.2.6 Statistics Information ...166

8.3 Assembler Listings..167
8.3.1 Structure of Assembler Listings...167
8.3.2 Source Listing ..167
8.3.3 Cross Reference Listing ...169
8.3.4 Section Information Listing ...171

8.4 Linkage Listings..171
8.4.1 Structure of Linkage Listing ..172
8.4.2 Option Information ..173
8.4.3 Error Information ...173
8.4.4 Linkage Map Information ..174

iv

8.4.5 Symbol Information... 174
8.4.6 Symbol Deletion Optimization Information .. 176
8.4.7 Variable Access Optimization Symbol Information .. 176
8.4.8 Function Access Optimization Symbol Information.. 178
8.4.9 Cross-Reference Information... 179

8.5 Library Listings... 180
8.5.1 Structure of Library Listing ... 180
8.5.2 Option Information .. 181
8.5.3 Error Information... 182
8.5.4 Library Information ... 182
8.5.5 Module, Section, and Symbol Information within Library.................................. 183

Section 9 Programming ...185
9.1 Program Structure ... 185

9.1.1 Sections.. 185
9.1.2 C/C++ Program Sections ... 185
9.1.3 Assembly Program Sections .. 189
9.1.4 Linking Sections .. 191

9.2 Creation of Initial Setting Programs ... 195
9.2.1 Memory Allocation.. 195
9.2.2 Execution Environment Settings.. 205

9.3 Linking C/C++ Programs and Assembly Programs.. 244
9.3.1 Method for Mutual Referencing of External Names.. 244
9.3.2 Function Calling Interface ... 246
9.3.3 Examples of Parameter Assignment .. 257
9.3.4 Using the Registers and Stack Area... 267

9.4 Important Information on Program Creation .. 272
9.4.1 Important Information on Program Coding ... 272
9.4.2 Important Information on Compiling a C Program with the C++ Compiler........ 275
9.4.3 Important Information on Program Development.. 276

Section 10 C/C++ Language Specifications..279
10.1 Language Specifications ... 279

10.1.1 Compiler Specifications... 279
10.1.2 Internal Data Representation.. 288
10.1.3 Floating-Point Number Specifications... 302
10.1.4 Operator Evaluation Order... 310

10.2 Extended Functions... 311
10.2.1 #pragma Extension Specifiers and Keywords.. 311
10.2.2 Section Address Operator .. 359
10.2.3 Intrinsic Functions ... 361

10.3 C/C++ Libraries .. 390
10.3.1 Standard C Libraries .. 390

v

10.3.2 Embedded C++ Class Libraries ...533
10.3.3 Reentrant Library ...620
10.3.4 Unsupported Libraries..625

Section 11 Assembly Specifications... 627
11.1 Program Elements ...627

11.1.1 Source Statements..627
11.1.2 Reserved Words ...631
11.1.3 Symbols ...631
11.1.4 Constants..635
11.1.5 Location Counter ...637
11.1.6 Expressions ..638
11.1.7 String Literal ..647
11.1.8 Local Label ..648

11.2 Executable Instructions ...650
11.2.1 Overview of Executable Instructions ...650
11.2.2 Notes on Executable Instructions...652

11.3 Assembler Directives ..674
11.4 File Inclusion Function ...749
11.5 Conditional Assembly Function..752

11.5.1 Overview of the Conditional Assembly Function..752
11.5.2 Conditional Assembly Directives ..758

11.6 Macro Function...774
11.6.1 Overview of the Macro Function ...774
11.6.2 Macro Function Directives...776
11.6.3 Macro Body ...780
11.6.4 Macro Call ...784
11.6.5 String Literal Manipulation Functions ...786

11.7 Overview of Structured Assembly..790
11.7.1 Notes on Structured Assembly...791
11.7.2 Structured Assembly Directives...792

Section 12 Compiler Error Messages ... 815
12.1 Error Format and Error Levels..815
12.2 Error Messages..815
12.3 C Library Function Error Messages ..882

Section 13 Assembler Error Messages ... 885
13.1 Error Message Format and Error Levels ...885
13.2 Error Messages..885

Section 14 Error Messages for the Optimizing Linkage Editor........................ 903
14.1 Error Format and Error Levels..903

vi

14.2 List of Messages ... 903

Section 15 Error Messages for the Standard Library Generator and Format
Converter 917
15.1 Error Format and Error Levels.. 917
15.2 List of Messages ... 917

Section 16 Limitations...921
16.1 Limitations of the Compiler.. 921
16.2 Limitations of the Assembler .. 924

Section 17 Supporting AE5 Features ..925
17.1 Compiler Functions... 925

17.1.1 Overview.. 925
17.1.2 Compiler Options... 925
17.1.3 Intrinsic Functions ... 927

17.2 Assembler Functions... 930

Section 18 Notes on Version Upgrade ..933
18.1 Notes on Version Upgrade.. 933

18.1.1 Guaranteed Program Operation ... 933
18.1.2 Compatibility with the Earlier Version .. 934
18.1.3 Command-line Interface .. 937
18.1.4 Provided Contents.. 940
18.1.5 List File Specification .. 941

18.2 Additions and Improvements .. 941
18.2.1 Common Additions and Improvements ... 941
18.2.2 Added and Improved Compiler Features ... 942
18.2.3 Added and Improved Features for the Assembler.. 953
18.2.4 Added and Improved Features for the Optimizing Linkage Editor...................... 954

18.3 Operating Format Converter ... 956
18.3.1 Object File Format ... 956
18.3.2 Compatibility with Earlier Versions .. 956
18.3.3 Command Line Format .. 957
18.3.4 Interpretation of Options.. 957

Section 19 Appendix ...961
19.1 S-Type and HEX File Format ... 961

19.1.1 S-Type File Format.. 961
19.1.2 HEX File Format ... 963

19.2 ASCII Code List ... 965
19.3 Access Range of Short Absolute Addresses ... 966

vii

Index ... 967

viii

1

Section 1 Overview

1.1 Procedures for Developing Programs

Figure 1.1 shows the procedures for developing programs. The shaded parts show software
provided in the Renesas C/C++ Compiler Package for H8, H8S and H8SX family.

The C/C++ compiler, assembler, optimizing linkage editor, standard library generator, stack
analysis tool, and format converter are explained in this manual.

2

SYSROF
object/
library

Assembly
source
program

H8S,H8/300 series
assembler

User
assembly
program

H8S,H8/300 series
C/C++ compiler

User
include

file

Relocatable
object

file

Additional
information

file*1

User
C/C++

source file

Optimizing
linkage editor

User
libraryobject/

library

ELF/DWARF
format

converter
Load

module
Profile

informayion

Debugger Stack analysis tool

Standard
library

file

H8S,H8/300 series
standard libraly generator

Stack
information

SYSROF
load

module

Called
information

Standard
include

file

Prelinker

Note: : : Input/output
 : Initiation

ELF/DWARF1
load

module

*1 Assitional information files includes:
 -Template information files
-Parameter information files
-Instance information files
-Tentative defined variable information files

Figure 1.1 Procedures for Developing Programs

3

Outlines of the C/C++ compiler, assembler, optimizing linkage editor, prelinker, standard library
generator, stack analysis tool, and format converter are given in the following sections.

1.2 Compiler

The H8S, H8/300 series C/C++ compiler (hereinafter referred to as compiler) is software that
takes source programs written in C or C++ language as inputs, and produces relocatable object
programs or assembly source programs for the H8S, H8/300 series microcomputers.

Features of this compiler are as follows:

1. Generates an object program that can be written to ROM for installation in a user system.

2. Supports an optimization that improves the speed of execution of object programs and
minimizes program size.

3. Supports extended features and options to take advantage of CPU’s features such as short
absolute addressing mode and indirect addressing mode.

4. Supports the C and C++ programming languages.

5. Supports features that are essential for the programming of embedded programs but are not
standards in the C and C++ languages as extended features. Such features include interrupt
functions and descriptions of system instructions.

6. Supports output of debugging information to enable C/C++ source-level debugging by the
debugger.

7. Either an assembly source program or a relocatable object program can be selected for output.

8. Supports output of an inter-module optimization information used by the optimizing linkage
editor.

1.3 Assembler

The H8S, H8/300 series assembler (hereinafter referred to as assembler) takes source programs
written in assembly language, and outputs relocatable object programs for the H8S, H8/300 series
microcomputers.

Features of this assembler are as follows:

1. Enables the efficient writing of source programs by providing the preprocessor functions
listed below:

 File include function

 Conditional assembly function

 Macro function

 Structured assembly function

2. The mnemonics for execution instructions and assembly directives conform to the naming
rules laid out in the IEEE-694 specifications, and the system is uniform.

4

1.4 Optimizing Linkage Editor

The optimizing linkage editor is software that takes multiple object programs output by the
compiler or assembler and produces a load module or a library file.

Features of this optimizing linkage editor are as follows:

1. Optimization can be applied to a set of several object files, depending on memory allocation
and relations among function calls which cannot be optimized by the compiler.

2. Any of the following five types of load modules can be selected for output:

 Relocatable ELF format

 Absolute ELF format

 S-type format

 HEX format

 Binary format

3. Generates and edits library files.

4. Outputs symbol reference count list.

5. Deletes debugging information from library and load module files.

6. Specifies the output of a stack information file for use by the stack analysis tool.

1.5 Prelinker

The prelinker is called from the optimizing linkage editor. When a C++ program template or
runtime type information is used, the prelinker calls the compiler and makes it generate the
necessary object files. When neither a C++ program template nor the runtime type information is
used, the speed of linkage can be improved by specifying the noprelink option for the optimizing
linkage editor.

1.6 Standard Library Generator

The H8S, H8/300 series standard library generator (hereinafter referred to as the standard library
generator) is a software system for the reconfiguration of standard library files provided, using
user-specified options.

The standard library functions provided with the compiler include the standard set of C library
functions, a set of C++ class library functions for embedded systems, and a set of runtime routines
(arithmetic operations that are necessary for the execution of a program). In some cases, runtime
routines will be necessary, even though the use of library functions in source programs has not
been specified.

5

1.7 Stack Analysis Tool

The stack analysis tool is software that takes the stack information file that is output by the
optimizing linkage editor and calculates the size of the stack that will be used by C/C++ programs.

1.8 Format Converter

The ELF/DWARF format converter (hereinafter referred to as format converter) takes object files
and library files that have been output by an earlier version of the compiler or assembler and
converts them to the ELF format. It can also take an ELF-format absolute load module and convert
it to the output format of an earlier version of the linkage editor.

6

7

Section 2 C/C++ Compiler Operating Method

2.1 Command Line Format

The format of the command line to initiate the compiler is as follows:

ch38[∆<option>...][∆<file name>[∆<option>...] ...]

 <option>:-<option>[=<suboption>][,...]

2.2 Interpretation of Options

In the command line format, uppercase letters indicate the abbreviation and characters underlined
indicate the defaults setting.

The dialog menus of the HEW is shown in the form of
Tab name <Category>[Item]....

The order of options correspond to that of the tabs and the categories in the HEW.

8

2.2.1 Source Options

Table 2.1 Source Options

Item Command Line Format Dialog Menu Specification

Include file
directory

Include = <path name>[,…] C/C++ <Source>
[Show entries for :]
 [Include file
directories]

Specifies include-file include
path name.

Default include
file

PREInclude =
 <file name>[,...]

C/C++ <Source>
[Show entries for :]
 [Preinclude files]

Includes the specified files at
the head of compiling units.

Macro name
definition

DEFine = <sub>[,...]
<sub>:
<macro name>
[=<string literal>]

C/C++ <Source>
[Show entries for :]
 [Defines]

Defines <string literal> as
<macro name>.

Information
message
output control

Message

NOMessage
 [= <error code>
 [-<error code][,…]]

C/C++ <Source>
[Show entries for :]
 [Messages]
 [Display information
level messages]

Outputs information message.

Does not output information
message (error number and
range can be specified).

Inter-file inline
expansion
directory
specification

FILE_INLINE_PATH =
 <path name>[,...]

C/C++ <Source>
[Show entries for :]
 [File inline path]

Specifies the path name where
obtains a file that has function
definitions to be expanded as
inline functions.

9

Include: Include File Directory

C/C++ <Source>[Show entries for :][Include file directories]

• Command Line Format

Include = <path name>[,…]

• Description

Specifies the name of the path where the include file is stored.

Two or more path names can be specified by separating them with a comma (,).

System include files are retrieved in the order of include specification directory and the
environment variable CH38 specification directory. User include files are retrieved in the
order of the current directory, include specification directory, and the environment variable
CH38 specification directory.

• Example

ch38 -include=c:\usr\inc,c:\usr\CH38 test.c

Directories c:\usr\inc and c:\usr\CH38 are retrieved as include file paths.

PREInclude: Default Include File

C/C++ <Source>[Show entries for :][Preinclude files]

• Command Line Format

PREInclude = <file name>[,…]

• Description

Includes the specified file contents at the head of the compiling unit. Two or more path names
can be specified by separating them with a comma (,).

• Example

 ch38 -preinclude=a.h test.c

 Contents of <test.c>

 int a;

 main(){...}

 Interpretation at compilation

 #include "a.h"

 int a;

 main(){...}

10

DEFine: Macro Name Definition

C/C++ <Source>[Show entries for :][Defines]

• Command Line Format

DEFine = <sub> [,…]
 <sub>: <macro name> [= <string literal>]

• Description

This option is the same as #define written in the C/C++ source file.

When <macro name>=<string literal> is specified, <string literal> is defined as a macro
name.

When only <macro name> is specified for a suboption, the macro name is regarded as defined.

 <string literal> allows name or constant intger.

Message, NOMessage: Information Message

C/C++ <Source>[Show entries for :][Messages][Display information level messages]

• Command Line Format

Message
NOMessage [= <error code> [- <error code>] [,…]]

• Description

Specifies whether to output information-level messages.

If message is specified, the compiler outputs information-level messages.

If nomessage alone is specified, the compiler does not output any information-level messages.
If an error code is specified for the suboption, display of messages of the specified codes is
disabled. The range of error messages to be disabled can also be specified for the suboption by
using a hyphen (-):
<error code> - <error code>.

When this option is not specified, the compiler assumes that nomessage is specified.

• Example

ch38 -nomessage=5,300-306 test.c

Information-level message codes C0005 and C0300 to C0306 will not be displayed.

• Remarks

An <error code> allows Warning or Information code.
The Ver. 4.0 or earlier version of the compiler validates only the last specification of message
or nomessage options when such optoins are specified more than once. This version, Ver. 6.0,
or later suppresses output of the union of messages specified by the nomessage options.

11

FILE_INLINE_PATH: Inter-file Inline Expansion Directory Specification

C/C++ <Source>[Show entries for :][File inline path]

• Command Line Format

FILE_INLINE_PATH = <path name> [,…]

• Description

Specifies the name of the path where a file for inter-file inline expansion is stored.

Two or more path names can be specified by separating them with a comma (,).

Files for inter-file inline expansion are retrieved in the order of the file_inline_path option
specification directory and the current directory.

• Example

ch38 –file_inline_path=c:\usr\file –file_inline=test2.c test.c

A directory “c:\usr\file” is as inter-inline expansion searching directory and the compiler try to
find the “test2.c” as “file_inline” option.

• Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

12

2.2.2 Object Options

Table 2.2 Object Options

Item Command Line Format Dialog Menu Specification

Pre-
processor
expansion

PREProcessor
 [= <file name>]

C/C++ <Object>
[Output file type :]
 [Preprocessed source
 file]

Outputs source program after
preprocessor expansion.

Object type Code =

 { Machinecode
 | Asmcode }

C/C++ <Object>
[Output file type :]
 [Machine code]
 [Assembly source code]

Outputs machine code program.
Outputs assembly-source
program.

Debugging
information

DEBug

NODEBug

C/C++ <Object>
[Generate debug
information]

Outputs debug information

Not output debug information

Section
name

SEction = <sub>[,…]
<sub>:{
Program=<section name>
| Const=<section name>
| Data=<section name>
| Bss=<section name>
}

C/C++ <Object>
[Section :]
 [Program section (P)]
 [Const section (C)]
 [Data section (D)]
 [Uninitialized data
 section (B)]

Program area section name
Constant area section name
Initialized data area section name
Non-initialized data area section
name

Area of
string literal
to be output

STring = { Const

 | Data }

C/C++ <Object>
[Store string data in :]

Outputs string literal to constant
section (C).

Outputs string literal to initialized
data section (D).

Operation
size
expanded
interpre-
tation

CPUExpand [=V6]

NOCPUExpand

C/C++ <Object>
[Mul/Div operation
specification]

Multiplication and division are
code-generated by the CPU
instruction specifications.

Multiplication and division are
code-generated based on the
ANSI C-language specification.

Object file
output
specifica-
tion

OBject [= <file name>]

NOOBject

C/C++ <Object>
[Output directory :]

Outputs an object file.

Not output an object file.

13

Table 2.2 Object Options (cont)

Item Command Line Format Dialog Menu Specification

Template
instance
generation

Template={ None

 | Static

 | Used

 | ALl

 | AUto }

C/C++ <Object>
[Template :]

Not generate instances.

Generates instances as internal
linkage only for referenced
templates
Generates instances as external
linkage only for referenced
templates.
Generates instances for templates
defined or referenced.
Generates instances at linkage

Boundary
alignment
value and
disable of
boundary
alignment

ALign [=4]

NOALign

C/C++ <Object>
 [Group by alignment :]

Modifies allocation order by the
boundary alignment.

Allocates the variables in the order
of declaration.

Compatibili-
ty of output
object code

LEgacy=v4 C/C++ <Object>
[Ver.4.0 Optimization
technology generation:]

Output objects generated by
Ver.4.0 optimization technology of
H8S

PREProcessor: Preprocessor Expansion

C/C++ <Object>[Output file type :][Preprocessed source file]

• Command Line Format

PREProcessor [= <file name>]

• Description

Outputs a source program processed by the preprocessor.

If no <file name> is specified, an output file with the same file name as the source file and
with a standard extension is created. The standard extension after C compilation is “p” (if the
input source program is written in C), and that after C++ compilation is “pp” (if the input
source program is written in C++).

When preprocessor is specified, no object file is output by the compiler.

14

• Remarks

When preprocessor is specified, the following options become invalid:
code, object, outcode, debug, pack, string, show=object, statistics, allocation, section, optimize,
speed, goptimize, byteenum, volatile, regexpansion, cmncode, case, indirect, abs8, abs16,
cpuexpand, eepmov, regparam, stack, align/noalign, structreg, longreg, macsave, bit_order,
ptr16, opt_range, del_vacant_loop, max_unroll, infinite_loop, global_alloc, struct_alloc,
const_var_propagate, library, volatile_loop, sbr, legacy=v4, scope, noscope, file_inline,
file_inline_path, enable_register, strict_ansi and cpuexpand=v6.

Code: Object Type

C/C++ <Object>[Output file type :] [Machine code] [Assembly source code]

• Command Line Format

Code = { Machinecode | Asmcode }

• Description

Specifies an object file output type.

When code=machinecode is specified, a relocatable object program (in machine code) is
generated.

When code=asmcode is specified, an assembly source program is generated.

Within the assembly program, stack information usage by all functions is reflected by .stack
directives.

When this option is not specified, the compiler assumes that code=machinecode is specified.

• Remarks

When code=asmcode is specified, show=object or goptimize becomes invalid.

DEBug, NODEBug: Debugging Information

C/C++ <Object>[Generate debug information]

• Command Line Format

DEBug

NODEBug

• Description

Specifies whether to output the information necessary for source-level debugging into the
object file.

This option is valid regardless of the optimization option specified.

When nodebug is specified, no debugging information will be output to the object file.

If this option is not specified, the compiler will assume nodebug is specified.

15

SEction: Section Name

C/C++ <Object>[Section :] [Program section (P)] [Const section (C)] [Data section (D)]
 [Uninitialized data section (B)]

• Command Line Format

SEction = <sub> [,…]

 <sub>: { Program=<section name> |

 Const=<section name> |

 Data=<section name> |

 Bss=<section name> }

• Description

Specifies the section name of an object program.

section=program=<section name> specifies the section name in of the program area.

section=const=<section name> specifies the section name in of the constant area.

section=data=<section name> specifies the section name in of the initialized data area.

section=bss=<section name> specifies the section name in of the non-initialized data area.

The <section name> must consist of alphabetics, numerics, underscore (_) or dollar sign ($)
except that the first character must not be numeric. The section name must be specified within
8192 characters.

The default section names are as follows: P for the program area section, C for the constant
area section, D for the initialized data area section, and B for the non-initialized data area
section.

• Remarks

For details on programs and section names, refer to section 9.1, Program Structure. The same
section name cannot be specified for different areas of the section. Changing the section name
of P, C, B or D into S by section causes a warning error because S is the reserved name for the
stack area.

STring: String Literal Output Area

C/C++ <Object>[Store string data in :]

• Command Line Format

STring = { Const | Data }

• Description

Specifies the destination where string literal is output.

When string=const is specified, the compiler outputs the string literal to the constant area.

When string=data is specified, the compiler outputs the string literal to the initialized data
area.

16

The string literal output to the initialized data area can be modified during program execution;
however, the initialized data area must be allocated in both ROM and RAM in order to transfer
the string literal to RAM from ROM at the beginning of program execution. For details on the
initial settings of the initialized data area or on memory allocation, refer to section 9.2.1
Memory Allocation.

When this option is not specified, the compiler assumes that string=const is specified.

CPUExpand, NOCPUExpand: Operation Size Expanded Interpretation

C/C++ <Object>[Mul/Div operation specification]

• Command Line Format

CPUExpand [=V6]

NOCPUExpand

• Description

cpuexpand generates multiplication and division code for variables by deviating from the
ANSI C-language standard.

Specifying cpuexpand=v6 makes Ver.6.0 cpuexpand specification when output code is
generated by Ver.4.0 optimization technology.

With this sub-option, generated codes are affected by the following C-source descriptions.

(a) signed long = signed int << Constant

(b) signed long = unsigned int << Constant

(c) unsigned long = signed int << Constant

(d) unsigned long = unsigned int << Constant

(e) signed int = (signed int << Constant) / signed int

(f) signed int = (unsigned int << Constant) / signed int

(g) signed int = (unsigned int << Constant) / unsigned int

(h) unsigned int = (signed int << Constant) / signed int

(i) unsigned int = (unsigned int << Constant) / signed int

(j) unsigned int = (unsigned int << Constant) / unsigned int

When nocpuexpand is specified, the compiler generates multiplication and division code
conforming to the ANSI C-language standard.

When this option is not specified, the compiler assumes that nocpuexpand is specified.

• Remarks

When cpuexpand and cpuexpand=V6 is specified, the operation specifications exceed the
range guaranteed by the C language specifications, and the result may be different from that
obtained when nocpuexpand is specified.

Table 2.3 shows examples of multiplication and division code generated by specifying this
option.

17

Table 2.3 cpuexpand Option Specifications

 Operation Size of us1*us2 (for H8S/2600)
Operation cpuexpand Is Specified nocpuexpand Is Specified

unsigned short
 us1,us2;
unsigned long ul;
 ul=us1*us2;

The intermediate result is held
as unsigned long.*
Output example:
 MOV.W @_us1,Rd
 MOV.W @_us2,Rs
 MULXU.W Rs,ERd
 MOV.L ERd,@_ul
4-byte result of us1*us2 is
assigned to ul.

Calculated as unsigned short.
Output example:
 MOV.W @_us1,Rd
 MOV.W @_us2,Rs
 MULXU.W Rs,ERd
 EXTU.L ERd
 MOV.L ERd,@_ul
Low-order two bytes of us1*us2 result are
zero-extended and assigned to ul.

unsigned short
 us1,us2,us3;
unsigned short us;
 us=us1*us2/us3;

The intermediate result is held
as unsigned long.*
Output example:
 MOV.W @_us1,Rd
 MOV.W @_us2,Rs
 MULXU.W Rs,ERd
 MOV.W @_us3,Rs
 DIVXU.W Rs,ERd
 MOV.W Rd,@_us
4-byte result of us1*us2 is
used as the dividend.

Calculated as unsigned short.
Output example:
 MOV.W @_us1,Rd
 MOV.W @_us2,Rs
 MULXU.W Rs,ERd
 EXTU.L ERd
 MOV.W @_us3,Rs
 DIVXU.W Rs,ERd
 MOV.W Rd,@_us
Low-order two bytes of us1*us2 result are
zero-extended and used as the dividend.

Note: The intermediate 4-byte result of a multiplication of two 2-byte data is used as it is if the
result is assigned to or converted to a 4-byte object, or is divided by a 2-byte divisor.

cpuexpand=V6 is valid only when the CPU type is H8S and legacy=v4 has been specified or
CPU type is H8/300 and H8/300H.

18

OBject, NOOBject: Object File Output

C/C++ <Object>[Output directory :]

• Command Line Format

OBject [= <object file name>]

NOOBject

• Description

Specifies whether or not to output an object file.

When noobject is specified, no object file is output.

If <object file name> is not specified in object, the object file name becomes the same as that
of the source file and the extension becomes “obj” for a relocatable object program and “src”
for an assembly source program, which is determined by the code option.

When this option is not specified, the compiler assumes that object is specified.

• Remarks

When noobject is specified, the following options become invalid:
outcode, debug, pack, string, show=object, statistics, allocation, section, optimize, speed,
goptimize, byteenum, volatile, regexpansion, cmncode, case, indirect, abs8, abs16, cpuexpand,
eepmov, regparam, stack, align/noalign, structreg, longreg, macsave, bit_order, ptr16,
opt_range, del_vacant_loop, max_unroll, infinite_loop, global_alloc, struct_alloc,
const_var_propagate, library, volatile_loop, sbr, legacy=v4, scope, noscope, file_inline,
file_inline_path, enable_register, strict_ansi and cpuexpand=v6.

Template: Template Instance Generation

C/C++ <Object>[Template :]

• Command Line Format

Template = { None

 | Static

 | Used | ALl | AUto }

• Description

Specifies the condition to generate template instances.

When template=none is specified, instances are not generated.

When template=static is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the internal linkage.

When template=used is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the external linkage.

When template=all is specified, instances of all templates defined or referenced in the
compiling unit are generated.

When template=auto is specified, instances needed at linkage are generated.

19

When this option is not specified, the compiler assumes that template=auto is specified.

• Remarks

When a code = asmcode is specified, template=static is always valid.

ALign, NOALign: Boundary Alignment Value and Disable of Boundary Alignment

C/C++ <Object>[Group by alignment :]

• Command Line Format

ALign [=4]

NOALign

• Description

The noalign option allocates defined variables in the order of declaration.

The align option relocates variables so as to reduce space by boundary alignment. When the
relocation is performed, generally the empty area is reduced and the object size is also reduced.

The align=4 option divides a data section into a 4-byte boundary alignment section, a 2-byte
boundary alignment section and a 1-byte boundary alignment section. A datum whose size is a
multiple of 4 is generated into a 4-byte boundary alignment section, whose section name is the
original section name with $4 postfixed. When the CPU type is H8SX, the speed of access to a
4-byte datum aligned on a 4-byte boundary address is improved.

A datum whose size is odd is generated into a 1-byte boundary alignment section, whose
section name is the original section name with $1 postfixed. This can reduce the empty area.

The remaining data whose size is even and is not a multiple of 4 remains in the original section.

If the section name is changed by #pragma section or the section option, $4 or $1 will be
appended to the changed section name.

When this option is not specified, align is assumed.

• Remarks

When the CPU type is not H8SX, align=4 cannot be specified.

To locate the 1-byte or 4-byte data section at specific addresses with align=4 specified, each
section needs to be explicitly specified with the start option of the optimizing linkage editor.

In order to remain the boundary data construction unchanged, specify noalign.

20

• Example

noalign specified

d d
d d

<Section B>

2 bytes

a

c
d
dd

d

bb
Empty area

Empty area

f
f

f
f
e e

2 bytes

a c

d
dd

d
bb

f
f

f
f
e e

e e

f
f

f
f

2 bytes

a c

bb

Size: 10 bytes
Boundary alignment: 2

<Section B_v>
Size: 6 bytes
Boundary alignment: 2

align specified (default setting)

<Section B>
Size: 8 bytes
Boundary alignment: 2

<Section B_v>
Size: 6 bytes
Boundary alignment: 2

o 2-byte aligned data is allocated before
 1-byte aligned data in order to
 minimize the empty area.

o Data is located in the order of declaration.
o 2-byte-aligned data is always located
 at an even address, thus generating
 an empty area being unused
 after odd-size data.

align=4 specified

<Section B$1>
Size: 2 bytes
Boundary alignment: 1

<Section B>
Size: 2 bytes
Boundary alignment: 2

<Section B$4>
Size: 4 bytes
Boundary alignment: 4

<Section B_v$4>
Size: 4 bytes
Boundary alignment: 4

<Section B_v>
Size: 2 bytes
Boundary alignment: 2

o Data are categorized into the following 3 groups:
 X. data whose size is a multiple of 4
 Y. data whose size is odd
 Z. the others (data whose size is even but is not
 a multiple of 4)
o The original data section is divided into the above
 3 groups. For example, the B section will be
 divided into B$4, B$1 and B as shown below.
X: The section consting of data whose size is a multiple of 4
 is aligned on a 4-byte boundary and "$4" is appended
 after the original section name. (e.g. B$4)
Y: The section consisting of data whose size is odd
 is aligned on a 1-byte boundary and "$1" is appended
 after the original section name. (e.g. B$1)
Z: The other data remains in the original section
 whose boundary alignment is 2-byte and
 the section name is unchanged. (e.g. B)

char a;

short b;

char c;

long d;

#pragma section _v

short e;

long f;

#pragma section

main()

{

...

21

LEgacy=v4: Code generation of Ver.4.0 Optimization technology

None

• Command Line Format

LEgacy=v4

• Description

If this option is specified along with 2600A, 2600N, 2000A, or 2000N as the CPU option,
basic optimization processing is the same as in version 4 and earlier versions. When this option
is not specified, the object code output by the compiler is subject to more optimization than
with version 4.

• Remarks

This option is invalid when the CPU type is not 2600A, 2600N, 2000A, or 2000N.

When legacy=v4 is specified, the following options become invalid:
opt_range, del_vacant_loop, max_unroll, infinite_loop, global_alloc, struct_alloc,
const_var_propagate, volatile_loop, scope, noscope, strict_ansi, file_inline, file_inline_path,
and enable_register

22

2.2.3 List Options

Table 2.4 List Options

Item Command Line Format Dialog Menu Specification

Listing file List [= <file name>]

NOList

C/C++ <List>
[Generate list file]

Outputs a list file

Not output a list file

Listing
contents
and format

SHow = <sub> [,…]

<sub>: {

 SOurce | NOSOurce

| Object | NOObject

| STatistics | NOSTatistics

| Allocation | NOAllocation

| Expansion | NOExpansion

| Width = <numeric value>

| Length = <numeric value>

| Tab = { 4 | 8 }

 }

C/C++ <List>
[Contents :]

With/without source list

With/without object list

With/without statistics information

With/without symbol allocation
information

With/without list after macro expansion

Maximum characters per line:
0 or 80 to 132

Maximum lines per page:
0 or 20 to 255

Number of columns when using tabs:
4 | 8

List, NOList: List File

C/C++ <List>[Generate list file]

• Command Line Format

List [= <list file name>]

NOList

• Description

Specifies whether a list file is output or not.

When list is specified, a list file name can be specified.

When nolist is specified, a list file will not be output.

A list file name should be specified in accordance with section 8.1, Naming Files.

If no list file name is specified in list, a list file with the same name as the source file and a
standard extension (lis/1st/lpp) is created. The standard extension for the UNIX version is
“lis”, that for the PC version at C compilation is “lst”, and that for PC version at C++
compilation is “lpp”.

If this option is not specified, the compiler assumes list is specified.

23

SHow: List Contents and Format

C/C++ <List> [Contents :]

• Command Line Format

SHow= <sub> : { SOurce | NOSOurce |

 Object | NOObject |

 STatistics | NOSTatistics |

 Allocation | NOAllocation |

 Expansion | NOExpansion

 Width= <numeric value> |

 Length= <numeric value> |

 Tab= { 4 | 8 } }

• Description

Specifies the contents and format of the list output by the compiler, and the cancellation of list
output.

For examples of each list in this section, refer to section 8.2, Compiler Listings.

If this option is not specified, the compiler assumes show=source, noobject, statistics,
noallocation, noexpansion, width=0, length=0, tab=8 are specified.

24

• Description

Table 2.5 shows a list of suboptions.

Table 2.5 List of Suboptions of show Option

Suboption Description

source Outputs a list of source programs

nosource Does not output list of source programs

object Outputs a list of object programs

noobject Does not output list of object programs

statistics Outputs a list of statistics information

nostatistics Does not output list of statistics information

allocation Outputs a list of symbol allocation information

noallocation Does not output list of symbol allocation information

expansion Outputs a source program list of include files and results of macro
expansion. If the nosource suboption and the expansion suboption
are specified simultaneously, the expansion suboption will be invalid,
and no source program list will be output to a file.

noexpansion Outputs a source program list before include files or macros have been
expanded. If the nosource suboption and the noexpansion suboption
are specified simultaneously, the noexpansion suboption will be
invalid, and no source program list will be output to a file.

width=<numeric value> The number specified by <numeric value> is set as the maximum
number of characters in a single line of a list. The <numeric value>
can specify decimal numbers from 80 to 132 or 0.
If <numeric value> is specified as 0, the maximum number of
characters in a single line is not limited.

length=<numeric value> The number specified by <numeric value> is set as the maximum
number of lines on a single page of a list. The <numeric value> can
specify decimal numbers from 20 to 255 or 0.
If <numeric value> is specified as 0, the maximum number of lines on a
single page of a list is not limited.

Tab={4 | 8} Specifies the tab size when displaying a list.

25

2.2.4 Optimize Options

Table 2.6 Optimize Options

Item

Command Line
Format

Dialog Menu

Specification

Optimization OPtimize = { 0

 | 1 }

C/C++ <Optimize>
[Optimization]

Outputs object without optimization.

Outputs object with optimization.

Inter-module
optimization
information

Goptimize C/C++ <Optimize>
[Generate file for
inter-module
optimization]

Outputs inter-module optimization
supplementary information.

Optimization
for speed

SPeed [=<sub>[,…]]
<sub>:

{ Register

 | SHift

| Loop [= { 1

 | 2 }]

 | SWitch

 | Inline
 [=<numeric value>]

 | STruct

 | Expression }

C/C++ <Optimize>
[Speed or size :]
[Speed sub-options :]

Specifies code creation optimized for
speed is specified.

Performs register save and restore by
push and pop expansion.

Enhances the execution time of shift
operation.

Eliminates induction variables in a
loop statement.

Eliminates induction variables in a
loop statement and expands the loop.

Shortens the execution time of switch
statement.

Automatic inline expansion

Shortens the execution time of
structure assignment expression.

Shortens the execution time of
arithmetic operations, comparison,
and assignment expressions.

switch
statement
output code
selection

CAse = { Auto

 | Ifthen

 | Table }

C/C++ <Optimize>
[Switch statement :]

Determined by whether or not speed
is specified.

Expanded with if_then comparisons.

Expanded with jump table.

Memory
indirect
addressing
mode

INDirect = { Normal

 | Extended }

C/C++ <Optimize>
[Function call :]

Expands function call in memory
indirect addressing mode.

Expands function call in extended
memory indirect addressing mode.

26

Table 2.6 Optimize Options (cont)

Item Command Line Format Dialog Menu Specification

Pointer size PTr16 C/C++ <Optimize>
[2byte pointer]

Specifies the size of a pointer to data
as two bytes.

Short
absolute
addressing
mode

ABS8

ABS16

C/C++ <Optimize>
[Data access :]

Accesses 8-bit data by the 8-bit
absolute address.

Accesses all data by the 16-bit
absolute address.

External
variable
optimization

Volatile

NOVolatile

C/C++ <Optimize>
[Details...]
 [Global variables]
 [Treat global
variables as
volatile qualified]

Disables external variable
optimization.

Enables external variable
optimization.

External
variable
optimization
range

OPT_Range = { All

 | NOLoop

 | NOBlock

}

C/C++ <Optimize>
[Details...]
 [Global variables]
 [Specify optimizing
range:]

Optimizes external variables within the
entire function.

Disables loop control variables or
external variables in a loop from being
moved outside the loop.

Disables optimization of external
variables which extend across loops
or branches.

Vacant loop
elimination

DEL_vacant_loop = { 0

 | 1 }

C/C++ <Optimize>
[Details...]
[Miscellaneous]
[Delete vacant
loop]

Disables elimination of vacant loops.

Eliminates vacant loops.

Maximum
number of
loop
expansions

MAX_unroll = <numeric
value>

<numeric value>: 1 to 32

C/C++ <Optimize>
[Details...]
[Miscellaneous]
[Specify maximum
unroll factor :]

Specifies the maximum number of
times a loop is expanded.
Default: 1 (2 when speed or
speed=loop[=2] is specified)

Elimination of
expression
preceding
inifinite loop

INFinite_loop = { 0

 | 1 }

C/C++ <Optimize>
[Details...]
[Global variables]
[Delete assignment
to global variables
before an infinite
loop]

Disables elimination of an assignment
expression for external variables
preceding an infinite loop.

Eliminates an assignment expression
for external variables preceding an
infinite loop.

27

Table 2.6 Optimize Options (cont)

Item Command Line Format Dialog Menu Specification

External
variable
register
allocation

GLOBAL_Alloc = { 0

 | 1 }

C/C++ <Optimize>
[Details...]
[Global variables]
[Allocate registers
to global variables]

Disables allocation of external
variables to registers.

Allocates external variables to
registers.

Structure/
union
member
register
allocation

STRUCT_Alloc = { 0

 | 1 }

C/C++ <Optimize>
[Details...]
[Global variables]
[Allocate registers
to struct/union
members]

Disables allocation of structure/union
members to registers.

Allocates structure/union members to
registers.

const variable
constant
propagation

CONST_Var_propagate =
 { 0

 | 1 }

C/C++ <Optimize>
[Details...]
[Global variables]
[propagate
variables which are
const qualified]

Disables constant propagation of
external constants declared by const.

Performs constant propagation of
external constants declared by const.

Inline
expansion of
specific
library
functions

LIBrary = { Function

 | Intrinsic }

C/C++ <Optimize>
[Details...]
[Miscellaneous]
[Inline
memcpy/strcpy]

Makes function calls for memcpy and
strcpy.

Performs inline expansion for
memcpy and strcpy.

Division of
optimizing
ranges

SCOpe
NOSCope

 Optimizing ranges are divided.
Optimizing ranges are not divided.

Inter-file inline
expansion

FILe_inline =
 <file name>[,...]

C/C++ <Optimize>
[Details…]
[Inline]
[inline file path]

Specifies a file for inter-file inline
expansion.

OPtimize: Optimization

C/C++ <Optimize>[Optimization]

• Command Line Format

OPtimize = { 0 | 1 }

• Description

Specifies the level of compiler optimization for the object program.

When optimize=0 is specified, the compiler does not optimize the object program.

When optimize=1 is specified, the compiler optimizes the object program.

If this option is not specified, the compiler assumes optimize=1 is specified.

28

• Remarks

When optimize=0 is specified, speed=inline or loop is invalid.

Goptimize: Inter-Module Optimization Information

C/C++ <Optimize>[Generate file for inter-module optimization]

• Command Line Format

Goptimize

• Description

Outputs the supplement information for the inter-module optimization.

For the file specified with this option, the inter-module optimization is performed at linkage.

SPeed: Optimization for Speed

C/C++ <Optimize>[Speed or size :][Speed sub-options :]

• Command Line Format

SPeed = <sub> [,…]

<sub>: { Register |

 SHift |

 Loop [= { 1 | 2 }] |

 SWitch |

 Inline [= <numeric value>] |

 STruct |

 Expression }

• Description

Specifies optimization for speed for the object created by the compiler.

When 300ha, 300hn, or 300 is selected for the CPU/operating mode, speed=register uses the
PUSH and POP instructions to save and restore the contents of the registers at the entry and
exit of a function, instead of using a run-time routine.

The speed=shift option expands the shift operation to a code that does not use a run-time
routine.

The speed=loop=1 option eliminates induction variables.

The speed=loop=2 option eliminates induction variables and performs loop expansion.

The speed=switch option performs optimization for speed for code expansion of the switch
statement.

The speed=inline option performs inline expansion for small-size functions.

29

The speed=inline=<numeric value> modifies the maximum size of the target function for
inline expansion. If CPU is H8SX or H8S(without legacy=v4 option), <numeric value> means
the percentage of increase in program size allowed by inline expansion. For example, with
speed=inline=50, inline expansion is performed up to 50% increase in program size, or up to
1.5 times larger.

If CPU is H8/300, H8/300H or H8S(with legacy=v4 option), <numeric value> is specified as
the number of function nodes (total number of words consisting of variables and operators
except for definitions). This means that functions smaller than the threshold shown by the
<numeric value> are expanded. Here, the amount of program size increase depends on the size
of the function to be expanded and the frequency of the calls of those functions. Hence the
upper bound of the increase cannot be explicitly specified as can in H8SX or H8S(without
legacy=v4 option).

If <numeric value> is omitted, 100 is assumed if the CPU type is H8SX or H8S, and 110 is
assumed otherwise.

For details on the conditions of inline expansion, refer to the description on the in-line
expansion of functions in section 10.2.1 (2), Extended Specifications Related to Functions.

The speed=struct option expands structure-type or double-type assignment to a code that does
not use run-time routines.

The speed=expression option expands arithmetic operation, comparison, and assignment
expressions to a code that does not use run-time routines (some expressions are excluded from
this option).

If only speed is specified, optimization for speed is performed for speed=register, shift, loop,
switch, inline, struct, and expression. If this option is not specified, the compiler optimizes
for size instead of speed.

• Remarks

When no optimization (optimize=0) is specified, speed=loop or inline is invalid.

CAse: Switch Statement Output Code Selection Method

C/C++ <Optimize>[Switch statement :]

• Command Line Format

CAse = { Auto | Ifthen | Table }

• Description

Specifies a switch-statement-output code-selection method.

When case=auto is specified, the compiler automatically selects an optimization method to
reduce the size of the object code.

If speed or speed=switch is specified, the compiler automatically selects optimization for
speed.

30

When case=ifthen is specified, switch statement codes are created using the if_then method,
which repeats, for all case labels, comparing the evaluated value of the expression in the
switch statement with the case label value and jumps to the statement of the case label if they
match. This method increases the object code size depending on the number of case labels in
the switch statement.

When case=table is specified, switch statement codes are created using the table method,
which stores the case label jump destinations in a jump table and enables a jump to the
statement of the case label that matches the expression in the switch statement by accessing
the jump table only once. This method increases the jump table size in the constant area
depending on the range of case labels in the switch statement, but the execution speed is
always the same.

If this option is not specified, the compiler assumes case=auto is specified.

• Example

 int a, b;

 :

 switch(a){

 case 1: b=3; break;

 case 2: b=2; break;

 case 3: b=1; break;

 }

The following shows an example of a code expansion of a source program (when cpu=2600n)

 When case=ifthen is specified When case=table is specified

 MOV.W @_a:16,R0 MOV.W @_a:16,R0

 MOV.B R0H,R0H SUB.W #H’1,R0

 BNE Ld CMP.W #H’2,R0

 CMP.B #1,R0L BHI Ld

 BEQ L1 MOV.B @(L1:16,ER0),R0L

 CMP.B #2,R0L EXTU.W R0

 BEQ L2 ADD.W #LWORD Lp,R0

 CMP.B #3,ROL JMP @ER0

 BNE L4 Lp:

 BRA L3 :

L1: L1: (jump table)

31

Table 2.7 Comparison of switch Statement Expansion by Expression Value

if_then Method table Method
Value of a Object File Size Execution Cycle Object File Size Execution Cycle

1 9

3

22 bytes

17

29 (26 + 3) bytes 17

INDirect: Memory Indirect Addressing Mode

C/C++ <Optimize>[Function call :]

• Command Line Format

INDirect = { Normal | Extended }

• Description

Specifies the memory indirect addressing mode for calling functions from the source program.

If indirect=normal is specified, all functions are called in memory indirect addressing mode
(@@aa:8).

If indirect=extended is specified, all functions are called in extended memory indirect
addressing mode (@@vec:7).

The compiler outputs an address table for memory-indirect calls of the functions defined in the
source program in the sections below:

 If indirect=normal is specified, section “$INDIRECT”

 If indirect=extended is specified, section “$EXINDIRECT”

For details on how to specify the section name, refer to the description on the section switching
in section 10.2.1 (1), Extended Specifications Related to Memory Allocation.

• Remarks

The address table can be stored in the address ranges below:

 Section “$INDIRECT”: Area from 0x0000 to 0x00FF

 Section “$EXINDIRECT”: Area from 0x000 to 0x01FF in the normal mode

 : Area from 0x200 to 0x03FF in the other modes

At linkage, explicitly specify the location of these sections in the relevant address range with
the start option.

The indirect=extended specification is valid only when the CPU type is H8SX.

To specify memory indirect addressing mode for a specific function, use #pragma indirect,

_ _indirect, or _ _indirect_ex. These specifications are given priority compared to this option.
For details, refer to section 10.2.1 (2), Extension Functions Related to Functions.

Use either normal or extended exclusively between the definition and the call of the same
function.

32

PTr16: Pointer Size Specification

C/C++ <Optimize>[2byte pointer]

• Command Line Format

PTr16

• Description

Sets the size of the pointer indicating data to two bytes.

• Remarks

If this option is not specified, the size of the pointer indicating data is four bytes. If this option
is specified, the data section to be referenced must be explicitly located in the 16-bit absolute
address area. Addresses where to locate sections are specified with the start option of the
optimizing linkage editor. For details on the start option, refer to section 4.2.5, Section
Options. For details on the 16-bit absolute address area, refer to section 19.3, Access Range of
Short Absolute Addresses.

This option is valid only if the CPU/operating mode is H8SXA, H8SXX, H8S/2600A, or
H8S/2000A.

Take care the use of the ptr16 option so that the handling of the same data and caller-callee
relationship of the same function are consistent among files because changing the size of the
pointer-to-data from 4 to 2 affects not only the resource allocation, but also the method to pass
a function parameter and the function return value.

ABS8, ABS16: Short Absolute Addressing Mode

C/C++ <Optimize>[Data access :]

• Command Line Format

ABS8

ABS16

• Description

Accesses the data to be allocated to the static area in short absolute addressing mode.

When abs8 is specified, the compiler generates codes in 8-bit absolute addressing mode
(@aa:8) for accessing char, unsigned char, and composite data, which is 1-byte aligned,
consisting of char or unsigned char elements or members.

When abs16 is specified, the compiler generates codes for accessing data in 16-bit absolute
addressing mode (@aa:16) for the CPU/operating mode of H8SXA, H8SXX, 2600a, 2000a,
and 300ha. For the CPU/operating mode of H8SXN, H8SXM, 2600n, 2000n, 300hn, and 300,
abs16 is invalid.

The data to be accessed in 8-bit absolute addressing (abs8 option) is output to section name
“$ABS8C”, “$ABS8D”, or “$ABS8B”. The data to be accessed in 16-bit absolute addressing
mode (abs16 option) is output to section name “$ABS16C”, “$ABS16D”, or “$ABS16B”.

33

The variables to be accessed in short absolute addressing mode can also be specified by
#pragma abs8 and #pragma abs16, and keywords of _ _abs8 and _ _abs16. If both an
option and #pragma/keyword are specified, the #pragma/keyword specification is given
priority over the option.

• Remarks

The section output by this option must be allocated to the short absolute address area at linkage.
For the range of the short absolute address area, refer to section 19.3, Access Range of Short
Absolute Addresses. For section name specifications for the short absolute address area, refer
to the description on section switching in section 10.2.1 (1), Extended Specifications Related
to Memory Allocation.

Volatile, NOVolatile: External Variable Optimization

C/C++ <Optimize>[Details...][Global variables][Treat global variables as volatile qualified]

• Command Line Format

Volatile

NOVolatile

• Description

When volatile is specified, the compiler does not optimize external variables.

When novolatile is specified, the compiler optimizes external variables that do not have a
volatile specifier.

When this option is not specified, the compiler assumes that novolatile is specified.

• Example

Source program

 volatile int a;

 int b;

 void main(void){

 a;

 b;

 }

34

When volatile is specified

 mov.w @_a,R0

 mov.w @_b,R0 ; b is accessed as a volatile variable

 rts

When novolatile is specified

 mov.w @_a,R0

 rts ; As a result of optimization, the access to b may be deleted

OPT_Range: External Variable Optimization Range Specification

C/C++ <Optimize> [Details...][Global variables][Specify optimizing range :]

• Command Line Format

OPT_Range = { All | NOLoop | NOBlock }

• Description

When opt_range=all is specified, the compiler optimizes external variables within the entire
function.

When opt_range=noloop is specified, external variables in a loop and external variables used
in a loop iteration condition are not to be optimized.

When opt_range=noblock is specified, external variables extending across branches
(including loops) are not to be optimized.

When this option is omitted, opt_range=all is assumed.

• Examples
(1) Optimization extending across a branch (done when opt_range=all or opt_range=noloop

is specified)
 int A,B,C;

 void f(int a) {

 A = 1;

 if (a) {

 B = 1;

 }

 C = A;

 }

35

 <Source program image after optimization>
 int A,B,C;

 void f(int a) {

 A = 1;

 if (a) {

 B = 1;

 }

 C = 1; /* Reference of A is eliminated and A = 1 is propagated */

 }

 (2) Optimization in a loop (done when opt_range=all is specified)
 int A,B,C[100]; /* External variables */

 void f() {

 int i;

 for (i=0;i<A;i++) {

 C[i] = B;

 }

 }

 <Source program image after optimization>
 void f() {

 int i;

 int temp_A, temp_B; /* Local variables */

 temp_A = A; /* Reference of A by loop iteration condition is moved outside the loop */

 temp_B = B; /* Reference of B in the loop is moved outside the loop */

 for (i=0;i<A;i++) { /* Reference of A in the loop is eliminated */

 C[i] = temp_B; /* Reference of B in the loop is eliminated */

 }

 }

• Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

When opt_range=noloop is specified, max_unroll=1 is always the default.

When opt_range=noblock is specified, max_unroll=1, const_var_propagate=0, and
global_alloc=0 are always the default.

36

DEL_vacant_loop: Vacant Loop Elimination

C/C++ <Optimize>[Details...][Miscellaneous][Delete vacant loop]

• Command Line Format

DEL_vacant_loop = { 0 | 1 }

• Description

When del_vacant_loop=0 is specified, even when there is no statements inside the loop, a
loop is not eliminated.

When del_vacant_loop=1 is specified, loops without statements inside are eliminated.

When this option is omitted, del_vacant_loop=0 is assumed.

• Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

MAX_unroll: Loop Expansion Maximum Number Specification

C/C++ <Optimize>[Details...][Miscellaneous][Specify maximum unroll factor :]

• Command Line Format

MAX_unroll = <numeric value>

• Description

Specifies the maximum number of loop expansions. An integer from 1 to 32 can be specified
for <numeric value>. If any other value is specified, an error will occur.

When del_vacant_loop=1 is specified, loops with no internal processing are eliminated.

When this option is omitted, max_unroll=2 is assumed with speed or speed=loop[=2]
specified. For any other cases, max_unroll=1 is assumed.

• Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

When opt_range=noloop or opt_range=noblock is specified, max_unroll=1 is always the
default.

37

INFinite_loop: Elimination of Expression Preceding Infinite Loop

C/C++ <Optimize>[Details...][Global variables][Delete assignment to global variables before an
infinite loop]

• Command Line Format

INFinite_loop = { 0 | 1 }

• Description

When infinite_loop=0 is specified, an assignment expression for external variables that is
located immediately before an infinite loop is not eliminated.

When infinite_loop=1 is specified, an assignment expression that is located immediately
before an infinite loop and that is an assignment to the external variable that is not used in the
infinite loop is eliminated.

When this option is omitted, infinite_loop=0 is assumed.

• Example

 int A;

 void f()

 {

 A = 1; /* Assignment expression to external variable A */

 while(1) {} /* A is not referenced */

 }

 <Source program image when infinite_loop=1 is specified>

 void f()

 {

 /* Assignment expression to external variable A is eliminated */

 while(1) {}

 }

• Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

38

GLOBAL_Alloc: External Variable Register Allocation

C/C++ <Optimize>[Details...][Global variables][Allocate registers to global variables]

• Command Line Format

GLOBAL_Alloc = { 0 | 1 }

• Description

When global_alloc=0 is specified, allocation of external variables to registers is disabled.

When global_alloc=1 is specified, external variables are allocated to registers.

When this option is omitted, global_alloc=1 is assumed.

• Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

When opt_range=noblock is specified, global_alloc=0 is the default.

STRUCT_Alloc: Structure/Union Member Register Allocation

C/C++ <Optimize>[Details...][Global variables][Allocate registers to struct/union members]

• Command Line Format

STRUCT_Alloc = { 0 | 1 }

• Description

When struct_alloc=0 is specified, allocation of structure or union members to registers is
disabled.

When struct_alloc=1 is specified, structure or union members are allocated to registers.

When this option is omitted, struct_alloc=1 is assumed.

• Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

If struct_alloc=1 is specified and if opt_range=noblock or global_alloc=0 is specified, only
local structure or union members are allocated to registers.

39

CONST_Var_propagate: const Constant Propagation

C/C++ <Optimize>[Details...][Global variables][Propagate variables which are const qualified]

• Command Line Format

CONST_Var_propagate = { 0 | 1 }

• Description

When const_var_propagate=0 is specified, constant propagation for external variables
declared by const is disabled.

When const_var_propagate=1 is specified, constant propagation is performed even for
external variables declared by const.

When this option is omitted, const_var_propagate=1 is assumed.

• Example

 const int x = 1;

 int A;

 void f() {

 A = x;

 }

 <Source program image when const_var_propagate=1 is specified>

 void f() {

 A = 1; /* x = 1 is propagated */

 }

• Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

When opt_range=noblock is specified, const_var_propagate=0 is the default.

Variables declared by const in a C++ program cannot be controlled by this option (constant
propagation is always performed).

LIBrary: Specific Library Function Inline Expansion

C/C++ <Optimize>[Details...][Miscellaneous][Inline memcpy/strcpy]

• Command Line Format

LIBrary = { Function | Intrinsic }

• Description

Regarding library functions memcpy and strcpy:

 When library=function is specified, these functions are called as functions.

 When library=intrinsic is specified, inline expansion is performed for these functions.

• Remarks

Specifying library=intrinsic is valid only when the CPU type is H8SX.

40

SCOpe, NOSCope: Division of Optimizing Ranges

None

• Command Line Format

SCOpe

NOSCope

• Description

When the scope option is specified, the compiler divides the optimizing ranges of the large-
size functions into some blocks.

When the noscope option is specified, the compiler does not divide the optimizing ranges.
When the optimizing range is expanded, the object performance is generally improved
although the compilation time becomes longer. However, if registers are insufficient, the
object performance may not be improved.

Use this option at performance tuning because it affects the object performance depending on
the program.

• Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

FILe_inline: Inter-file Inline Expansion

C/C++ <Optimize>[Details...][Inline][Inline file path]

• Command Line Format

FILe_inline=<file name>[,...]

• Description

Performs inline expansion for functions that extend across files for the files specified with
<file name>.

• Remarks

When the file_inline option is specified, inline expansion is only applied to the functions
specified with #pragma inline or keyword inline included in the file specified by <file name>.
If the –speed=inline option is specified simultaneously, inline expansion is applied to all
possible functions in the file.

If a global function is defined twice or more in files as the <file name> sub-option, no
operation is guaranteed (using a single function definition randomly selected for inline
expansion).

The extension of the file name specified by <file name> cannot be omitted.

A file to be compiled cannot be specified with the file_inline option.

A wild card (* or ?) cannot be specified for <file name>.

If a file has #pragma asm-endasm, #pragma inline_asm or __asm, it will not be expanded.

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

41

2.2.5 Other Options

Table 2.8 Other Options

Item

Command Line
Format

Dialog Menu

Specification

Comment
nesting

COMment C/C++ <Other>
[Miscellaneous options :]
 [Allow comment nest]

Allows comment (/* */)
nesting.

Embedded
C++ language

ECpp C/C++ <Other>
[Miscellaneous options :]
 [Check against EC++ language
 specification]

Checks the syntax
according to the EC++
language specifications
and determines the used
memory management
libraries.

MAC register MAcsave C/C++ <Other>
[Miscellaneous options :]
 [Interrupt handler saves/restores
 MACH and MACL registers if used]

Always keeps the MAC
register contents
unchanged after an
interrupt function is
called.

Disable of loop
iteration
condition
optimization

VOLATILE_Loop C/C++ <Other>
[Miscellaneous options :]
 [Treats loop condition as volatile

qualified]

Disables optimization of
loop iteration condition.

Enumeration
data size

Byteenum C/C++ <Other>
[Miscellaneous options :]
 [Treat enum as char if it is in the
 range of char]

Handles enumeration
data declared by enum
with char.

Increase of
registers for
register
variables

Regexpansion

NORegexpansion

C/C++ <Other>
[Miscellaneous options :]
 [Increase a register for register
 variable]

Uses (E)R3 to (E)R6

Uses (E)R4 to (E)R6

Common
subexpression
elimination

CMncode C/C++ <Other>
[Miscellaneous options :]
 [Put common subexpression on a
 register temporarily]

Optimizes with common
subexpression
elimination.

42

Table 2.8 Other Options (cont)

Item

Command Line
Format

Dialog Menu

Specification

Block transfer
instruction

EEpmov C/C++ <Other>
[Miscellaneous options :]
 [Use EEPMOVE in block copy]

Expands structure
assignment expression by
the eepmov instruction.

Restriction for
output at
prepro-
cessor
expansion

NOLINe C/C++ <Other>
[Miscellaneous options :]
 [Suppress #line in preprocessed
source file]

Disables #line output at
preprocessor expansion.

Message level CHAnge_message
 =<sub>[,...]
<sub>:<level>
 [=<n>[-m],...]
<level>:{Information
 | Warning
 | Error }

C/C++ <Other>
[User defined options :]

Changes message level.

Preferential
allocation of
register
storage class
variables

ENAble_register C/C++ <Other>
[Miscellaneous options :]
 [Enable register declaration]

Preferentially allocates
the variables with register
storage class
specification to registers.

ANSI
conformance

STRIct_ansi C/C++ <Other>
[Miscellaneous options :]
 [Obey ansi specifications more
strictly]

Conforms to the ANSI
standard for the following
processing:

• Associative rule of
floating-point

operations

43

COMment: Comment Nesting

C/C++ <Other>[Miscellaneous options :] [Allow comment nest]

• Command Line Format

COMment

• Description

Enables nested comments to be written.

When this option is omitted, if nested comments are written, an error will occur.

• Example

/* This is an example of/* nested */ comment */

 ↑
 (1)

When comment is specified, the compiler handles the above line as a nested comment,
however, when the option is not specified, the compiler assumes (1) as the end of the comment.

44

ECpp: Embedded C++ Language

C/C++ <Other>[Miscellaneous options :] [Check against EC++ language specification]

• Command Line Format

ECpp

• Description

Checks the syntax of the C++ source program according to the Embedded C++ language
specifications. The Embedded C++ language specifications do not support catch, const_cast,
dynamic_cast, explicit, mutable, namespace, reinterpret_cast, static_cast, template,
throw, try, typeid, typename, and using. Therefore, if these keywords are written in the
source program, the compiler will output an error message.

This option also determines the memory management libraries used in EC++/C++ programs.
This option must be specified to use an EC++ library.

• Remarks

The Embedded C++ language specifications do not support a multiple inheritance or virtual
base class.

If a multiple inheritance or virtual base class is written in the source program, the compiler will
show the error message "C5882 (E) Embedded C++ does not support multiple or virtual
inheritance" at compilation.

This option and the exception option cannot be specified simultaneously.

MAcsave: MAC Register

C/C++ <Other>[Miscellaneous options :]
[Interrupt handler saves/restores MACH and MACL registers if used]

• Command Line Format

MAcsave

• Description

The contents of the MAC register always remain unchanged after an interrupt function is
called.

When macsave is specified, and if the MAC register is used in an interrupt function or if a
function is called in the interrupt function, a save and restore code is created for the MAC
register.

If macsave is not specified, a save and restore code is created for the MAC register only when
the MAC register is used in an interrupt function.

45

VOLATILE_Loop: Disabling Optimization against Loop Iteration Condition

C/C++ <Other>[Miscellaneous options :][Treats loop condition as volatile qualified]

• Command Line Format

VOLATILE_Loop

• Description

Disables optimization of the loop iteration condition if it includes an external variable.

Note however that if type conversion is performed, if two or more external variables are
included, or if composite operation is performed, optimization may be performed.

• Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

If this option is specified, external variables within the loop are not optimized even though the
volatile option has not been specified.

Without this option, if the loop iteration condition is invariant in the loop, the loop iteration
condition may be eliminated.

Byteenum: Enumeration Data Size

C/C++ <Other>[Miscellaneous options :] [Treat enum as char if it is in the range of char]

• Command Line Format

Byteenum

• Description

Handles the declared enum data as char data or unsigned char data.

If this option is specified, the compiler selects the enum data type according to the range of the
members of the enum data. If the value is in the range from −128 to 127, the compiler handles
the data as char data, whereas if the value is in the range from 0 to 255, the data is handled as
unsigned char data.

When this option is not specified or at least one of the enum data members exceeds the above
range, even if this option is specified, the enum data is handled as int data.

46

• Example

Source program

 enum EM {a,b,c} E;

 void main(void){E=b;}

When byteenum is specified

 mov.b #1,R0L ; Transfers a 1-byte data

 mov.b R0L,@_E

 rts

 _E:

 .res.b 1 ; Allocates a 1-byte area to E
When byteenum is not specified

 mov.w #1,R0 ; Transfers a 2-byte data
 mov.w R0,@_E

 rts

 _E:

 .res.w 1 ; Allocates a 2-byte area to E

Regexpansion, NORegexpansion: Increasing Number of Registers for Register Variables

C/C++ <Other>[Miscellaneous options :] [Increase a register for register variable]

• Command Line Format

Regexpansion

NORegexpansion

• Description

When regexpansion is specified, the compiler increases the number of registers to which
register variables are allocated.

When noregexpansion is specified, the compiler does not increase the number of registers to
which register variables are allocated.

Generally, variable-access speed increases when the number of registers is increased.

For details on register variable allocation, refer to section 9.3.2 (3), Rules concerning registers.

When this option is not specified, the compiler assumes that regexpansion is specified.

• Remarks

The regexpansion/noregexpansion specification is invalid when the CPU type is H8SX or
H8S.

47

CMncode: Common Expression Optimization

C/C++ <Other>[Miscellaneous options :] [Put common subexpression on a register temporarily]

• Command Line Format

CMncode

• Description

Increases the number of target expressions for the optimization that converts a common
subexpression into a temporary variable.

In general, when the number of target expressions for common subexpression optimization is
increased by specifying this option, the temporary variables are allocated to registers and the
performance of the object program is improved. However, when there are not enough registers,
temporary variables are allocated to memory and the performance may be lowered. Use this
option examining the performance of the program at performance tuning.

• Remarks

This option is valid only when the CPU type is H8/300, H8/300H or CPU type is H8S (with
legacy=v4 option)).

EEpmov: Block Transfer Instruction

C/C++ <Other>[Miscellaneous options :] [Use EEPMOVE in block copy]

• Command Line Format

EEpmov

• Description

Expands the assignment statements of structures and initial value assignment expressions for
the arrays declared by local variables as the block transfer instruction(s). If the CPU is H8SX,
the MOVMD instruction is used. Otherwise, the EEPMOV instruction is used. If the transfer
size is too large for a block transfer instruction, a run-time routine will be used.

When this option is not specified, the compiler expands then to the MOV instructions or run-
time routines.

• Remarks

For H8/300H and H8S(with legacy=v4 option), if an interrupt is accepted during the
EEPMOV.W instruction, the control moves to the next instruction after returning from the
interrupt, and therefore the EEPMOV operation result cannot be guaranteed. For source files
including the functions which may accept an interrupt, this option should not be specified.

For H8SX and H8S(without legacy=v4 option), expanded code can work if an interrupt occurs.

48

NOLINe: Restriction for Output at Preprocessor Expansion

C/C++ <Other>[Miscellaneous options :] [Suppress #line in preprocessed source file]

• Command Line Format

NOLINe

• Description

When this option is specified, disables #line output at preprocessor expansion.

• Remarks

This option is valid only when preprocessor is specified.

CHAnge_message: Message Level

C/C++ <Other>[Use defined options :]

• Command Line Format

CHAnge_message = <sub>[,...]
 <sub> : <error level>[=<error number>[- <error number>][,...]]
 <error level> : { Information | Warning | Error }

• Description

Changes the message level of information-level and warning-level messages.

• Example

change_message=information=1001,5038-5047

Warning-level messages with the specified error numbers C1001 and from C5038 to C5047
are changed to information-level messages.

change_message=warning=5007-5009

Information-level messages with the specified error numbers from C5007 to C5009 are
changed to warning-level messages.

change_message=error=2-1024

Information-level and warning-level messages with the specified error numbers from C0002 to
C1024 are changed to error-level messages.

change_message=information

All the warning-level messages are changed to information-level messages.

change_message=warning

All the information-level messages are changed to warning-level messages.

change_message=error

All the information-level and warning-level messages are changed to error-level messages.

49

• Remarks

Output of the messages which were changed to the information-level can be suppressed by the
nomessage option.

An error number which is not defined is ignored.

When this option is specified more than once, all the specifications are valid. If a number is
specified more than once, the last specification is valid.

ENAble_register: Preferential Allocation of register Storage Class Variables

C/C++ <Other> [Miscellaneous options :][Enable register declaration]

• Format

ENAble_register

• Description

Preferentially allocates the variables with register storage class specification to registers.

• Remarks

If a variable cannot be allocated to a register, message C0101 (I) Register is not
allocated to "variable name" in "function name" will be output. Note, however,
that this message will not be output if a parameter is not allocated to a register. This option is
valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

STRIct_ansi: ANSI Conformance

C/C++ <Other> [Miscellaneous options :][Obey ansi specifications more strictly]

• Format

STRIct_ansi

• Description

Conforms to the ANSI standard for the following processing:

 Associative rule of floating-point operations

• Remarks

When this option is specified, the operation results may be different from Ver.6.0 compiler or
earlier.

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

50

2.2.6 CPU Options

Table 2.9 CPU Options

Item Command Line Format Dialog Menu Specification

CPU/operating
mode

CPu =

 { AE5

 | H8SXN [:<*2>]

 | H8SXM[:<*1>][:<*2>]

 | H8SXA[:<*1>][:<*2>]

 | H8SXX[:<*1>][:<*2>]

 | 2600N

 | 2600A[:<*1>]

 | 2000N

 | 2000A[:<*1>]

 | 300HN-20

 | 300HA [:<*1>]

 | 300 | 300L | 300Reg }

CPU
[CPU:]
 [Multiple/Divide :]

AE5*3

H8SX normal mode

H8SX middle mode

H8SX advanced mode

H8SX maximum mode

H8S/2600 normal mode

H8S/2600 advanced mode

H8S/2000 normal mode

H8S/2000 advanced mode

H8/300H normal mode

H8/300H advanced mode

H8/300

Parameter
storage register

REGParam = { 2

 | 3 }

CPU
[Change number of
parameter registers from 2
(default) to 3]

Uses (E)R0 and (E)R1

Uses (E)R0, (E)R1, and
(E)R2

Allocating
structure
parameter or
return value to
register

STRUctreg

NOSTRUctreg

CPU
[Pass struct parameter
via register]

Allocates 4-byte or less
structure parameter or
return value to register.

Allocating 4-byte
parameter or
return value to
register

LONgreg

NOLONgreg

CPU
[Pass 4-byte parameter/
return value via register]

Allocates 4-byte parameter
or return value to register
(cpu=300).

double to float
conversion

DOuble=Float CPU
[Treat double as float]

Handles double-type
variable as float-type
variable.

Stack size
specification

STAck = {

 Small
 | Medium
 | Large }

CPU
[Stack calculation]

Specifies stack calculation
size:
1 byte
2 bytes
4 bytes

Notes: 1. Bit width of address space
 2. Specification of multiplier and divider

 3. For details on AE5, refer to section 17, Supporting AE5 Features.

51

Table 2.9 CPU Options (cont)

Item Command Line Format Dialog Menu Specification

Runtime type
information

RTti = { ON

 | OFf }

CPU
 [Enable/disable runtime
information]

Enables dynamic_cast and
typeid.

Disables dynamic_cast and
typeid.

Exception
processing

EXception

NOEXception

CPU
 [Use try, throw and catch
of C++]

Enables exception
processing function

Disables exception
processing function.

Boundary
alignment of
structure, union,
and class
members

PAck = { 1

 | 2 }

CPU
 [Pack struct, union and
class]

Assumes the boundary
alignment value to be 1.
Follows the boundary
alignment.

8-bit absolute
area address

SBr = <address> CPU
[Specify SBR address :]

Specifies the start address
of the 8-bit absolute area.

Bit field order
specifica-
tion

BIt_order {= Left

 | Right >}

C/C++ <Object>
[Bit field alloc-order :]

Stores members from
upper bit.

Stores members from lower
bit.

52

CPu: CPU/Operating Mode

CPU [CPU:][Multiple/Divide :]

• Command Line Format

CPu = {AE5
 H8SXN [: <multiplier and divider specification>] |
 H8SXM [: <address space bit width>][: <multiplier and divider specification>] |
 H8SXA [: <address space bit width>][: <multiplier and divider specification>] |
 H8SXX [: <address space bit width>][: <multiplier and divider specification>] |
 2600N |

 2600A [: <address space bit width>] |

 2000N |

 2000A [: <address space bit width>] |

 300HN |

 300HA [: <address space bit width>] |

 300 | 300L | 300Reg }

 <address space bit width> : {20 | 24 | 28 | 32}

 <multiplier and divider specification> : {M | D | MD} M:multiplier, D:divider

• Description

Specifies the CPU type and operating mode for the object program to be created.

If no input is made for the multiplier and divider specification, assumed there is no multiplier
and divider.

Sub-options and their specifiable bit widths are listed in table 2.10.

53

Table 2.10 Suboptions for cpu Option

Suboption Description Bit Width Miltiplier/Divider

AE5 Object for AE5

H8SXN H8SX normal mode M, D, MD

H8SXM H8SX middle mode 20, 24 M, D, MD

H8SXA H8SX advanced mode 20, 24, 28, 32 M, D, MD

H8SXX H8SX maximum mode 28, 32 M, D, MD

2600n H8S/2600 normal mode

2600a H8S/2600 advanced mode 20, 24, 28, 32

2000n H8S/2000 normal mode

2000a H8S/2000 advanced mode 20, 24, 28, 32

300hn H8/300H normal mode

300ha H8/300H advanced mode 20, 24

300 Object for H8/300

300l Object for H8/300

Provided to maintain the compatibility with
the assembler.

300reg Object for H8/300

Provided to maintain the compatibility with
the older version of the C compiler.

Note: When the bit width is not specified, the underlined default value is assumed.

• Example

-cpu = H8SXM:20 ; Without multiplier and divider, H8SX middle mode with 20-bit width

-cpu = h8sxa:32:md ; With multiplier and divider, H8SX advanced mode with 32-bit width

-cpu = H8SXA:D ; With divider, H8SX advanced mode with 24-bit width

• Remarks

When the cpu option is not specified, the compiler uses the H38CPU environment variable
specifications. When the cpu option and the H38CPU environment variable are specified, the
compiler uses the cpu specifications. When neither the cpu option nor the H38CPU
environment variable is specified, an error will occur. For the CPU sub-option of AE-5, see
section 17, Supporting AE5 Features.

REGParam: Parameter Storage Register

CPU [Change number of parameter registers from 2(default) to 3]

• Command Line Format

REGParam = { 2 | 3 }

54

• Description

Specifies the number of registers for storing parameters.

If regparam=2 is specified, parameters are passed in two registers: ER0 and ER1 (R0 and R1
for the H8/300).

If regparam=3 is specified, parameters are passed in three registers: ER0, ER1, and ER2 (R0,
R1, and R2 for the H8/300).

When this option is not specified, regparam=2 is assumed.

STRUctreg, NOSTRUctreg: Register Allocation of Structure Parameters

CPU [Pass struct parameter via register]

• Command Line Format

STRUctreg

NOSTRUctreg

• Description

Specifies whether structure parameters or return values are allocated to registers or not.

If nostructreg is specified, parameters are passed via a memory instead of a register.

If structreg is specified, parameters can be passed via a register.

The size of structures which can be passed as parameters are 2 bytes when CPU=300, and 4
bytes for other CPU specifications.

When this option is omitted, nostructreg is assumed.

55

• Remarks

If the CPU is H8/300 and the longreg is specified, up to 4 bytes of data can be allocated to a
register as a parameter and a return value.

LONgreg, NOLONgreg: Register Allocation of 4-Byte Parameters

CPU [Pass 4-byte parameter/return value via register]

• Command Line Format

LONgreg

NOLONgreg

• Description

Specifies whether 4-byte parameters or return values are allocated to registers or not.

The type of variable to be allocated to a register by this option is long, unsigned long, and
float.

If nolongreg is specified, parameters are passed via a memory instead of a register.

If longreg is specified, parameters can be passed via a register.

When this option is omitted, nolongreg is assumed.

• Remarks

This option can be specified only when the CPU is H8/300.

When the CPU is not H8/300, 4-byte data can always be allocated to registers.

DOuble=Float: double to float Conversion

CPU [Treat double as float]

• Command Line Format

DOuble=Float

• Description

Generates an object after converting double-type (double-precision floating-point)
variables/values to float-type (single-precision floating-point) ones.

56

STAck: Stack Size Specification

CPU [Stack calculation :]

• Command Line Format

STAck = { Small | Medium | Large }

• Description

Specifies the stack size.

When stack=small is specified, stack addresses are calculated only in the least significant
1 byte without a carry to the upper bytes.

When stack=medium is specified, stack addresses are calculated only in the least significant
2 bytes without a carry to the upper bytes.

When stack=large is specified, stack addresses are calculated as 4byte value.

When this option is omitted, stack=medium is assumed.

• Remarks

This option should be specified to the whole program with the same suboption.

If stack address calculation is performed with a size larger than the specified size, or a variable
is allocated beyond the 1-byte, 2-byte and 4-byte address boundary values, the compiler does
not output an error or warning message. Note, however, that the goptimize option allows the
output of these warning messages by the optimizing linkage editor.

In this case, increase the size of the stack.

Example:
-stack=small

H'FE00

STACK Section
H'FEFF

Allocate the stack so that stack
addresses can be operated within
1 byte.

57

RTti: Runtime Type Information

CPU [Enable/disable runtime information]

• Command Line Format

RTti = { ON | OFf }

• Description

Enables or disables runtime type information.

When rtti=on is specified, dynamic_cast and typeid are enabled.

When rtti=off is specified, dynamic_cast and typeid are disabled.

When this option is omitted, rtti=off is assumed.

• Remarks

Do not define object files which are created by specifying this option in a library, and do not
output files with this information as relocatable object files. A symbol double definition error
or symbol undefined error will occur.

EXception, NOEXception: Exception Processing

CPU [Use try, throw and catch of C++]

• Command Line Format

EXception

NOEXception

• Description

When noexception is specified, the C++ exception processing functions are disabled.

When exception is specified, the C++ exception processing functions (try, catch, and throw)
are enabled.

When an exception processing function is used, the code performance may be reduced.

When this option is omitted, noexception is assumed.

The exception option and ecpp option cannot be specified simultaneously.

58

PAck: Boundary Alignment of Structure, Union, and Class Members

CPU [Pack struct, union and class]

• Command Line Format

PAck = { 1 | 2}

• Description

Specifies the boundary alignment of structure, union, and class members.

Boundary alignment of structure members can also be specified by the #pragma pack
extension. If both this option and #pragma are specified, only #pragma is valid.

The boundary alignment of structures, unions, and classes equals to the maximum boundary
alignment of members.

For details, refer to section 10.1.2 (2), Compound Type (C), Class Type (C++).

When this option is not specified, the compiler assumes that pack=2 is specified.

• Remarks

Table 2.11 shows the boundary alignment of structure, union, and class members when pack is
specified.

Table 2.11 Boundary Alignment of Structure, Union, and Class Members when the pack

Option is Specified

Member Type

pack=1

pack=2

Not
Specified

[unsigned] char 1 1 1

[unsigned] short, [unsigned] int, [unsigned] long,
floating-point type, pointer type

1 2 2

Structures, unions, and classes aligned to a 1-byte
boundary

1 1 1

Structures, unions, and classes aligned to a 2-byte
boundary

1 2 2

A member of a struct, union or class to which the pack=1 option or #pragma pack 1 is
specified must not be accessed via a pointer (including an access via a pointer in a member
function).

59

Example: (cpu=2600a and pack=1)

 struct S {
 char x;
 int y;
 } s;
 int *p=&s.y; // the address of s.y can be an odd number
 void test()
 {
 s.y=1; // accessed correctly
 *p =1; // can be accessed incorrectly
 }

SBr: 8-Bit Absolute Area Address Specification

CPU [Specify SBR address :]

• Command Line Format

SBr = <address>

• Description

Specifies the start address of the 8-bit absolute area.

When sbr=<address> is specified, a 1-byte area starting from <address> is used as the 8-bit
absolute area.

• Remarks

This option is valid only when the CPU type is H8SX.

An <address> should be within a data area.

When this option is omitted, the default 8-bit absolute address is assumed as <address>. For
details on the 8-bit absolute address area, refer to section 19.3, Access Range of Short
Absolute Addresses.

• Example

 ch38 –sbr=A0000 test.c
 Compiled assuming the 8-bit absolute address area begins at 0xA0000.

60

BIt_order: Bit Field Order Specification

CPU [Bit field alloc-order]

• Command Line Format

BIt_order = { Left | Right }

• Description

Specifies the order of bit field members.

When bit_order=left is specified, members are allocated from the most significant bit.

When bit_order=right is specified, members are allocated from the least significant bit.

When this option is not specified, the compiler assumes that bit_order=left is specified.

• Remarks

For details on allocation of bit field members, refer to section 10.1.2, Internal Data
Representation, and the description on #pragma bit_order in section 10.2.1, #pragma
Extension Specifiers and Keywords.

Keep the order of the same bit field members consistent among files.

2.2.7 Options Other Than Above

Table 2.12 Options Other Than Above

Item

Command Line
Format

Dialog Menu

Specification

Selecting C or
C++ language

LANg = { C

 | CPp }

(Determined by an
extension)

Compiled as C source program.

Compiled as C++ source program.

Disable of
copyright output

LOGO

NOLOGO

(nologo is always valid)

Outputs copyright.

Disables copyright output.

Character code
select in string
literal

EUc

SJis

LATin1

 Selects euc code.

Selects sjis code.

Selects latin1 code.

Japanese
character
conversion within
object code

OUtcode = { Euc

 | Sjis }

 Selects euc code.

Selects sjis code.

Subcommand file SUbcommand =
 <file name>

 Command option is fetched from the
file specified with <file name>.

61

LANg: Selecting C or C++ Language

None (Always determined by an extension)

• Command Line Format

LANg = { C | CPp }

• Description

Specifies the language of the source program.

If lang=c is specified, the compiler will compile the program file as a C source program.

If lang=cpp is specified, the compiler will compile the program file as a C++ source program.

If this option is not specified, the compiler will determine whether the source program is a C or
a C++ program by the extension of the source program file name. If the extension is c, the
compiler will compile it as a C source program. If the extension is cpp, cc, or cp, the compiler
will compile it as a C++ source program. If there is no extension, the compiler will compile
the program as a C source program.

62

• Example

 ch38 test.c Compiled as a C source program.

 ch38 test.cpp Compiled as a C++ source program.

 ch38 -lang=cpp test.c Compiled as a C++ source program.

 ch38 test Assumed to be test.c and thus compiled as a C source program.

• Remarks

If lang=c is specified, ecpp is invalid.

LOGO, NOLOGO: Disable of Copyright Output

None (nologo is always available)

• Command Line Format

LOGO

NOLOGO

• Description

Disables the copyright output.

When logo is specified, copyright display is output.

When nologo is specified, the copyright display output is disabled.

When this option is omitted, logo is assumed.

EUc, SJis, LATin1: Character Code Select in String Literal

None

• Command Line Format

EUc

SJis

LATin1

• Description

Use this option to specify the character code to be output to the object program for Japanese
language or ISO-Latin1 code written in a string literal, a character constant, or a comment.

Table 2.13 shows character code in the string literal for three types of host computers.

63

Table 2.13 Relationship between Host Computer and Character Code in String Literal

Option Specification

Host Computer euc sjis latin1 Not Specified

PC euc sjis latin1 sjis

SPARC euc sjis latin1 euc

HP9000/700 euc sjis latin1 sjis

• Remarks

If latin1 is specified, outcode will be invalid.

OUtcode: Japanese Code Conversion in Object Code

None

• Command Line Format

OUtcode = Euc | Sjis

• Description

Specifies the Japanese character code to be output to the object program when Japanese is
written in string literal and character constants.

If outcode=euc is specified, the compiler outputs the Japanese character code in the euc code.

If outcode=sjis is specified, the compiler outputs the Japanese character code in the sjis code.

euc or sjis can be specified for the Japanese character code in a source program.

SUbcommand: Subcommand File

None

• Command Line Format

SUbcommand = <subcommand file name>

• Description

Specifies the subcommand file where options used at compiler initiation are stored. The
command format in the subcommand file is the same as that on the command line.

• Example

 opt.sub: -show=object -debug -byteenum

 Command line specification: ch38 -cpu=2600a -subcommand=opt.sub test.c

 Interpretation by compiler: ch38 -cpu=2600a -show=object -debug
 -byteenum test.c

64

65

Section 3 Assembler Options

3.1 Command Line Format

The format of the command line to initiate the assembler is as follows:

asm38 [∆<option> …] [∆<file name> [,…*]] [∆<option> …]

 <option>: -<option> [=<suboption> [,…]]

Note*: When the user specifies multiple source files, the assembler will merge and assemble

these files as one unit in the order they were specified. In this case, the user must
write the .END assembly directive only in the file that was specified last.

3.2 List of Options

Table 3.1 shows assembler option formats, abbreviations, and defaults. In the command line
format, uppercase letters indicate the abbreviations. Characters underlined indicate the default
assumptions.

The format of the dialog menus that correspond to the HEW is as follows:

Tab name [Item]

Options are described in the order of tabs in the HEW option dialog box.

66

3.2.1 Source Options

Table 3.1 Source Options

Item Command Line Format Dialog Menu Specification

Include file
directory

Include = <path name>[,…] Assembly <Source>
[Show entries for :]
 [Include file directories]

Specifies include-file
destination path name.

Replacement
symbol
definition

DEFine = <sub>[, …]
<sub>:
<replacement symbol>
= <string literal>

Assembly <Source>
[Show entries for :]
 [Defines]

Defines replacement string
literal.

Integer
preprocessor
variable
definition

ASsignA = <sub>[, …]
<sub>:
<variable name>
= <integer constant>

Assembly <Source>
[Show entries for :]
 [Preprocessor
 variables]

Defines integer preprocessor
variable.

Character
preprocessor
variable
definition

ASsignC = <sub>[, …]
<sub>:
<variable name>
= <string literal>

Assembly <Source>
[Show entries for :]
 [Preprocessor
 variables]

Defines character preprocessor
variable.

67

Include

Assembly <Source> [Show entries for :] [Include file directories]

• Command Line Format

Include = <path name> [,…]

• Description

The include option specifies the include file directory. The directory name depends on the
naming rule of the host machine used. As many directory names as can be input in one
command line can be specified. The current directory is searched first, and then the directories
specified by the include option are searched in the specified order.

Example: asm38 aaa.mar -include=c:/usr/tmp,c:/tmp

(.INCLUDE "file.h" is specified in aaa.mar.)

The current directory, c:/usr/tmp, and c:/tmp are searched for file.h in that order.

Relationship with Assembler Directives

Option Assembler Directive Result

include (regardless of any specification) (1) Directory specified by
.INCLUDE

 (2) Directory specified by
include*

(no specification) .INCLUDE <file name> Directory specified by .INCLUDE

Note: The directory string literals specified by the include option must come before the literal
specified by .INCLUDE directive.

68

DEFine

Assembly <Source> [Show entries for :] [Defines]

• Command Line Format

DEFine = <sub> [,...]
<sub>: <replacement symbol> = <string literal>

• Description

The define option defines the specified symbol as the corresponding string literal to be
replaced by the preprocessor.

Differences between the define option and the assignc option are the same as those between
.DEFINE and .ASSIGNC.

Relationship with Assembler Directives

Option Assembler Directive Result

define .DEFINE directive* String literal specified by define

 (no specification) String literal specified by define

(no specification) .DEFINE directive String literal specified by .DEFINE

Note: When a string literal is assigned to a replacement symbol by the define option, the
definition of the replacement symbol by .DEFINE is invalidated. This replacement is not
applied to the .AENDI, .AENDR, .AENDW, .AIFDEF, .END, .ENDM, .ENDI, .ENDS, and
.ENDW, directives.

69

ASsignA

Assembly <Source> [Show entries for :][Preprocessor variables]

• Command Line Format

ASsignA = <sub>[,...]
<sub>: <preprocessor variable> = <integer constant>

• Description

The assigna option sets an integer constant to a preprocessor variable. The naming rule of
preprocessor variables is the same as that of symbols. An integer constant is specified by
combining the radix (B', Q', D', or H') and a value. If the radix is omitted, the value is assumed
to be decimal. An integer constant must be within the range from –2,147,483,648 to
4,294,967,295. To specify a negative value, use a radix other than decimal.

Example: asm38 aaa.mar –assigna=_$=H'FF

Value H'FF is assigned to preprocessor variable _$. All references (\&_$) to preprocessor
variable _$ in the source program are set to H'FF.

• Remarks

If the host computer OS is UNIX, and if the dollar mark ($) is in the preprocessor variable or
the apostrophe (') of the radix is in the integer constant, a backslash (\) must be specified
before the dollar mark ($) or the apostrophe (') of the radix.

Relationship with Assembler Directives

Option Assembler Directive Result

assigna .ASSIGNA* Integer constant specified by assigna

 (no specification) Integer constant specified by assigna

(no specification) .ASSIGNA Integer constant specified by .ASSIGNA

Note: When a value is assigned to a preprocessor variable by the assigna option, the definition of
the preprocessor variable by .ASSIGNA is invalidated.

70

ASsignC

Assembly <Source> [Show entries for :][Preprocessor variables]

• Command Line Format

ASsignC = <sub>
<sub>: <preprocessor variable> = <string literal>

• Description

The assignc option sets a string literal to a preprocessor variable.

The naming rule of preprocessor variables is the same as that of symbols.

A string literal must be enclosed with double-quotation marks (").

Up to 255 characters can be specified for a string literal.

Example: asm38 aaa.mar -assignc=_$=ON!OFF

String literal ON!OFF is assigned to preprocessor variable _$. All references (\&_$) to
preprocessor variable _$ in the source program are set to ON!OFF.

• Remarks

To specify the following characters in a string literal when the host computer OS is UNIX,
specify a backslash (\) before the characters. To specify a string literal before or after the
following characters, enclose the string literal with double-quotation marks (").

 Exclamation mark (!)

 Double-quotation mark (")

 Dollar mark ($)

 Single quotation mark (`)

Relationship with Assembler Directives

Option Assembler Directive Result

assignc .ASSIGNC* String literal specified by assignc

 (no specification) String literal specified by assignc

(no specification) .ASSIGNC String literal specified by .ASSIGNC

Note: When a string literal is assigned to a preprocessor variable by the assignc option, the
definition of the preprocessor variable by .ASSIGNC is invalidated.

71

3.2.2 Object Options

Table 3.2 Object Options

Item Command Line Format Dialog Menu Specification

Debugging
information

Debug
NODebug

Assembly <Object>
[Debug information :]

Outputs debug information.

Not output debug information.

Pre-processor
expansion
result

EXPand
 [= <output file name>]

Assembly <Object>
[Generate assembly
source file after
preprocess]

Outputs preprocessor expansion
result.

Optimization OPtimize
NOOPtimize

Assembly <Object>
[Optimize]

Optimized.
Not optimized.

Displacement
size setting

BR relative = <sub>

<sub>: { 8 |
 16 }

Assembly <Object>
[Default of branch
displacement size :]

Sets the default size for the
number of bits used to represent
displacements for branch
instructions.
Set to 8 bits.
Set to 16 bits.

Inter-module
optimization

GOptimize Assembly <Object>
[Generate file for inter-
module optimization]

Outputs additional information for
inter-module optimization.

Object
module
output

Object
 [= <output file name>]

NOObject

Assembly <Object>
[Output file directory :]

Outputs an object file.

Not output an object file.

72

Debug, NODebug

Assembly <Object> [Debug information :]

• Command Line Format

Debug
NODebug

• Description

The debug option specifies output of debugging information. The nodebug option specifies
no output of debugging information. The debug and nodebug options are only valid in cases
where an object module is generated.

• Remarks

Debugging information is required when debugging a program with the debugger. Debugging
information includes information about source statement lines and symbols.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

debug (regardless of any specification) Debugging information is output.

nodebug (regardless of any specification) Debugging information is not
output.

(no specification) .OUTPUT DBG Debugging information is output.

 .OUTPUT NODBG Debugging information is not
output.

 (no specification) Debugging information is not
output.

73

EXPand

Assembly <Object> [Generate assembly source file after preprocess]

• Command Line Format

EXPand [= <output file name>]

• Description

The expand option outputs an assembler source file for which macro expansion, conditional
assembly, structured assembly, and file inclusion have been performed.

When this option is specified, no object will be generated.

When the output file parameter is omitted, the assembler takes the following actions:

 If the file extension is omitted:

The file extension will be exp.

 If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be exp.

• Remarks

Do not specify the same file name for the input and output files.

74

OPtimize, NOOPtimize

Assembly <Object> [Optimize]

• Command Line Format

OPtimize
NOOPtimize

• Description

The optimize option specifies whether or not to optimize the PC relative format, displacement
size of register-indirect with displacement, and address size of the absolute addressing format.
Regarding the MOVA instruction of H8SX, the optimization is performed or not as shown in
the table below.

The frist operand Whether optimized or not

@(disp,Reg) *1 Yes

@(disp,@ERn.sz) *2 Yes

@(disp,@+ERn.sz) or @(disp,@-ERn.sz) *2 Yes

@(disp,@ERn+.sz) or @(disp,@ERn-.sz) *2 Yes

@(disp,@(disp,Reg).sz) *2 *3 No

@(disp,@abs.sz) *2 No

Note: 1. “Reg” can be RnL.B, RnH.B, Rn.W or En.W.
 2. “sz” can be either B or W.
 3. “Reg” can be ERn, RnL.B, Rn.W or ERn.L.

This option is valid for executable instructions when a displacement (:8 or :16) is not specified,
or an allocated size (:8, :16, :24, or :32) of an absolute address is not specified. The
displacement size is set as shown below according to the displacement value of the PC relative
format.

When no optimization is specified in the H8S/2600 advanced mode:

Type of Displacement Size

Absolute value (-32768 to 32767) 16 bits*

Relative value 16 bits

External reference value 16 bits

Note: Only valid when an absolute symbol that is defined after the instruction is referenced.

75

When optimization is specified in the H8S/2600 advanced mode:

Type of Displacement Size

Absolute value (-128 to 127) 8 bits

 (-32768 to –129)
(128 to 32767)

16 bits

Relative value 16 bits

External reference value 16 bits

Example

asm38 aaa.mar -optimize

The object module is optimized.

asm38 aaa.mar

The object module is not optimized.

Relationship with Assembler Directives

The assembler gives priority to specifications made by using options

Option 1 Option 2 Assembler Directive Result

optimize (regardless of
any
specification)

(regardless of any specification) Optimized number of bits

nooptimize br_relative (regardless of any specification) Number of bits specified by
br_relative

.DISPSIZE Number of bits specified by
.DISPSIZE

 (no
specification)

(no specification) 8 bits

Note: The optimize option has priority over the br_relative option for the output of the object
module and the .DISPSIZE directive.

76

BR_relative

Assembly <Object> [Default of branch displacement size :]

• Command Line Format

BR_relative = {8 | 16}

• Description

The br_relative option specifies a default size for the displacements of the instructions that
reference the symbol which is defined in advance.

 8: The default size is 8 bits

 16: The default size is 16 bits

This option is valid when a displacement size (:8 or :16) is specified and the optimize option
has not been specified.

• Remarks

In the H8/300 and the H8/300L, br_relative has a fixed value of 8, and thus has no meaning.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option 1 Option 2 Assembler Directive Result

optimize (regardless of
any
specification)

(regardless of any specification) Optimized number of bits

nooptimize br_relative (regardless of any specification) Number of bits specified by
br_relative

.DISPSIZE Number of bits specified by
.DISPSIZE

(no specification)
cpu=300, 300L, 300HN, 2000N,
2600N, H8SXN

8 bits

 (no
specification)

(no specification)
cpu=300HA, 2000A, 2600A,
H8SXM, H8SXA, H8SXX, AE5

16 bits

Note: The optimize option has priority over the br_relative option for the output of the object
module and the .DISPSIZE directive.

77

GOptimize

Assembly <Object> [Generate file for inter-module optimization]

• Command Line Format

GOptimize

• Description

The goptimize option specifies outputs of additional information for the inter-module
optimization. Inter-module optimization is performed when the files for which this option is
specified are linked.

Object, NOObject

Assembly <Object> [Output file directory :]

• Command Line Format

Object [= <output file name>]

NOObject

• Description

The object option specifies output of an object module.

The noobject option specifies no output of an object module.

When the object output file parameter is omitted, the assembler takes the following actions:

 If the file extension is omitted:

The file extension will be obj.

 If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be obj.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

object (regardless of any specification) An object module is output.

noobject (regardless of any specification) An object module is not output.

(no specification) .OUTPUT OBJ An object module is output.

 .OUTPUT NOOBJ An object module is not output.

 (no specification) An object module is output.

Note: Do not specify the same file name for the input source file and the output object module. If
the same file is specified, the contents of the input source file will be lost.

78

3.2.3 List Options

Table 3.3 List Options

Item Command Line Format Dialog Menu Specification

Assemble
listing
output
control

LISt [= <output file name>]
NOLISt
 [= <output file name>]

Assembly <List>
[Generate list file]

Outputs a source program list.
Not output a source program list.

Source
program
listing
output
control

SOurce
NOSOurce

Assembly <List>
[Source
 program :]

Controls output of source program
listing.

Part of
source
program
listing
output
control*

SHow [= <item>[, …]]
NOSHow [= <item>[, …]]
<item>:
{CONditionals | Definitions |
 CAlls | Expansions |
 Structured | CODe}

Assembly <List>
[Source
 program list
contents :] [Code]

Controls output of part of source
program listing.

Cross-
reference
listing
output
control*

CRoss_reference
NOCRoss_reference

Assembly <List>
[Cross
 reference :]

Outputs a cross-reference listing.
Not output a cross-reference listing.

Section
information
listing
output
control*

SEction
NOSEction

Assembly <List>
[Section :]

Outputs a section information listing.
Not output a section information listing.

Note: These options are valid only if the list option is specified.

79

LISt, NOLISt

Assembly <List> [Generate list file]

• Command Line Format

LISt [= <output file name>]

NOLISt [= <output file name>]

• Description

The list option outputs an assemble listing.

The nolist option does not output an assemble listing. If the nolist option is specified and the
specification is made to output the file name, the assembly listing is output to the file for only
the line where the error occurred.

When the listing output file parameter is omitted, the assembler takes the following actions:

 If the file extension is omitted:

The file extension will be lis.

 If the specification is completely omitted:

The output file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be lis.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

list (regardless of any specification) An assemble listing is output.

nolist (regardless of any specification) An assemble listing is not output.

(no specification) .PRINT LIST An assemble listing is output.

 .PRINT NOLIST An assemble listing is not output.

 (no specification) An assemble listing is not output.

Note: Do not specify the same file for the input source file and the output object file. If the same
file is specified, the contents of the input source file will be lost.

80

SOurce, NOSOurce

Assembly <List> [Source program :]

• Command Line Format

SOurce

NOSOurce

• Description

The source option outputs a source program listing to the assemble listing.

The nosource option does not output a source program listing to the assemble listing.

The source and nosource options are only valid in cases where an assemble listing is being
output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option

Assembler Directive

Result (When an Assemble
Listing Is Output)

source (regardless of any specification) A source program listing is output.

nosource (regardless of any specification) A source program listing is not
output.

(no specification) .PRINT SRC A source program listing is output.

 .PRINT NOSRC A source program listing is not
output.

 (no specification) A source program listing is output.

81

SHow, NOSHow

Assembly <List> [Source program list contents :] [Code:]

• Command Line Format

SHow [= <output type>[,...]]

NOSHow [= <output type>[,...]]

<output type>: {CONditionals | Definitions | CAlls | Expansions | Structured | CODe}

• Description

Outputs or suppresses a part of preprocessor source statements in the source program listing,
and outputs or suppresses a part of object code lines.

The items specified by <output type> will be output or suppressed depending on the option.
When no output type is specified, all items will be output or suppressed.

show: Output

noshow: No output (suppress)

The show option and noshow option is valid only if assemble listing is output. The following
output types can be specified:

Output Type Object Description

conditionals Unsatisfied condition Unsatisfied .AIF or .AIFDEF statements

definitions Definition Macro definition parts,
.AREPEAT and .AWHILE definition parts,
.INCLUDE directive statements
.ASSIGNA and .ASSSIGNC directive statements

calls Call Macro call statements,
.AIF, .AIFDEF, and .AENDI directive statements

expansions Expansion Macro expansion statements
.AREPEAT and .AWHILE expansion statements

structured Structured expansion Structured assembly expansion statements

code Object code lines The object code lines exceeding the source
statement lines

• Remarks

In a PC version, when specifying more than two output types, enclose the types with
parentheses.

82

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

show[=<output type>] (regardless of any specification) The object code is output.

noshow[=<output type>] (regardless of any specification) The object code is not output.

(no specification) .LIST <output type> (output) The object code is output.

 .LIST <output type> (suppress) The object code is not output.

 (no specification) The object code is output.

CRoss_reference, NOCRoss_reference

Assembly <List >[Cross reference :]

• Command Line Format

CRoss_reference

NOCRoss_reference

• Description

The cross_reference option specifies output of a cross-reference listing to the assemble listing.

The nocross_reference option specifies no output of a cross-reference listing to the assemble
listing.

The cross_reference and nocross_reference options are valid only if an assemble listing is
being output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option

Assembler Directive

Result (When an Assemble
Listing Is Output)

cross_reference (regardless of any specification) A cross-reference listing is output.

nocross_reference (regardless of any specification) A cross-reference listing is not
output.

(no specification) .PRINT CREF A cross-reference listing is output.

 .PRINT NOCREF A cross-reference listing is not
output.

 (no specification) A cross-reference listing is output.

83

SEction, NOSEction

Assembly <List > [Section :]

• Command Line Format

SEction

NOSEction

• Description

The section option specifies output of a section information listing to the assemble listing.

The nosection option specifies no output of a section information listing to the assemble
listing.

The section and nosection options are valid only if an assemble listing is being output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option

Assembler Directive

Result (When an Assemble
Listing Is Output)

section (regardless of any specification) A section information listing is
output.

nosection (regardless of any specification) A section information listing is not
output.

(no specification) .PRINT SCT A section information listing is
output.

 .PRINT NOSCT A section information listing is not
output.

 (no specification) A section information listing is
output.

84

3.2.4 Tuning Options

Table 3.4 Tuning Options

Item

Command Line
Format

Dialog Menu

Specification

Specification of
symbols for 8- or
16-bit absolute
address format

ABS8
ABS16

Assembly <Tuning>
[Option to set :]

Specifies whether
symbols to be accessed
as 8- or 16-bit absolute
addresses.

ABS8, ABS16

Assembly <Tuning> [Option to set :]

• Command Line Format

ABS8 [= <symbol> [,...]]
ABS16 [= <symbol> [,...]]

• Description

The abs8 option specifies a symbol to be accessed in 8-bit absolute address format.

The abs16 option specifies a symbol to be accessed in 16-bit absolute address format.

When a symbol is omitted, all externally referenced symbols and externally defined symbols
are specified.

When the abs8 and abs16 options are both specified for the same symbol, the option on the
right hand side has the priority:

 When –abs8 –abs16 is specified:

All external symbols are accessed in 16-bit absolute address format.

 When –abs8=<symbol> –abs16=<symbol> is specified:

<symbol> is accessed in 16-bit absolute address format, and all others are determined by
the CPU. However, when a symbol is specified in one option and when symbols are
omitted in another option, both options are exclusively valid.

 When –abs8=<symbol> –abs16 is specified:

<symbol> is accessed in 8-bit absolute address format, and the others are accessed in 16-bit
absolute address format.

Priority of Access Size Settings

85

Priority Access Size Format

High 1 Size specified for the absolute address format

 2 Access size set by .IMPORT, .EXPORT, or .GLOBAL directives
.ABS8 and .NOABS8 directives

Low 3 abs8 or abs16 settings

Example: asm38 aaa.mar –abs8=sym1 –abs16

When an external symbol is specified in the absolute address format, sym1 is addressed in 8-
bit absolute address format, and other external symbols are addressed in 16-bit absolute
address format.

asm38 aaa.mar–abs8=sym1 –abs16=sym2,sym3,sym4

Contents of aaa.mar

 .CPU 2600A

 .IMPORT sym1,sym2,sym3,sym5

 .IMPORT sym4:8

 MOV.B @sym1 ,R1H ;8 bits (-abs8 option specified)

 MOV.B @sym2 ,R1H ;16 bits (-abs16 option specified)

 MOV B @sym3:8,R1H ;8 bits (size explicitly specified)

 MOV.B @sym4 ,R1H ;8 bits (address size specified by .IMPORT)

 MOV.B @sym5 ,R1H ;32 bits (no specification)

 MOV.B @(sym1+sym2),R1H ;8 bits (the smaller of –abs8 and –abs16)

Note: When more than one external symbols is specified for the absolute address format, the

minimum address size is used.

86

3.2.5 Other Options

Table 3.5 Other Options

Item

Command Line
Format

Dialog Menu

Specification

Unreferenced
import symbol
output control

Exclude

NOExclude

Assembly <Other>
[Miscellaneous options :]
[Remove unreferenced external
symbols]

Not output the symbol
information on import
symbols that have not
been referred to.
Outputs the symbol
information on import
symbols that have not
been referred to.

Exclude, NOExclude

Assembly <Other> [Miscellaneous options :] [Remove unreferenced external symbols]

• Command Line Format

Exclude
NOExclude

• Description

The exclude option prevents the output of symbol information on import symbols that have
not been referred to.

The noexclude option specifies the output of the symbol information on import symbols that
have not been referred to.

Suppressing the output of this information makes the object modules smaller.

Example: asm38 aaa.mar –exclude

The information on import symbols that have not been referred to is not output.

asm38 aaa.mar –noexclude

The information on import symbols that have not been referred to is output.

87

3.2.6 CPU Options

Table 3.6 CPU Options

Item Command Line Format Dialog Menu Specification

CPU type
specification

CPU =

{ AE5 |

 H8SXN[:{M|D|MD}] |

 H8SXM[:<bit width>] [:{M|D|MD}] |

 H8SXA[:<bit width>] [:{M|D|MD}] |

 H8SXX[:<bit width>] [:{M|D|MD}] |

 2600N |

 2600A [:<bit width>] |

 2000N |

 2000A [:<bit width>] |

 300HN |

 300HA [:<bit width>] |

 300 | 300L }

CPU
[CPU :]

Specifies the CPU type.

Origin
specification
in the 8-bit
short absolute
area

SBR CPU
[Specify SBR
address :]

Specifies the origin of the
8-bit short absolute area.

88

CPu

CPU [CPU :]

• Command Line Format

CPu = {AE5 |
 H8SXN [:{M|D|MD}] |
 H8SXM [:<bit width of the address space>] [:{M|D|MD}] |
 H8SXA [:<bit width of the address space>] [:{M|D|MD}] |
 H8SXX [:<bit width of the address space>] [:{M|D|MD}] |
 2600N |
 2600A [:<bit width of the address space>] |
 2000N |
 2000A [:<bit width of the address space>] |
 300HN |
 300HA [:<bit width of the address space>] |
 300 | 300L }

• Description

Specifies the CPU type and the operating mode for the object program to be generated, the bit
width of the address space, and whether or not a multiplier and/or a divider exist.

Table 3.7 lists the suboptions.

89

Table 3.7 Suboptions for cpu Option

Suboption Description

AE5 Creates an object for the AE5. Refer to section 17, Supporting
AE5 Features.

H8SXN [:{M|D|MD}] Creates an object for the H8SX normal mode. A multiplier and/or
a divider can be specified.

H8SXM [:<bit width of the
address space>] [:{M|D|MD}]

Creates an object for the H8SX middle mode. <bit width of the
address space> is 20 or 24, which is 1 Mbyte or 16 Mbytes,
respectively. <bit width of the address space> is 24 by default. A
multiplier and/or a divider can be specified.

H8SXA [:<bit width of the
address space>] [:{M|D|MD}]

Creates an object for the H8SX advanced mode. <bit width of the
address space> is 20, 24, 28, or 32, which is 1 Mbyte, 16
Mbytes, 256 Mbytes, or 4 Gbytes, respectively. <bit width of the
address space> is 24 by default. A multiplier and/or a divider can
be specified.

H8SXX[:<bit width of the address
space>] [:{M|D|MD}]

Creates an object for the H8SX maximum mode. <bit width of the
address space> is 28 or 32, which is 256 Mbytes or 4 Gbytes,
respectively. <bit width of the address space> is 32 by default. A
multiplier and/or a divider can be specified.

2600N Creates an object for the H8S/2600 normal mode.

2600A[:<bit width of the address
space>]

Creates an object for the H8S/2600 advanced mode. The value
of <bit width of the address space> is 20, 24, 28, or 32, to
indicate 1 Mbyte, 16 Mbytes, 256 Mbytes, or 4 Gbytes,
respectively. <bit width of the address space> is 24 by default.

2000N Creates an object for the H8S/2000 normal mode.

2000A[:<bit width of the address
space>]

Creates an object for the H8S/2000 advanced mode. The value
of <bit width of the address space> is 20, 24, 28, or 32, to
indicate 1 Mbyte, 16 Mbytes, 256 Mbytes, or 4 Gbytes,
respectively. <bit width of the address space> is 24 by default.

300HN Creates an object for the H8/300H normal mode.

300HA[:<bit width of the address
space>]

Generates the object for the H8/300H advanced mode. The
value of <bit width of the address space> is 20 or 24, to indicate
1 Mbyte or 16 Mbytes, respectively. <bit width of the address
space> is 24 by default.

300 Creates an object for the H8/300.

300L Creates an object for the H8/300L.

90

Specify whether or not a multiplier and a divider exist as follows:

Multiplier/Divider Specification Method

Without multiplier and without divider No specification

With multiplier and without divider M

Without multiplier and with divider D

With multiplier and with divider MD

Use MAC, LDMAC, STMAC, CLRMAC, MULU/U, or MULS/U as an additional instruction
with a multiplier.

There are no additional instructions with a divider.

• Remarks

When the cpu option is omitted, the contents of the H38CPU environmental variable are
referred to. Priority is given to the cpu option when both a cpu option and H38CPU
environmental variable are specified. When neither a cpu option nor a H38CPU
environmental variable is set, the error message 933 is output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option

Assembler
Directive

Environmental
Variable

Result (When an Assemble
Listing Is Output)

cpu=cpu type (regardless of
any specification)

(regardless of
any specification)

Cpu type as specified by cpu.

(no specification) .CPU cpu type (regardless of
any specification)

Cpu type as specified by the
.CPU.

h38cpu=cpu type Cpu type set by the environmental
variable.

 (no specification)

(no specification) Output of error message 933

91

SBR

CPU [Specify SBR address :]

• Command Line Format

SBR = {<constant> | USER}

• Description

When SBR=<constant> is specified, the 256-byte area whose origin is <constant> as the
access area of the 8-bit absolute addressing format. As for the constant, radix H’ should be
specified and the lower 8 bits should be fixed to 0. When SBR = USER is specified, the origin
of the 8-bit short absolute address is as shown below depending on the bit width of the address
space.

CPU/Operating Mode Origin of the 8-Bit Short Absolute Address

H8SXX[:32] H’FFFFFF00 H8SX maximum mode

H8SXX:28 H’0FFFFF00

H8SXA:32 H’FFFFFF00

H8SXA:28 H’0FFFFF00

H8SXA[:24] H’00FFFF00

H8SX advanced mode

H8SXA:20 H’000FFF00

H8SXM[:24] H’00FFFF00 H8SX middle mode

H8SXM:20 H’000FFF00

H8SX normal mode H8SXN H’0000FF00

Only when the CPU is H8SXN, H8SXM, H8SXA, or H8SXX, the SBR option can be
specified.

92

Relationship with Assembler Directives

Option

Assembler Directive

Origin of the Access Area of the 8-Bit Absolute
Address

sbr=<constant> .SBR <constant> Constant specified with the SBR directive

 .SBR Constant specified with the sbr option

 (no specification) Constant specified with the sbr option

sbr=USER .SBR <constant> Constant specified with the SBR directive

 .SBR Value determined by the bit width of the address
space

 (no specification) Value determined by the bit width of the address
space

(no specification) .SBR <constant> Constant specified with the SBR directive

 .SBR Value determined by the bit width of the address
space

 (no specification) Value determined by the bit width of the address
space

Example: asm38 aaa.mar –sbr=H’ff0000
 The 8-bit short absolute address area is in the range from
 H’00ff0000 to H’00ff00ff.
 Contents of aaa.mar
 .CPU H8SXX:32
 MOV.L #H’00ff0000,ER1
 LDC.L ER1,SBR
 MOV.B @sym1 ,R1H ;8 bits (within the 8-bit short absolute
 ; address area specified with –sbr)
 MOV.B @sym2 ,R1H ;16 bits (without the 8-bit short absolute
 ; address area specified with –sbr)
 sym1: .equ H’00ff0040
 sym2: .equ H’ffffff40

• Remarks

If the host computer OS is UNIX, specify a backslash (\) before the apostrophe (') of the radix
indicator “H'”.

93

3.2.7 Options Other Than Above

Table 3.8 Options Other Than Above

Item

Command Line
Format

Dialog Menu

Specification

Change of error level
at which the
assembler is
abnormally
terminated

ABort = {Warning |
 Error}

Assembly <Other>
[User defined options :]

Changes the error level at
which the assembler is
abnormally terminated.

ISO-Latin1 Code LATIN1 Assembly <Other>
[User defined options :]

Enables the use of Latin1
code characters in source
file.

Shift JIS code SJIS Assembly <Other>
[User defined options :]

Interprets Japanese
character in source file as
shift JIS code.

EUC code EUC Assembly <Other>
[User defined options :]

Interprets Japanese
character in source file as
EUC code.

Specification of
Japanese character

OUtcode = {SJIS |
 EUC}

Assembly <Other>
[User defined options :]

Specifies the Japanese
character for output to
object code.

Setting of the
number of lines in
the assemble listing

LINes =
 <number of lines>

Assembly <Other>
[User defined options :]

Specifies the number of
lines in assemble listing.

Setting of the
number of digits in
the assemble listing

COlumns =
 <number of digits>

Assembly <Other>
[User defined options :]

Specifies the number of
digits in assemble listing.

Copyright LOGO
NOLOGO

-
(nologo is always valid)

Outputs logo
Not output logo

Specification of
subcommand

SUBcommand =
 <file name>

- Inputs command line from
a file.

94

ABort

Assembly <Other> [User defined options :]

• Command Line Format

ABort = {Warning | Error}

• Description

The abort option specifies the error level.

When the return value to the OS becomes 1 or larger, the object module is not output.

The abort option is valid only if the object module is output.

The return value to the OS is as follows:

 Return Value to OS when Option Specified

Number of Cases abort=warning abort=error

Warning Error Fatal Error PC UNIX PC UNIX

0 0 0 0 0 0 0

1 or more 0 0 2 1 0 0

— 1 or more 0 2 1 2 1

— — 1 or more 4 1 4 1

LATIN1

Assembly <Other> [User defined options :]

• Command Line Format

LATIN1

• Description

The latin1 option enables the use of ISO-Latin1 code characters in strings literal and in
comments.

Do not specify this option together with the sjis, euc, or outcode option.

95

SJIS

Assembly <Other> [User defined options :]

• Command Line Format

SJIS

• Description

When the sjis option is specified, Japanese characters in strings literal and comments are
interpreted as shift JIS code.

When the sjis option is omitted, Japanese characters in strings literal and comments are
interpreted as Japanese characters depending on the host computer.

Do not specify this option together with the latin1 or euc option.

EUC

Assembly <Other> [User defined options :]

• Command Line Format

EUC

• Description

When the euc option is specified, Japanese characters in strings literal and comments are
interpreted as EUC code.

When the euc option is omitted, Japanese characters in strings literal and comments are
interpreted as Japanese characters depending on the host computer.

Do not specify this option together with the latin1 or sjis option.

96

OUtcode

Assembly <Other> [User defined options :]

• Command Line Format

OUtcode = {SJIS | EUC}

• Description

The outcode option converts Japanese characters in the source file to the specified Japanese
character for output to the object file.

The Japanese character output to the object file depends on the outcode specification and the
Japanese character (sjis or euc) in the source file as follows:

 Japanese Character in Source File

outcode Specification sjis euc No Specification

sjis Shift JIS code Shift JIS code Shift JIS code

euc EUC code EUC code EUC code

No specification Shift JIS code EUC code Default code

Default code is as follows.

Host Computer Default Code

PC Shift JIS code

SPARC station EUC code

HP9000/700 series Shift JIS code

97

LINes

Assembly <Other> [User defined options :]

• Command Line Format

LINes = <Number of lines>

• Description

The lines option sets the number of lines on a single page of the assemble listing. The range of
valid values for the line count is from 20 to 255.

The lines option is valid only if an assemble listing is being output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

lines=<number of lines> (regardless of any specification) The number of lines on a page is
given by lines

(no specification) .FORM LIN=<number of lines> The number of lines on a page is
given by .FORM.

 (no specification) The number of lines on a page is
60 lines.

COlumns

Assembly <Other> [User defined options :]

• Command Line Format

COlumns = <Number of digits>

• Description

The columns option sets the number of digits in a single line of the assemble listing. The range
of valid values for the column count is from 79 to 255.

The columns option is valid only if an assemble listing is being output.

98

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

columns=
<number of digits>

(regardless of any specification) The number of digits in a line is
given by columns.

(no specification) .FORM COL=<number of digits> The number of digits in a line is
given by .FORM.

 (no specification) The number of digits in a line is
132.

LOGO, NOLOGO

None (nologo is always available)

• Command Line Format

LOGO

NOLOGO

• Description

Disables the copyright output.

When the logo is specified, copyright display is output.

When the nologo is specified, the copyright display output is disabled.

When this option is omitted, logo is assumed.

99

SUBcommand

None

• Command Line Format

SUBcommand = <file name>

• Description

The subcommand option inputs command line specifications from a file.

Specify input file names and options in the subcommand file in the same order as for normal
command line specifications.

Only one input file name or option can be specified in one line in the subcommand file.

This option must not be specified in a subcommand file.

Example: asm38 aaa.src -subcommand=aaa.sub

The subcommand file contents are expanded to a command line and assembled.

Contents of aaa.sub

bbb.src

-list

-noobj

The above command line and file aaa.sub are expanded as follows:

asm38 aaa.src,bbb.src -list -noobj

• Remarks

One subcommand file can include a maximum of 65,535 bytes.

100

101

Section 4 Optimizing Linkage Editor Options

4.1 Option Specifications

4.1.1 Command Line Format

The format of the command line is as follows:

optlnk[{∆<file name>|∆<option string>}...]

 <option string>:-<option>[=<suboption>[,...]]

4.1.2 Subcommand File Format

The format of the subcommand file is as follows:

<option>{=|∆}[<suboption>[,...]][∆&][;<comment>]

&: means line continuous.

For details, refer to section 4.2.8, Subcommand File Option.

4.2 List of Options

In the command line format in the following sections, uppercase letters indicate abbreviations.
Underlined characters indicate the default settings.

The format of the dialog menus that correspond to the HEW is as follows:
Tab name <Category>[Item]....

For details on dialog menus, refer to the HEW.

The order of option description corresponds to that of the tabs and the categories in the HEW.

102

4.2.1 Input Options

Table 4.1 Input Category Options

Item Command Line Format Dialog Menu Specification

Input file Input = <sub>[{,|∆}…]
<sub>:
<file name>
 [(<module name>[,…])]

Link/Library
<Input>
[Show entries for :]
 [Relocatable files
and object files]

Specifies input file.
(Input file is specified without
input on the command line.)

Library file LIBrary = <file name>[,...] Link/Library
<Input>
[Show entries for :]
 [Library files]

Specifies input library file.

Binary file Binary = <sub> [,...]
<sub>:
<file name>(<section name>
 [:<boundary alignment>]
 [,<symbol name>])

Link/Library
<Input>
[Show entries for :]
 [Binary files]

Specifies input binary file.

Symbol
definition

DEFine = <sub>[,…]
<sub>:
<symbol name> =
 {<symbol name>
 |<numerical value>}

Link/Library
<Input>
[Show entries for :]
 [Defines:]

Defines undefined symbols
forcedly.
Defined as the same value of
symbol name
Defined as a numerical value

Execution
start address

ENTry = { <symbol name>
 | <address>}

Link/Library
<Input>
[Use entry point :]

Specifies an entry symbol.
Specifies an entry address.

Prelinker NOPRElink Link/Library
<Input>
[Prelinker control :]

Disables prelinker initiation.

Input Input File

Link/Library <Input>[Show entries for :][Relocatable files and object files]

• Command Line Format

Input = <suboption>[{, | ∆}…]

<suboption>: <file name>[(<module name>[,…])]

• Description

Specifies an input file. Two or more files can be specified by separating them with a comma
(,) or space.

103

Wildcards (* or ?) can also be used for the specification. String literals specified with
wildcards are expanded in alphabetical order. Expansion of numerical values precedes that of
alphabetical letters. Uppercase letters are expanded before lowercase letters.

Specifiable files are object files output from the compiler or the assembler, and relocatable or
absolute files output from the optimizing linkage editor. A module in a library can be
specified as an input file using the format of <library name>(<module name>). The module
name is specified without an extension.

If an extension is omitted from the input file specification, obj is assumed when a module
name is not specified and lib is assumed when a module name is specified.

• Example

input=a.obj lib1(e) ; Inputs a.obj and module e in lib1.lib.

input=c*.obj ; Inputs all .obj files beginning with c.

• Remarks

When form=object or extract is specified, this option is unavailable.

When an input file is specified on the command line, input should be omitted.

LIBrary Library File

Link/Library <Input>[Show entries for :][Library files]

• Command Line Format

LIBrary = <file name>[,…]

• Description

Specifies an input library file. Two or more files can be specified by separating them with a
comma (,).

Wildcards (* or ?) can also be used for the specification. String literals specified with
wildcards are expanded in the alphabetical order. Expansion of numerical values precedes that
of alphabetical letters. Uppercase letters are expanded before lowercase letters.

If form=library or extract is specified, the library file is input as the target library to be
edited.

Otherwise, after the linkage processing between files specified for the input files are executed,
undefined symbols are searched in the library file.

The symbol search in the library file is executed in the following order: user library files with
the library option specification (in the specified order), the system library files with the library
option specification (in the specified order), and then the default library (environment variable
HLNK_LIBRARY1,2,3).

• Example

library=a.lib,b ; Inputs a.lib and b.lib.

library=c*.lib ; Inputs all files beginning with c with the extension .lib.

104

Binary Binary File

Link/Library <Input>[Show entries for :][Binary files]

• Command Line Format

Binary = <suboption>[,…]

<suboption>: <file name>(<section name>[:<boundary alignment>][,<symbol name>])

<boundary alignment>: 1 | 2 | 4 | 8 | 16 | 32 (default: 1)

• Description

Specifies an input binary file. Two or more files can be specified by separating them with a
comma (,).

If an extension is omitted for the file name specification, bin is assumed.

Input binary data is allocated as the specified section data. The section address is specified
with the start option. That section cannot be omitted.

When a symbol is specified, the file can be linked as a defined symbol. For a variable name
referenced by a C/C++ program, add an underscore (_) at the head of the reference name in the
program.

A boundary alignment value can be specified for the section specified by this option. A power
of 2 can be specified for the boundary alignment; no other values should be specified.

When the boundary alignment specification is omitted, 1 is used as the default.

• Example

input=a.obj

start=P,D*/200

binary=b.bin(D1bin),c.bin(D2bin:4,_datab)

Allocates b.bin from 0x200 as the D1bin section.

Allocates c.bin after D1bin as the D2bin section (with boundary alignment = 4).

Links c.bin data as the defined symbol _datab.

• Remarks

When form={object | relocate | library} or strip is specified, this option is unavailable.

If no input object file is specified, this option cannot be specified.

DEFine Symbol Definition

Link/Library <Input>[Show entries for :][Defines]

• Command Line Format

DEFine = <suboption>[,…]

<suboption>: <symbol name>={<symbol name> | <numerical value>}

• Description

Defines an undefined symbol forcedly as an externally defined symbol or a numerical value.

105

The numerical value is specified in the hexadecimal notation. If the specified value starts with
a letter from A to F, symbols are searched first, and if no corresponding symbol is found, the
value is interpreted as a numerical value. Values starting with 0 are always interpreted as
numerical values.

If the specified symbol name is a C/C++ variable name, add an underscore (_) at the head of
the definition name in the program. If the symbol name is a C++ function name (except for
the main function), enclose the definition name with the double-quotation marks including
parameter strings. If the parameter is void, specify as "<function name>()".

• Example

define=_sym1=data ;Defines _sym1 as the same value as the externally defined
 symbol data.

define=_sym2=4000 ;Defines _sym2 as 0x4000.

• Remarks

When form={object | relocate | library} is specified, this option is unavailable.

ENTry Execution Start Address

Link/Library <Input>[Use entry point :]

• Command Line Format

ENTry = {<symbol name> | <address>}

• Description

Specifies the execution start address with an externally defined symbol or address.

The address is specified in hexadecimal notation. If the specified value starts with a letter
from A to F, symbols are searched first, and if no corresponding symbol is found, the value is
interpreted as an address. Values starting with 0 are always interpreted as addresses.

For a C function name, add an underscore (_) at the head of the definition name in the
program. For a C++ function name (except for the main function), enclose the definition
name with double quotation marks in the program including parameter strings. If the
parameter is void, specify as "<function name>()".

If the entry symbol is specified at compilation or assembly, this option precedes the entry
symbol.

• Example

entry=_main ; Specifies main function in C/C++ as the execution start address.

entry="init()" ; Specifies init function in C++ as the execution start address.

entry=100 ; Specifies 0x100 as the execution start address.

• Remarks

When form={object | relocate | library} or strip is specified, this option is unavailable.

When optimization with undefined symbol deletion (optimize=symbol_delete) is specified,
the execution start address should be specified. If it is not specified, the specification of the
optimization with undefined symbol deletion is unavailable.

106

NOPRElink Prelinker

Link/Library <Input>[Show entries for :][Prelinker control :]

• Command Line Format

NOPRElink

• Description

Disables the prelinker initiation.

The prelinker supports the functions to generate the C++ template instance automatically and
to check types at run time. When the C++ template function and the runt-time type test
function are not used, specify the noprelink option to improve the link speed.

• Remarks

When extract or strip is specified, this option is unavailable.

107

4.2.2 Output Options

Table 4.2 Output Category Options

Item Command Line Format Dialog Menu Specification

Output format FOrm ={ Absolute
 | Relocate
 | Object
 | Library [= {S|U}]
 | Hexadecimal
 | Stype
 | Binary }

Link/Library
<Output>
[Type of output file :]

Absolute format
Relocatable format
Object format
Library format
HEX format
S-type format
Binary format

Debug
information

DEBug
SDebug
NODEBug

Link/Library
<Output>
[Debug information :]

Output (in output file)
Debug information file output
Not output

Record size
unification

REcord={ H16
 | H20
 | H32
 | S1
 | S2
 | S3 }

Link/Library
<Output>
[Data record header
:]

HEX record
Expansion HEX record
32-bit HEX record
S1 record
S2 record
S3 record

ROM support
function

ROm = <sub>[,…]
<sub>:<ROM section name>
 =<RAM section name>

Link/Library
<Output>
[Show entries for :]
[ROM to RAM
mapped sections:]

Reserves RAM area to relocate
a symbol with the RAM
address.

Output file OUtput = <sub>[,…]
<sub>:<file name>
 [=<output range>]
<output range>:
 {<start address>
 -<end address>
 |<section name>[:…]}

Link/Library
<Output>
[Show entries for :]
[Output file path/
Messages] or
[Divided output files:]

Specifies output file (range
specification and divided output
are enabled)

External
symbol-
allocation
information file

MAp [= <file name>] Link/Library
<Output>
[Generate map file]

Specifies output of the external
symbol-allocation information
file (for SuperH)

Output to
unused area

SPace [= <numerical value>] Link/Library
<Output>
[Specify value filled
in unused area]
[Output padding
data]

Specifies a value to output to
unused area

108

Table 4.2 Output Category Options (cont)

Item Command Line Format Dialog Menu Specification

Information
message

Message
NOMessage [= <sub>[,…]]
<sub>:<error code>
 [-<error code>]

Link/Library
<Output>
[Show entries for :]
[Output file path/
Messages]
 [Repressed
information level
messages:]

Output
No output
(error number specification and
range specification are
enabled)

Notification of
unreferenced
defined symbol

MSg_unused Link/Library
<Output>
[Show entries for :]
[Notify unused
symbol:]

Notifies the user of the defined
symbol which is never
referenced

Reduce empty
areas of
boundary
alignment

DAta_stuff Link/Library
<Output>
[Show entries for :]
[Reduce empty
areas of boundary
alignment:]

Reduces empty areas
generated as the boundary
alignment of sections after
compilation

FOrm Output Format

Link/Library <Output>[Type of output file :]

• Command Line Format

FOrm = {Absolute | Relocate | Object | Library[={S | U}]}

 | Hexadecimal | Stype | Binary}

• Description

Specifies the output format.

When this option is omitted, the default is form=absolute. Table 4.3 lists the suboptions.

109

Table 4.3 Suboptions of Form Option

Suboption Description

absolute Outputs an absolute file

relocate Outputs a relocatable file

object Outputs an object file. This is specified when a module is extracted as an object
file from a library with the extract option.

library Outputs a library file.
When library=s is specified, a system library is output.
When library=u is specified, a user library is output.
Default is library=u.

hexadecimal Outputs a HEX file. For details of the HEX format, refer to appendix 19.1.2, HEX
File Format.

stype Outputs an S-type file. For details of the S-type format, refer to appendix 19.1.1,
S-Type File Format.

binary Outputs a binary file.

• Remarks

Table 4.4 shows relations between output formats and input files or other options.

110

Table 4.4 Relations Between Output Format And Input File Or Other Options

Output
Format

Specified Option

Enabled
File Format

Specifiable Option*1

strip specified Absolute file input, output, hide, show=symbol,
reference

Absolute

other than above Object file
Relocatable file
Binary file
Library file

input, library, binary, debug/nodebug,
sdebug, cpu, start, rom, entry, output,
map, hide, optimize/nooptimize,
samesize, symbol_forbid,
samecode_forbid, variable_forbid,
function_forbid, absolute_forbid, profile,
cachesize, sbr, compress, rename,
delete, define, fsymbol, stack, noprelink,
memory, msg_unused, data_stuff,
show=symbol, reference, xreference,

extract specified Library file library, output, show=symbol, reference Relocate

other than above Object file
Relocatable file
Binary file
Library file

input, library, debug/nodebug, output,
hide, rename, delete, noprelink,
msg_unused, data_stuff, show=symbol,
reference, xreference.

Object extract specified Library file Library, output, show=symbol

Object file
Relocatable file
Binary file
Library file

Input, library, binary, cpu, start, rom,
entry, output, map, space,
optimize/nooptimize, samesize,
symbol_forbid, samecode_forbid,
variable_forbid, function_forbid,
absolute_forbid, profile, cachesize, sbr,
rename, delete, define, fsymbol, stack,
noprelink, record, s9*2, memory,
msg_unused, data_stuff, show=symbol,
reference, xreference

Relocate
Stype
Binary

Absolute file input, output, record, s9*2, show=symbol,
reference, xreference

strip specified Library file library, output, hide, show=symbol,
section

extract specified Library file library, output, show=symbol, section

Library

other than above Object file
Relocatable file

input, library, output, hide, rename,
delete, replace, noprelink, show=symbol,
section

Notes: 1. message/nomessage, change_message, logo/nologo, form, list, and
subcommand can always be specified.

 2. s9 can be used only when form=stype is specified for the output format.

111

DEBug, SDebug, NODEBug Debug Information

Link/Library <Output>[Debug information :]

• Command Line Format

DEBug
SDebug
NODEBug

• Description

Specifies whether debug information is output.

When debug is specified, debug information is output to the output file.

When sdebug is specified, debug information is output to <output file name>.dbg file.

When nodebug is specified, debug information is not output.

If sdebug and form=relocate are specified, they are is interpreted as debug.

If debug is specified and if two or more files are specified to be output with output, they are is
interpreted as sdebug and debug information is output to <first output file name>.dbg.

When this option is omitted, the default is debug.

• Remarks

When form={object | library | hexadecimal | stype | binary}, strip or extract is specified,
this option is unavailable.

REcord Record Size Unification

Link/Library <Output>[Data record header :]

• Command Line Format

Record = { H16 | H20 | H32 | S1 | S2 | S3 }

• Description

Outputs data with the specified data record regardless of the address range.

If there is an address that is larger than the specified data record, the appropriate data record is
selected for the address.

When this option is omitted, various data records are output according to each address.

• Remarks

This option is available only when form=hexadecimal or stype is specified.

112

ROm ROM Support Function

Link/Library <Output>[Show entries for :][ROM to RAM mapped sections]

• Command Line Format

ROm = <suboption>[,…]

<suboption>: <ROM section name>=<RAM section name>

• Description

Reserves ROM and RAM areas in the initialized data area and relocates a defined symbol in
the ROM section with the specified address in the RAM section.

Specifies a relocatable section including the initial value for the ROM section.

Specifies a nonexistent section or relocatable section whose size is 0 for the RAM section.

• Example

rom=D=R

start=D/100,R/8000

Reserves R section with the same size as D section and relocates defined symbols in D section
with the R section addresses.

• Remarks

When form={object | relocate | library}or strip is specified, this option is unavailable.

OUtput Output File

Link/Library <Output> [Show entries for :][Output file path/ Messages] or [Divided output files]

• Command Line Format

OUtput = <suboption>[,…]

<suboption>: <file name>[=<output range>]

<output range>: {<start address>-<end address> | <section name>[:…]}

• Description

Specifies an output file name. When form=absolute, hexadecimal, stype or binary is
specified, two or more files can be specified. An address is specified in the hexadecimal
notation. If the specified data starts with a letter from A to F, sections are searched first, and if
no corresponding section is found, the data is interpreted as an address. Data starting with 0
are always interpreted as addresses.

When this option is omitted, the default is <first input file name>.<default extension>.

The default extensions are as follows:

form=absolute: abs form=relocate: rel form=object: obj

form=library: lib form=hexadecimal: hex form=stype: mot

form=binary: bin

113

• Example

output=file1.abs=0-ffff,file2.abs=10000-1ffff

Outputs the range from 0 to 0xffff to file1.abs and the range from 0x10000 to 0x1ffff to
file2.abs.

output=file1.abs=sec1:sec2,file2.abs=sec3

Outputs the sec1 and sec2 sections to file1.abs and the sec3 section to file2.abs.

MAp Output of External Symbol Allocation Information File

Link/Library <Output>[Generate map file]

• Command Line Format

MAp [= <file name>]

• Description

Outputs the external-symbol-allocation information file that is used by the compiler in
optimizing access to external variables.

When <file name> is not specified, the file has the name specified by the output option or the
name of the first input file, and the extension bls.

If the order of the declaration of variables in the external-symbol-allocation information file is
not the same as the order of the declaration of variables found when the object was read after
compilations, an error will be output.

• Remarks

This option is valid only when form={absolute | hexadecimal | stype | binary} is specified.

SPace Output to Unused Areas

Link/Library <Output>[Show entries for :][Specify value filled in unused area]
 [Output padding data]

• Command Line Format

SPace [= <numerical value>]

• Description

Specifies a hexadecimal value to fill the unused areas in the output range.

The following unused areas are filled with the value according to the output range specification
in the output option:
When section names are specified for the output range:
 The specified value is output to unused areas between the specified sections.
When an address range is specified for the output range:
 The specified value is output to unused areas within the specified address range.

114

A 1-, 2-, or 4-byte value can be specified.The number of hexadecimal digits specified to the
space option determines the size of the <numerical value>. If a 3-byte value is specified, the
upper digit is extended with 0 to use it as a 4-byte value. If an odd number of digits are
specified, the upper digits are extended with 0 to use it as an even number of digits.

If the size of an unused area is not a multiple of the size of the specified value, the value is
output as many times as possible, then a warning message is output.

• Remarks

When no numerical value is specified by this option, unused areas are not filled with values.

This option is available only when form={binary | stype | hexadecimal} is specified.
When no output range is specified by the output option, this option is unavailable.

Message, NOMessage Information Message

Link/Library <Output>[Show entries for :] [Output file path/ Messages]
 [Repressed information level messages :]

• Command Line Format

Message

NOMessage [=<suboption>[,…]]

<suboption>: <error number>[-<error number>]

• Description

Specifies whether information level messages are output.

When message is specified, information level messages are output.

When nomessage is specified, the output of information level messages are disabled. If an
error number is specified, the output of the error message with the specified error number is
disabled. A range of error message numbers to be disabled can be specified using a hyphen
(-). If a warning or error level message number is specified, the message output is disabled
assuming that change_message has changed the specified message to the information level.

When this option is omitted, the default is nomessage.

115

• Example

nomessage=4,200-203,1300

Messages of L0004, L0200 to L0203, and L1300 are disabled to be output.

MSg_unused Notification of Unreferenced Symbol

Link/Library <Output>[Show entries for :] [Output Messages] [Notify unused symbol:]

• Command Line Format

MSg_unused

• Description

Notifies the user of the externally defined symbol which is not referenced during linkage
through an output message.

• Example

optlnk -msg_unused a.obj

• Remarks

When an absolute file is input, this option is invalid.

To output a notification message, the message option must also be specified.

In any of the following cases, references are not correctly analyzed so that information shown
by output messages will be incorrect.

 –goptimize is not specified at assembly and there are branches to the same section within
the same file (only when an H8-series CPU is specified).

 There are references to constant symbols within the same file.

 There are branches to immediate subordinate functions when optimization is specified at
compilation.

 The map optimization is valid at compilation (only when an SH-series CPU is specified).

 An offset value is directly specified in a #pragma tbr in the C source program (only when
sh2a or sh2afpu is specified as the CPU).

 Optimization is specified at linkage and constants or literals are unified.

DAta_stuff Reduce empty areas of boundary alignment

Link/Library <Output>[Show entries for :] [Reduce empty areas of boundary alignment:]

• Command Line Format

DAta_stuff

• Description

At linkage, reduces empty areas of boundary alignment. This option affects constant,
initialized and uninitialized data areas.

When this option is specified, empty areas generated as the boundary alignment of sections
after compilation are filled at linkage. However, the order of data allocation is not changed.

116

When this option is not specified, linkage is based on the boundary alignment of sections after
compilation.

Specifying this option fills the unnecessary empty areas generated by boundary alignment,
reducing the size of the data sections as a whole.

• Example

<tp1.c> <tp2.c>

long a; char d;

char b,c; long e;

 char f;

Sizes of data sections after compilation (taking the output of the SH compiler as an example):

tp1.obj : 4 + 1 + 1 = 6 bytes

tp2.obj : 1 + 3 [*] + 4 + 1 = 9 bytes

Sizes of data sections for tp1.obj and tp2.obj after linkage:

 When data_stuff is not specified

Object files are linked based on the boundary alignment of the sections (conventional
process).

6 bytes [tp1] + 2 bytes [*] + 9 bytes [tp2] = 17 bytes

 When data_stuff is specified

Linkage is performed with filling of the unnecessary empty spaces generated
between sections by boundary alignment.

(4 + 1 + 1) bytes + 1 byte + 1 byte [*] + 4 bytes + 1 byte = 13 bytes

Notes: 1. * indicates an empty area generated by boundary alignment.

 2. The sizes of the data sections after compilation may differ from those in the above
example according to the specification of other options, etc. at compilation.

• Remarks

The function of this option is not applicable to object files generated by the assembler.

Specification of this option is invalid in any of the following cases:

 form=library or object is specified

 An absolute load module is input

 memory=low is specified

 nooptimize is not specified

Optimization will not be applied in the linkage of a relocatable file that was generated with this
option specified.

117

4.2.3 List Options

Table 4.5 List Category Options

Item Command Line Format Dialog Menu Specification

List file LISt [= <file name>] Link/Library <List>
[Generate list file]

Specifies the output of list file.

List contents SHow [= <sub>[,...]]
<sub>: { SYmbol |
 Reference |
 SEction } |
 Xreference }

Link/Library <List>
[Contents :]

Symbol information
Number of references
Section information
Cross-reference information

LISt List File

Link/Library <List>[Generate list file]

• Command Line Format

LISt [=<file name>]

• Description

Specifies list file output and a list file name.

If no list file name is specified, a list file with the same name as the output file (or first output
file) is created, with the extension lbp when form=library or extract is specified, or map in
other cases.

SHow List Contents

Link/Library <List>[Contents :]

• Command Line Format

SHow [=<suboption>[,…]]

<suboption>:{ SYmbol | Reference | SEction | Xreference }

• Description

Specifies output contents of a list.

Table 4.6 lists the suboptions.

For details of list examples, refer to section 8.4, Linkage Listings, and section 8.5, Library
Listings.

118

Table 4.6 Suboptions of show Option

Output Format Suboption Name Description

symbol Outputs a symbol name list in a module

reference Cannot be specified

section Outputs a section list in a module

form=library
or extract is
specified.

xreference Cannot be specified

symbol Outputs symbol address, size, type, and optimization
contents.

reference Outputs the number of symbol references

section Cannot be specified

Other than
form=library
and extract is not
specified.

xreference Outputs the cross-reference information

• Remarks

When form={object | relocate} is specified, the show=reference option is invalid.

When form=library is specified, the show=xreference option is invalid.

When outputting the cross-reference information, note the following limitations.

 When an absolute-format file is input, the referrer address information is not output.

 When -goptimize is not specified at assembly, information about branches to the same
section within the same file is not output (only when an H8 CPU is specified).

 Information about references to constant symbols within the same file is not output.

 When optimization is specified at compilation, information about branches to immediate
subordinate functions is not output.

 When the map optimization is specified, information about references to variables other
than base symbols is not output (only when an SH-series CPU is specified).

 When an offset value is directly specified in a #pragma tbr in the C source program,
information about that function is not output (only when sh2a or SH2AFPU is specified as
the CPU).

 When optimization is specified at linkage and constants or literals are unified, information
about references to these constants or literals is not output.

119

4.2.4 Optimize Options

Table 4.7 Optimize Category Options

Item Command Line Format Dialog Menu Specification

Optimization OPtimize = <sub>[…]
<sub>: {STring_unify}
 | SYmbol_delete
 | Variable_access

 | Register

 | SAMe_code
 | SHort_format
 | Function_call
 | Branch
 | SPeed
 | SAFe
NOOPtimize

Link/Library
<Optimize>
 [Show entries for :]
 [Optimize items]
 [Optimize :]

Executes optimization.
Unifies constants/string literals.
Deletes unreferenced symbols.
Uses short absolute addressing
mode.
Provides optimization with register
save/restore.
Unifies same codes.
Shortens the addressing mode.
Uses indirect addressing mode.
Provides optimization for branches.
Provides optimization for speed.
Provides safe optimization.
No optimization.

Same code
size

SAMESize = <size>
(default: sames=1e)

Link/Library
<Optimize>
[Eliminated size :]

Specifies the minimum size to unify
same codes.

Profile
information

PROfile = <file name> Link/Library
<Optimize>
[Include profile :]

Specifies a profile information file.
(Dynamic optimization is provided.)

Cache size CAchesize=<sub>
 <sub>: Size=<size> |
 Align=<line size>
(default: ca=s=8,a=20)

Link/Library
<Optimize>
[Cache size :]

Specifies a cache size.
Specifies a cache line size.

Optimization
partially
disabled

SYmbol_forbid=
 <symbol name>[,…]

SAMECode_forbid=
 <function name>[,…]
Variable_forbid=
 <symbol name>[,…]
FUnction_forbid=
 <function name>[,…]
Absolute_forbid=
 <address>[+<size>][,…]

Link/Library
<Optimize>
[Show entries for :]
 [Forbid item]

Specifies a symbol where
unreferenced symbol deletion is
disabled.
Specifies a symbol where same
code unification is disabled.
Specifies a symbol where short
absolute addressing mode is
disabled.
Specifies a symbol where indirect
addressing mode is disabled.
Specifies an address range where
optimization is disabled.

120

OPtimize, NOOPtimize Optimization

Link/Library <Optimize>[Show entries for :][Optimize items][Optimize :]

• Command Line Format

OPtimize [= <suboption>[,…]]
NOOPtimize

<suboption>: { STring_unify | SYmbol_delete | Variable_access | Register | SAMe_code |
 SHort_format | Function_call | Branch | SPeed | SAFe }

• Description

Specifies whether the inter-module optimization is executed.

When optimize is specified, optimization is performed for the specified file at compilation or
assembly.

When nooptimize is specified, no optimization is executed for a module.

When this option is omitted, the default is optimize.

Table 4.8 shows the suboptions

Table 4.8 Suboptions of Optimize Option

Program to be Optimized*
Suboption

Description SHC SHA H8C H8A

No parameter Provides all optimizations O X O O

string_unify Unifies same-value constants having the const
attribute. Constants having the const attribute are:

 • Variables defined as const in C/C++ program

 • Initial value of character string data

 • Literal constant

 O X O X

symbol_delete Deletes variables/functions that are not referenced.
The entry option should be specified.

 O X O X

variable_access Allocates frequently accessed variables to the area
accessible in the 8/16 bit absolute addressing
mode. The cpu option should be specified.

 X X O O

register Investigates function calls, relocates registers and
deletes redundant register save or restore codes.
The entry option should be specified.

 O X O X

same_code Creates a subroutine for the same instruction
sequence.

 O X O X

short_format Replaces an instruction having a displacement or
an immediate value with a smaller-size instruction
when the code size of the displacement or
immediate value can be reduced.

 X X O O

121

Table 4.8 Suboptions of Optimize Option (cont)

Program to be Optimized*
Suboption

Description SHC SHA H8C H8A

function_call Allocates addresses of frequently accessed
functions to the range 0 to 0xFF if there is a space.
When the CPU is H8SX, the following ranges are
also used:
 H8SXN: 0x100 to 0x1FF
 H8SXM,H8SXA,H8SXX: 0x200 to 0x3FF
The cpu option should be specified.

 X X O O

branch Optimizes branch instruction size according to
program allocation information. Even if this option
is not specified, it is performed when any other
optimization is executed.

 O X O O

speed Executes optimizations other than those reducing
object speed. This suboption is the same as the
following specifications:
optimize=string_unify, symbol_delete,
variable_access, register, short_format, or branch

 O X O O

safe Executes optimizations other than those limited by
variable or function attributes. This suboption is
the same as the following specifications:
optimize=string_unify, register, short_format, or
branch

 O X O O

Note: SHC: C/C++ program for SH

SHA: Assembly program for SH
H8C: C/C++ program for H8
H8A: Assembly program for H8

• Remarks

When form={object | relocate | library} or strip is specified, this option is unavailable.

When map optimization is specified at compilation, unifies constants/string literal optimization
(optimize=string_unify) is invalid.

optimize=short_format is available only when the CPU is H8SX.

SAMesize Common Code Size

Link/Library <Optimize>[Eliminated size :]

• Command Line Format

SAMESize = <size>

122

• Description

Specifies the minimum code size for the optimization with the same-code unification
(optimize=same_code). Specify a hexadecimal value from 8 to 7FFF.

When this option is omitted, the default is samesize=1E.

• Remarks

When optimize=same_code is not specified, this option is unavailable.

PROfile Profile Information

Link/Library <Optimize>[Include profile :]

• Command Line Format

PROfile = <file name>

• Description

Specifies a profile information file.

Specifiable profile information files are those output from the Hitachi Debugging Interface
Ver. 5.0 or later or from the HEW Ver. 2.0 or later.

When a profile information file is specified, inter-module optimization according to dynamic
information can be performed.

Table 4.9 shows optimizations influenced by a profile information input.

Table 4.9 Relations Between Profile Information and Optimization

 Program to be Optimized *1
Suboption

Description SHC SHA H8C H8A

variable_access Allocates variables from those that are
dynamically accessed more frequently.

 X X O O

function_call Lowers the optimizing priority of functions that are
dynamically accessed frequently.

 X X O O

branch Allocates a function that is dynamically accessed
frequently near the calling function.

For the SH program, the optimization with
allocation is performed depending on the cache
size specified using the cachesize option.

 O ∆ O O
 *2

Notes: 1. SHC: C/C++ program for SH
 SHA: Assembly program for SH

 H8C: C/C++ program for H8
 H8A: Assembly program for H8
 2. Movement is provided not in the function unit, but in the input file unit.

123

• Remarks

When the optimize option is not specified, this option is unavailable.

CAchesize Cache Size

Link/Library <Optimize>[Cache size :]

• Command Line Format

CAchesize = <suboption>

<suboption>: Size = <size> | Align = <line size>

• Description

Specifies a cache size and cache line size.

When profile is specified, this option is used at the branch instruction optimization
(optimize=branch).

Specify the size in K bytes and specify the line size in bytes in the hexadecimal notation.

When this option is omitted, the default is cachesize=size=8, align=20.

• Remarks

If profile is not specified, this option is unavailable.

SYmbol_forbid, SAMECode_forbid, Variable_forbid,
FUnction_forbid, Absolute_forbid Optimization Partially Disabled

Link/Library <Optimize>[Show entries for :][Forbid item]

• Command Line Format

SYmbol_forbid = <symbol name> [,…]

SAMECode_forbid = <function name> [,…]

Variable_forbid = <symbol name> [,…]

FUnction_forbid = <function name> [,…]

Absolute_forbid = <address> [+<size>] [,…]

• Description

Disables optimization for the specified symbol or address range. Specify an address or the size
in the hexadecimal notation. For a C/C++ variable or C function name, add an underscore (_)
at the head of the definition name in the program. For a C++ function, enclose the definition
name in the program with double quotation marks including the parameter strings. When the
parameter is void, specify as "<function name>()".

Table 4.10 shows the suboptions.

124

Table 4.10 Suboptions of Show Option

Suboption Parameter Description

symbol_forbid Function name
 | variable name

Disables optimization regarding unreferenced symbol
deletion

samecode_forbid Function name Disables optimization regarding same-code unification

variable_forbid Variable name Disables optimization regarding short absolute addressing
mode

function_forbid Function name Disables optimization regarding indirect addressing mode

absolute_forbid Address [+ size] Disables optimization regarding address + size
specification

• Example

symbol_forbid="f(int)" ; Does not delete the C++ function f(int) even if it is not
 ; referenced.

• Remarks

If optimize is not specified, this option is unavailable.

125

4.2.5 Section Options

Table 4.11 Section Category Options

Item Command Line Format Dialog Menu Specification

Section
address

STARt = <sub>[,…]
<sub>: <section name>
 [{ : | , }<section name>[,…]]
 [/<address>]

Link/Library
<Section>
[Show entries for :]
 [Section]

Specifies a section start address

Symbol
address
file

FSymbol = <section name>[,…] Link/Library
<Section>
[Show entries for :]
 [Symbol file]

Outputs externally defined symbol
addresses to a definition file.

STARt Section Address

Link/Library <Section>[Show entries for :][Section]

• Command Line Format

STARt = <suboption> [,…]

<suboption>: <section name> [{ : | , } <section name> [,…]] [/ <address>]

• Description

Specifies the start address of the section. Specify an address in the hexadecimal notation.

Two or more sections can be allocated to the same address by separating them with a colon (:).

The section name can be specified using wildcards (*). Sections specified using wildcards are
expanded according to the input order.

Sections specified at a single address are allocated in the specification order.

Objects in a single section are allocated in the specification order of the input file or the input
library.

If no address is specified, the section is allocated at 0.

A section which is not specified with the start option is allocated after the last allocation
address.

• Example

start=P,C,D*/100,R1:R2/8000 ;D1 and D2 are assumed to be in the section starting
 ;as D.

ROM=D1=R1,D2=R2

Allocates P, C, D1, and D2 to the addresses starting from 0x100 in that order. Both R1 and R2
are allocated to 0x8000.

input=a.obj b.obj ; a.obj uses symbols in d.lib and b.obj uses symbols in c.lib.
library=c.lib,d.lib;
start=P/100 ; The allocation order in the P section is a(P), b(P), c(P), d(P).

• Remarks

126

When form={object | relocate | library} or strip is specified, this option is unavailable.

FSymbol Symbol Address File

Link/Library <Section>[Show entries for :][Symbol file]

• Command Line Format

FSymbol = <section name> [,…]

• Description

Outputs externally defined symbols in the specified section to a file in the assembler directive
format.

The file name is <output file>.fsy.

• Example

fSymbol = sct2, sct3

output=test.abs

Outputs externally defined symbols in sections sct2 and sct3 to test.fsy.

[Output example of test.fsy]

;OPTIMIZING LINKAGE EDITOR GENERATED FILE 1999.11.26

;fsymbol = sct2, sct3

;SECTION NAME = sct2

 .export _f

_f: .equ h’00000000

 .export _g

_g: .equ h’00000016

;SECTION NAME = sct3

 .export _main

_main: .equ h’00000020

 .end

• Remarks

When form={object | relocate | library} or strip is specified, this option is unavailable.

127

4.2.6 Verify Options

Table 4.12 Verify Category Options

Item Command Line Format Dialog Menu Specification

Address
check

CPu = {<cpu information file
 name> |
 {<memory type> =
 <address range>[,…]
<memory type>:
 { ROm | RAm
 | XROm | XRAm
 | YROm | YRAm }
<address range>:
 <start address>
 -<end address>

Link/Library
<Verify>
[CPU information
check :]

Specifies a CPU information file.

Specifies a specifiable allocation
range for section addresses.

CPu Address Check

Verify[CPU information check:]

• Command Line Format

CPu={<cpu information file name>
 | {<memory type>} = <address range> [,…]}

<memory type>: { ROm | RAm | XROm | XRAm | YROm | YRAm }

<address range>: <start address> - <end address>

• Description

Checks section allocation addresses.

xrom and xram specify the x memory areas and yrom and yram specify the y memory areas
in the DSP.

Specify an address range in which a section can be allocated in hexadecimal notation. The
memory type attribute is used for the inter-module optimization .

The CPU information files created with the CPU information analyzer (cia) attached to a
former version product can be specified.

• Example

cpu=ROM=0-FFFF,RAM=10000-1FFFF

Checks that section addresses are allocated within the range from 0 to FFFF or from 10000 to
1FFFF.

Object movement is not provided between different attributes with the inter-module
optimization .

128

• Remarks

When form={object | relocate | library} or strip is specified, this option is unavailable.

Memory types xrom, xram, yrom, and yram are available only when the CPU is SHDSP,
SH2DSP, SH3DSP or SH4ALDSP.

129

4.2.7 Other Options

Table 4.13 Other Category Options

Item Command Line Format Dialog Menu Specification

End code S9 Link/Library <Other>
[Miscellaneous options :]
[Always output S9 record
at the end]

Always outputs the S9
record.

Stack
information
file

STACk Link/Library <Other>
[Miscellaneous options :]
[Stack information output]

Outputs a stack use
information file.

Debug
information
compression

COmpress

NOCOmpress

Link/Library <Other>
[Miscellaneous options :]
[Compress debug
information]

Compresses debug
information
Does not compress
debug information

Memory
occupancy
reduction

MEMory = [High | Low] Link/Library <Other>
[Miscellaneous options :]
[Low memory use during
linkage]

Specifies the memory
occupancy when an input
file is loaded

Symbol name
modification

REName = <sub>[,…]
<sub>:
 {<file name>
 (<name>=<name>[,…])
 | <module name>
 (<name><name>[,…]) }

Link/Library <Other>
[User defined options :]

Modifies a symbol name
or section name.

Symbol name
deletion

DELete = <sub>[,…]
<sub>:
 {<module name>
 | [<file name>]
 (<name>[,…]) }

Link/Library <Other>
[User defined options :]

Deletes a symbol name
or section name.

Module
replacement

REPlace = <sub>[,…]
<sub>: <file>
 [(<module>[,…])]

Link/Library <Other>
[User defined options :]

Replaces modules of the
same name in a library
file.

Module
extraction

EXTract = <module>[,…] Link/Library <Other>
[User defined options :]

Extracts the specified
module in a library file.

Debug
information
deletion

STRip Link/Library <Other>
[User defined options:]

Deletes debug
information in an absolute
file or a library file.

Message
level

CHange_message=<sub>[,…]
<sub>:
{Information | Warning | Error }
 [=<error number>
 [-<error number>] [,…]]

Link/Library <Other>
[User defined options:]

Modifies message levels.

130

Table 4. 13 Other Category Options (cont)

Item Command Line Format Dialog Menu Specification

Local symbol
name hide

Hide Link/Library <Other>
[User defined options:]

Deletes local symbol
name information

S9 End Code

Link/Library <Other>[Miscellaneous options :][Always output S9 record at the end]

• Command Line Format

S9

• Description

Outputs the S9 record at the end even if the entry address exceeds 0x10000.

• Remarks

When form=stype is not specified, this option is unavailable.

STACk Stack Information File

Link/Library <Other>[Miscellaneous options :][Stack information output]

• Command Line Format

STACk

• Description

Outputs a stack consumption information file.

The file name is <output file name>.sni.

• Remarks

When form={object | relocate | library} or strip is specified, this option is unavailable.

131

COmpress, NOCOmpress Debug Information Compression

Link/Library <Other>[Miscellaneous options :][Compress debug information]

• Command Line Format

COmpress
NOCOmpress

• Description

Specifies whether debug information is compressed.

When compress is specified, the debug information is compressed.

When nocompress is specified, the debug information is not compressed.

By compressing the debug information, the debugger loading speed is improved. If the
nocompress option is specified, the link speed is improved.

If this option is omitted, the default is nocompress.

• Remarks

When form={object | relocate | library | hexadecimal | stype | binary} or strip is specified,
this option is unavailable.

MEMory Memory Occupancy Reduction

Link/Library <Other>[Miscellaneous options :][Low memory use during linkage]

• Command Line Format

MEMory = [High | Low]

• Description

Specifies the memory size occupied for linkage.

When memory = high is specified, the processing is the same as usual.

When memory = low is specified, the linkage editor loads the information necessary for
linkage in smaller units to reduce the memory occupancy. This increases file accesses and
processing becomes slower when the occupied memory size is less than the available memory
capacity.

memory = low is effective when processing is slow because a large project is linked and the
memory size occupied by the linkage editor exceeds the available memory in the machine
used.

• Remarks

When one of the following options is specified, this option is unavailable:
 optimize, compress, delete, rename, map, stack, and
 combination of list and show=reference

Some combinations of this option and the input or output file format are unavailable. For
details, refer to table 4.4 of section 4.2.2, Output Options.

132

REName Symbol Name Modification

Link/Library <Other>[User defined options :]

• Command Line Format

REName = <suboption> [,…]

<suboption>: {[<file>] (<name> = <name> [,…])

| [<module>] (<name> = <name> [,…]) }

• Description

Modifies a symbol name or a section name.

Symbol names or section names in a specific file or library in a module can be modified.

For a C/C++ variable name, add an underscore (_) at the head of the definition name in the
program.

When a function name is modified, the operation is not guaranteed.

If the specified name matches both section and symbol names, the symbol name is modified.

If there are several files or modules of the same name, the priority depends on the input order.

• Example

rename=(_sym1=data) ; Modifies sym1 to data.

rename=lib1(P=P1) ; Modifies the section P to P1 in the library module lib1.

• Remarks

When extract or strip is specified, this option is unavailable.

DELete Symbol Name Deletion

Link/Library <Other>[User defined options :]

• Command Line Format

DELete = <suboption> [,…]

<suboption>: {[<file>] (<name>[,...]) | <module>}

• Description

Deletes an external symbol name or library module.

Symbol names or modules in the specified file can be deleted.

For a C/C++ variable name or C function name, add an underscore (_) at the head of the
definition name in the program. For a C++ function name, enclose the definition name in the
program with double quotation marks including the parameter strings. If the parameter is void,
specify as "<function name>()". If there are several files or modules of the same name, the file
that is input first is applied.

When a symbol is deleted using this option, the object is not deleted but the attribute is
changed to the internal symbol.

• Example

133

delete=(_sym1) ; Deletes the symbol _sym1 in all files.

delete=file1.obj(_sym2) ; Deletes the symbol _sym2 in the input file file1.obj.

• Remarks

When extract or strip is specified, this option is unavailable.

REPlace Module Replacement

Link/Library <Other>[User defined options :]

• Command Line Format

REPlace = <suboption> [,…]

<suboption>: <file name> [(<module name> [,…]) }

• Description

Replaces library modules.

Replaces the specified file or library module with the module of the same name in the library
specified with the library option.

• Example

replace=file1.obj ; Replaces the module file1 with the module file1.obj.

replace=lib1.lib(mdl1) ; Replaces the module mdl1 with the module mdl1 in the input
 ; library file lib1.lib.

• Remarks

When form={object | relocate | absolute | hexadecimal | stype | binary} or extract, or strip
is specified, this option is unavailable.

134

EXTract Module Extraction

Link/Library <Other>[User defined options :]

• Command Line Format

EXTract = <module name> [,…]

• Description

Extracts library modules.

Extract the specified library module from the library file specified using the library option.

• Example

extract=file1 ; Extracts the module file1.

• Remarks

When form={absolute | hexadecimal | stype | binary} or strip is specified, this option is
unavailable.

STRip Debug Information Deletion

Link/Library <Other>[User defined options :]

• Command Line Format

STRip

• Description

Deletes debug information in an absolute file or library file.

When the strip option is specified, one input file should correspond to one output file.

• Example

input=file1.abs file2.abs file3.abs

strip

Deletes debug information of file1.abs, file2.abs, and file3.abs, and outputs this information to
file1.abs, file2.abs, and file3.abs, respectively. Files before debug information is deleted are
backed up in file1.abk, file2.abk, and file3.abk.

• Remarks

When form={object | relocate | hexadecimal | stype | binary} is specified, this option is
unavailable.

135

CHange_message Message Level

Link/Library <Other>[User defined options :]

• Command Line Format

CHange_message = <suboption> [,…]

<suboption>: <error level> [= <error number> [-<error number>] [,…]]

<error level>: {Information | Warning | Error}

• Description

Modifies the level of information, warning, and error messages.

Specifies the execution continuation or abort at the message output.

• Example

change_message=warning=2310

Modifies L2310 to the warning level and specifies execution continuation at L2310 output.

change_message=error

Modifies all information and warning messages to error level messages.

When a message is output, the execution is aborted.

unavailable.

Hide Local Symbol Name Hide

Link/Library <Other>[User defined options :]

• Command Line Format

Hide

• Description

Deletes local symbol name information from the output file. Since all the name information
regarding local symbols is deleted, local symbol names cannot be checked even if the file is
opened with a binary editor. This option does not affect the operation of the generated file.

Use this option to keep the local symbol names secret.

The following types of symbol names are hidden:
C source: Variable or function names specified with the static qualifiers
C source: Label names for the goto statements
Assembly source: Symbol names of which external definition (reference) symbols are not
declared

136

• Example

The following is a C source example in which this option is valid:

int g1;
int g2=1;
const int g3=3;

static int s1; //<- The static variable name will be hidden.
static int s2=1; //<- The static variable name will be hidden.
static const int s3=2; //<- The static variable name will be hidden.

static int sub1() //<- The static function name will be hidden.
{
 static int s1; //<- The static variable name will be hidden.
 int l1;

 s1 = l1; l1 = s1;
 return(l1);
}

int main()
{
 sub1();
 if (g1==1)
 goto L1;
 g2=2;
L1: //<- The label name of the goto statement
 // will be hidden.
 Return(0);
}

• Remarks

This option is available only when the output file format is specified as absolute, relocate, or
library.

When the input file was compiled or assembled with the goptimize option specified, this
option is unavailable if the output file format is specified as relocate or library.

To use this option with optimization by the map option, do not use this option for the first
linkage, and use it only for the second linkage.

The symbol names in the debug information are not deleted by this option.

137

4.2.8 Subcommand File Option

Table 4.14 Subcommand Tab Option

Item Command Line Format Dialog Menu Specification

Subcommand
file

SUbcommand =
 <file name>

Link/Library
<Subcommand file>
[Use external
subcommand file]

Specifies options with a
subcommand file

SUbcommand Subcommand File

Link/Library <Subcommand file> [Use external subcommand file]

• Command Line Format

SUbcommand = <file name>

• Description

Specifies options with a subcommand file.

The format of the subcommand file is as follows:

<option> { = | ∆ } [<suboption> [,…]] [∆&] [;<comment>]

The option and suboption are separated by an “=” sign or a space.

For the input option, suboptions are separated by a space.

One option is specified per line in the subcommand file.

If a subcommand description exceeds one line, the description can be allowed to overflow to
the next line by using an ampersand (&).

The subcommand option cannot be specified in the subcommand file.

• Example

Command line specification: optlnk file1.obj -sub=test.sub file4.obj

Subcommand specification: input file2.obj file3.obj ; This is a comment.

 library lib1.lib, & ; Specifies line continued.

 lib2.lib

Option contents specified with a subcommand file are expanded to the location at which the
subcommand is specified on the command line and are executed.

The order of file input is file1.obj, file2.obj, file3.obj, and file4.obj.

138

4.2.9 CPU Option

Table 4.15 CPU Tab Option

Item Command Line Format Dialog Menu Specification

SBR address
specification

SBr = { <SBR address>
 | User}

CPU
[Specify SBR
address :]

Specifies the start address of the
8-bit absolute area.

SBr SBR Address Specification

• Command Line Format

SBr = { <address> | User }

• Description

Specifies the SBR address.

When the SBR address is specified in this option, optimization using the abs8 area is available.
When user is specified in this option, optimization for the abs8 area is disabled.

• Remarks

This option is available only when the CPU is H8SX.

If more than one SBR address is specified within the source or by tool options, the optimizing
linkage editor assumes that user is specified regardless of this option setting.

139

4.2.10 Options Other Than Above

Table 4.16 Options Other Than Above

Item Command Line Format Dialog Menu Specification

Copyright LOgo
NOLOgo

 - Output
Not output

Continuation END - Executes option strings already
input, inputs continuing option
strings and continues processing.

Termination EXIt - Specifies the termination of option
input.

Notification of
unreferenced
defined symbol

MSg_unused - Notifies the user of the defined
symbol which is never referenced

LOgo, NOLOgo Copyright

None (nologo is always available.)

• Command Line Format

LOgo

NOLOgo

• Description

Specifies whether the copyright is output.

When the logo option is specified, the copyright is displayed.

When the nologo option is specified, the copyright display is disabled.

When this option is omitted, the default is logo.

140

END Execution Continued

None

• Command Line Format

END

• Description

Executes option strings specified before END. After the linkage processing is terminated,
option strings that are specified after END are input and the linkage processing is continued.

This option cannot be specified on the command line.

• Example

input=a.obj,b.obj ; processing (1)

start=P,C,D/100,B/8000 ; processing (2)

output=a.abs ; processing (3)

end

input=a.abs ; processing (4)

form=stype ; processing (5)

output=a.mot ; processing (6)

Executes the processing from (1) to (3) and outputs a.abs. Then executes the processing from
(4) to (6) and outputs a.mot.

EXIt Termination Processing

None

• Command Line Format

EXIt

• Description

Specifies the end of the option specifications.

This option cannot be specified on the command line.

• Example

 Command line specification: optlnk -sub=test.sub -nodebug

 test.sub: input=a.obj,b.obj ; processing (1)

 start=P,C,D/100,B/8000 ; processing (2)

 output=a.abs ; processing (3)

 exit

Executes the processing from (1) to (3) and outputs a.abs.

The nodebug option specified on the command line after exit is executed is ignored.

141

Section 5 Standard Library Generator Operating Method

5.1 Comand Line Format

The format of the command line is as follows:

lbg38 [∆<option string>...]
 <option string>:-<option>[=<suboption>[,...]]

5.2 Option Descriptions

Options and suboptions of the standard library generator are based on the C/C++ compiler options.
The following section describes the difference between the options and suboptions of the standard
library generator and those of the C/C++ compiler. For details on C/C++ compiler options, refer
to section 2, C/C++ Compiler Operating Method.

In the command line format, uppercase letters indicate abbreviations. The format of the dialog
menus that correspond to the HEW is as follows:
Tab name <Category>[Item] ...

142

5.2.1 Additional Options

Table 5.1 shows additional options.

Table 5.1 Additional Options

Item Command Line Format Dialog Menu Specification

Header file Head = <sub>[,…]
<sub>:{ ALL |
 RUNTIME |
 CTYPE |
 MATH |
 MATHF |
 STDARG |
 STDIO |
 STDLIB |
 STRING |
 IOS |
 NEW |
 COMPLEX |
 CPPSTRING }

Standard Library
<Standard Library>
[Category :]

Specifies parts to be generated
All library functions
Runtime routine
ctype.h + runtime routine
math.h + runtime routine
mathf.h + runtime routine
stdarg.h + runtime routine
stdio.h + runtime routine
stdlib.h + runtime routine
string.h + runtime routine
ios + runtime routine
new + runtime routine
complex + runtime routine
string + runtime routine

Output file OUTPut = <file name> Standard Library
<Object>
[Output file path :]

Specifies an output library file
name

Reentrant
library

REent Standard Library
<Object>
[Generate
reentrant library]

Creates reentrant library

143

Head

Standard Library <Standard Library>[Category :]

• Command Line Format

 Head = <sub>[,…]
<sub>:{ ALL |
 RUNTIME |
 CTYPE |
 MATH |
 MATHF |
 STDARG |
 STDIO |
 STDLIB |
 STRING |
 IOS |
 NEW |
 COMPLEX |
 CPPSTRING }

• Description

Specifies one or more categories to be generated with a header file name.
For relationships between header files and library functions, refer to section 10.3, C/C++
Libraries. The runtime routine is always generated.
The default interpretation of this option is head=all.

• Example

lbg38 -output=h8s.lib -head=mathf -cpu=2600a

Compiles library functions defined by mathf.h and runtime routine with option: -cpu=2600a,
and outputs library file h8s.lib.

OUTPut

Standard Library <Object>[Output file path :]

• Command Line Format

OUTPut = <File name>

• Description

Specifies an output file name. The default of this option is output=stdlib.lib.

• Example

lbg38 -output=h8s.lib -optimize –speed -goptimize -cpu=2600a

Compiles all standard library source files with options: -optimize -speed -goptimize -
cpu=2600a, and outputs library file h8s.lib.

144

REent

Standard Library <Object> [Generate reentrant library]

• Command Line Format

REent

• Description

Creates reentrant functions. Note that the rand and srand functions are not reentrant functions.
Also note that the behavior of subsequent calls of the strtok function using the same string is
not guaranteed.

• Example (user program)

#define _REENTRANT

#include <stdlib.h>

• Remarks

When reentrant functions are linked, use #define statements to define macro names (#define
_REENTRANT) or use the define option to define _REENTRANT at compilation before
including standard include files in the program.

145

5.2.2 Options Unavailable for Standard Library Generator

Table 5.2 shows C/C++ compiler options that cannot be specified for the standard library
generator. If any of the options listed in table 5.2 are specified, these specifications are ignored.

Table 5.2 Options Not Unavailable for Standard Library Generator

Item

Option

Compiler
Interpretation

Description

Include file directory Include N/A

Macro name definition DEFine N/A

Disable preprocessor
#line output

NOLINe N/A

Message output
control

Message
NOMessage

NOMessage No output

Preprocessor
inline output

PREProcessor N/A

Object type Code Code = Machinecode Outputs machine code program

Debugging information DEBug
NODEBug

NODEBug No output

Object file output Object
NOOBject

Object Output

Template instance
generation

Template N/A No template function used

Listing file List
NOList

NOList No output

Listing format SHow N/A

Comment nesting COMment N/A No comment nesting function
used

MAC register MAcsave N/A No interrupt function included

Message level CHAnge_message N/A

Selecting C or C++
language

LANg N/A Determined by an extension

Disable of Copyright
output

LOGo
NOLOGo

NOLOGo Copyright output disabled

Character code select in
string literals

EUc
Sjis
LATin1

N/A No character code used

Japanese character
conversion within object
code

OUtcode N/A No character code used

146

5.2.3 Notes on Specifying Options

When options are specified, follow the rules below:

(1) Specify the same options as in compiling for options cpu, regparam,
structreg/nostructreg, longreg/nolongreg, stack, double=float, byteenum, pack,
rtti=on/off, exception/noexception, bit_order=left/right, indirect=normal/extended,
ptr16, and sbr.

(2) In order to use #pragma global_register, specify a header file that consists of the #pragma
global_register declaration with the preinclude option. When the HEW is used, specify it
with Standard Libary <Other>[User defined options :].

147

Section 6 Operating Stack Analysis Tool

6.1 Overview

The stack analysis tool displays the stack amount by reading the stack information file (*.sni)
output by the optimizing linkage editor or the profile information file (*.pro) output by the
simulator debugger.

For the stack amount of the assembly program (assembled by the assembler) that cannot be output
in the stack information file, the information can be added or modified by using the edit function.
In addition, the assembler Ver.6.01 can output the stack size for symbol and the stack amount of
whole systems can be calculated.

The information on the edited stack amount can be saved and read as the call information file
(*.cal).

6.2 Starting the Stack Analysis Tool

To start the stack analysis tool, select [Run...] from the start menu of Windows and specify
Call.exe for execution.

When the HEW is used, select [Program] from the start menu of Windows , select the HEW
menu, and then select Call Walker.

After the HEW is started, the stack analysis tool can also be started from the [Tools] menu.

For details on operation, refer to the help of the stack analysis tool.

148

149

Section 7 Environment Variables

7.1 Environment Variables List

The environment variables to be used by the compiler are listed in table 7.1.

Table 7.1 Environment Variables

Environment
Variable

Description

path Specifies a storage directory for the execution file.

Specification format:

PC version: C> path = <execution file path name>[;<previous path name>;...]
UNIX C shell: %set path = (<execution file path name> $path)
UNIX Bourne shell: %PATH = :<execution file path name>
 [:<previous path name>:...]
 %export PATH

150

Table 7.1 Environment Variables (cont)

Environment
Variable

Description

H38CPU Specifies the CPU type overridden by the compiler or assembler cpu option.

 <CPU/operating
mode>

Bit Width in Address Space
<value1>

Multiplier and Divider
Specification <value2>

 AE5

 H8SXN M | D | MD

 H8SXM 20 | 24 (24) M | D | MD

 H8SXA 20 | 24 | 28 | 32 (24) M | D | MD

 H8SXX 28 | 32 (32) M | D | MD

 2600n

 2600a 20 | 24 | 28 | 32 (24)

 2000n

 2000a 20 | 24 | 28 | 32 (24)

 300hn

 300ha 20 | 24 (24)

 300

 300l

 The default value is enclosed by parentheses, ().

When the specification of CPU by H38CPU environment variable and the
cpu option differs, a warning message is displayed. Cpu option has priority over
H38CPU specification.

Specification format:
PC version: C> set H38CPU = <CPU/operating mode>[:<value1>][:<value2>]
UNIX C shell: % setenv H38CPU = <CPU/operating mode>[:<value1>][:<value2>]
UNIX Bourne shell: % H38CPU = <CPU/operating mode>[:<value1>][:<value2>]
 % export H38CPU

151

Table 7.1 Environment Variables (cont)

Environment
Variable

Description

CH38 * Specifies an include file storage directory
The search order for system include files is any directory specified by an
include option, then this directory.
The search order for user include files is the current directory, any directory
specified by an include option, then this directory.

If environment variable CH38 is not specified, /usr/CH38 is assumed in the
UNIX version. The PC version does not have default.

Specification format:
PC version: C> set CH38 = <include path name> [;<include path
 name>;…]
UNIX C shell: % setenv CH38 = <include path name>[:<include path
 name>:…]
UNIX Bourne shell: % CH38 = <include path name>[:<include path
 name>:…]
 % export CH38

CH38TMP Specifies a directory in which the compiler creates temporary files. If
CH38TMP is not specified, temporary files are created in the current
directory.

Specification format:
PC version: C> set CH38TMP = <temporary file path name>
UNIX C shell: % setenv CH38TMP = <temporary file path name>
UNIX Bourne shell: % CH38TMP = <temporary file path name>
 % export CH38TMP

CH38SBR Specifies a short address base register (SBR) for the compiler. The method
of specification is the same as that of the compiler’s sbr option.

Specification format:
PC version: C> set CH38SBR = <address>
UNIX C shell: % setenv CH38SBR = <address>
UNIX Bourne shell: % CH38SBR = <address>
 % export CH38SBR

152

Table 7.1 Environment Variables (cont)

Environment
Variable

Description

HLNK_LIBRARY1
HLNK_LIBRARY2
HLNK_LIBRARY3

Specifies a default library name for the optimizing linkage editor. Libraries
which are specified by a library option are linked first. Then, if there is an
unresolved symbol, the default libraries are searched in the order 1, 2, 3.

Specification format:
PC version: C> set HLNK_LIBRARY1 = <library name 1>
 C> set HLNK_LIBRARY2 = <library name 2>
 C> set HLNK_LIBRARY3 = <library name 3>
UNIX C shell: % setenv HLNK_LIBRARY1 = < library name 1>
 % setenv HLNK_LIBRARY2 = < library name 2>
 % setenv HLNK_LIBRARY3 = < library name 3>
UNIX Bourne shell: % HLNK_LIBRARY1 = < library name 1>
 % export HLNK_LIBRARY1
 % HLNK_LIBRARY2 = < library name 2>
 % export HLNK_LIBRARY2
 % HLNK_LIBRARY3 = < library name 3>
 % export HLNK_LIBRARY3

HLNK_TMP Specifies a directory in which the optimizing linkage editor creates temporary
files. If HLNK_TMP is not specified, temporary files are created in the
current directory.

Specification format:
PC version: C> set HLNK_TMP = <temporary file path name>
UNIX C shell: % setenv HLNK_TMP = <temporary file path name>
UNIX Bourne shell: % HLNK_TMP = <temporary file path name>
 % export HLNK_TMP

HLNK_DIR * Specifies an input file storage directory for the optimizing linkage editor.
The search order for files which are specified by the input and the library
options is the current directory then this directory.

However, when a wildcard is used in the file specification, only the current
directory is searched.

Specification format:
PC version: C> set HLNK_DIR = <input file path name> [;<input file
 path name >;...]
UNIX C shell: % setenv HLNK_DIR = <input file path name>[:<input
 file path name >:...]
UNIX Bourne shell: % HLNK_DIR = <input file path name>[:<include path
 name>:...]
 % export HLNK_DIR

Note: More than one directory can be specified by dividing directories by a semicolon (;) in the PC
version, or by a colon (:) in the UNIX version.

153

7.2 Compiler Implicit Declaration

The compiler implicitly defines the macro names according to its version and options specified.

Table 7.2 Compiler Implicit Declaration

Option Implicit Declaration

cpu = 300L
cpu = 300
cpu = 300HN
cpu = 300HA
cpu = 2000N
cpu = 2000A
cpu = 2600N
cpu = 2600A
cpu = H8SXN
cpu = H8SXM
cpu = H8SXA
cpu = H8SXX
cpu = <H8SX>:M or MD
cpu = <H8SX>:D or MD
cpu = AE5

#define _ _300L_ _
#define _ _300_ _
#define _ _300HN_ _
#define _ _300HA_ _
#define _ _2000N_ _
#define _ _2000A_ _
#define _ _2600N_ _
#define _ _2600A_ _
#define _ _H8SXN_ _
#define _ _H8SXM_ _
#define _ _H8SXA_ _
#define _ _H8SXX_ _
#define _ _HAS_MULTIPLIER_ _
#define _ _HAS_DIVIDER_ _
#define _ _AE5_ _

double = float #define _ _FLT_ _

byteenum #define _ _BENM_ _

cpuexpand #define _ _CPUEX_ _

library=intrinsic #define _ _INTRINSIC_LIB_ _

abs16 #define _ _ABS16_ _

— #define _ _ADDRESS_SPACE_ _*1 *4

— #define _ _DATA_ADDRESS_SIZE_ _*2 *4

— #define _ _H8_ _*4

— #define _ _RENESAS_VERSION_ _*3 *4

— #define _ _HITACHI_VERSION_ _*3 *4

— #define _ _RENESAS_ _*4

— #define _ _HITACHI_ _*4

154

Notes: 1. Address width (16, 20, 24, 28, or 32 bits) is defined.
 2. _ _DATA_ADDRESS_SIZE_ _ is defined as 2 or 4 as shown below.

2: 300, normal or middle mode, or advanced or maximum mode with the ptr16 option
4: Advanced or maximum mode without the ptr16 option

 3. The value of _ _RENESAS_VERSION_ _ and _ _HITACHI_VERSION_ _ is as follows:
C source program: _ _RENESAS_VERSION_ _==0xaabb
 aa: version
 bb: revision
Example definition in the compiler:
 #define _ _RENESAS_VERSION_ _ 0x0301 //Version 3.1C
 #define _ _RENESAS_VERSION_ _ 0x0400 //Version 4.0

 4. Always defined.

155

Section 8 File Specifications

8.1 Naming Files

A standard file extension is automatically added to the name of a compiled file when the file
extension is omitted at file-naming. The standard file extensions used in the development
environment are shown in table 8.1.

156

Table 8.1 Standard File Extensions Used in the Development Environment

No. File Extension Description

1 c Source program file written in C

2 cpp, cc, cp Source program file written in C++

3 h Include file

4 Iis, Ist *1 C source program listing file

5 Iis, lpp *1 C++ source program listing file

6 p File after the expansion by the C source program
preprocessor

7 pp File after the expansion by the C++ source program
preprocessor

8 src, mar Assembly source program file

9 exp File after the expansion by the assembly source
program preprocessor

10 lis Assembly source program listing file

11 obj Relocatable object program file

12 rel Relocatable load module file

13 abs Absolute load module file

14 map Linkage map listing file

15 lib Library file

16 lbp Library listing file

17 mot S-type format

18 hex HEX format

19 bin Binary file

20 fsy Symbol address file for optimizing linkage editor output

21 sni Stack information file

22 pro Profile information file

23 dbg DWARF2-format debugging information file

24 rti Object that includes a definition specified in the file with
extension td

25 cal Calling information file

Note: 1. The extension is “lis” for the UNIX version, and “lst“ or “lpp” for the PC version.

Do not name a file a name beginning with “rti_”, which indicates a file reserved for system use.

Table 8.2 lists the extensions for files that are output under the tpldir folder generated by each
project.

157

Table 8.2 tpldir Folder Output File

No. File Extension Description

1 td Tentatively-defined variable information file

2 ti Template information file

3 pi Parameter information file

4 ii Instance information file

For general rules on naming files, refer to the user's manual of the host computer because naming
rules vary according to each host computer.

8.2 Compiler Listings

This section deals with compiler listings and their formats.

8.2.1 Structure of Compiler Listings

Table 8.3 shows the structure and contents of compiler listings.

Table 8.3 Structure and Contents of Compiler Listings

List Structure

Contents

Option Specification
Method

Default

Source program listing*1 show=source
show=nosource

Output Source listing
information

Source program listing of
include file and after macro
expansion*2

show=expansion
show=noexpansion

No output

Error information Errors detected during
compilation

— Output

Symbol allocation
information

Variables allocated to
stack frame of a function

show=allocation
show=noallocation

No output

Object information Machine code in object
program and the assembly
code

show=object
show=noobject

No output

Statistics
information

Length of each section
(byte), number of symbols,
and object types

show=statistics
show=nostatistics

Output

Notes: 1. Source program listings are inserted in the object information when the noexpansion
and object suboptions are specified simultaneously.

 2. The source program listing of include files and after macro expansion is valid only when
show=source is specified.

158

8.2.2 Source Listing

The source listing may be output in two ways. When show=noexpansion is specified, the
unpreprocessed source program listing is output. When show=expansion is specified, the
preprocessed source program listing is output. Figures 8.1 (a) and (b) show these output formats,
respectively. In addition, figure 8.1 (b) shows the differences between them with bold characters.

************ SOURCE LISTING ************

 Line Pi 0----+----1----+----2----+----3----+----4----+----5----+----6----
FILE NAME: m0260.c
 1 [1] #include "header.h"
 2
 3 int sum2(void)
 4 { int j;
 5
 6 #ifdef SMALL
 7 j=SML_INT;
 8 #else
 9 j=LRG_INT;
 10 #endif
 11
 12 return j; /*
continue 1234567890123456789012345678901234567890123456789012345678901234567890
23456789012345678901234567890 */
 13 }
 [2]

Figure 8.1 (a) Source Listing Output for show=noexpansion

159

************ SOURCE LISTING ************

 Line Pi 0----+----1----+----2----+----3----+----4----+----5----+----6----
FILE NAME: m0260.c
 1 [1] #include "header.h"
FILE NAME: header.h
 1 #define SML_INT 1
 2 #define LRG_INT 100
FILE NAME: m0260.c
 2
 3 int sum2(void)
 4 { int j;
 5
 6 #ifdef SMALL
 7 X j=SML_INT;
 8[3] #else
 9 E j=100;
 10 [4] #endif
 11
 12 return j; /* continue123456789012345678901234567890123456789
23456789012345678901234567890 */
 13 }
 [2]

Figure 8.1 (b) Source Listing Output for show=expansion

Description

[1] Source program file name or include file name

[2] Line number in source program or include file

[3] If show=expansion is specified and conditional directives such as #ifdef and #elif are used, a
source program line that is not to be compiled is marked with an X.

[4] If show=expansion is specified and #define directives are used to expand macros, a line
containing a macro expansion is marked with an E.

160

8.2.3 Error Information

Figure 8.2 shows an example of error information.

************ SOURCE LISTING ************

 Line Pi 0----+----1----+----2----+----3----+----4----+----5----+----6----
FILE NAME: m0260.c
 1 #include "header.h"
 2
 3 extern int sum3(int);
 4
 5 sum3(int x)
 6 {
 7 int i;
 8 int j;
 9
 10 j=0;
 11 for (i=0; i<=x; i++){
 12 j+=k;
 13 }
 14
 15 return j;
 16 }

*********** ERROR INFORMATION **********

m0260.c(12) : C2225 (E) Undeclared name "k"
 [1] [2] [3] [4] [5]

NUMBER OF ERRORS: 1
NUMBER OF WARNINGS: 0
NUMBER OF INFORMATIONS: 0 [7]

}[6]

Error in this line

Figure 8.2 Source Listing Including Errors and Error Information

Description

[1] The name of the source program in which the error occurred is indicated within the first ten
characters.

[2] The line number containing the error is shown.

[3] The error number identifies the error message.

[4] (I) Information level

(W) Warning level

(E) Error level

(F) Fatal level

[5] Contents of the error message.

[6] The total number of error-level messages and the total number of warning-level messages.

161

[7] The total number of information-level messages (only when the message option is specified).

8.2.4 Symbol Allocation Information

Symbol allocation information is the information of function parameters and local variables.
Figure 8.3 shows an example of symbol allocation information when a program is compiled in
H8S/2600 advanced mode.

************ SOURCE LISTING ************

 Line Pi 0----+----1----+----2----+----3----+----4----+----5----+----6-
FILE NAME: m0280.c
 1 extern int h(char, char *, double);
 2
 3 int
 4 h(char a, register char *b, double c)
 5 {
 6 char *d;
 7
 8 d= &a;
 9 h(*d,b,c);
 10 {
 11 register int i;
 12
 13 i= *d;
 14 return i;
 15 }
 16 }

******* STACK FRAME INFORMATION ********

FILE NAME: m0280.c
Function (File m0280.c , Line 4): h
 [1]
 Parameter Allocation
 a 0xfffffff7 saved from R0L
 b REG ER5 saved from ER1 [2]
 c 0x00000008

 Level 1 (File m0280.c , Line 5) Automatic/Register Variable Allocation
 d 0xfffffff2
 [3]
 Level 2 (File m0280.c , Line 10) Automatic/Register Variable Allocation
 i REG R4

Parameter Area Size : 0x00000008 Byte(s)
Linkage Area Size : 0x00000008 Byte(s)
Local Variable Size : 0x00000006 Byte(s)
Temporary Size : 0x00000000 Byte(s)
Register Save Area Size : 0x00000008 Byte(s)
Total Frame Size : 0x0000001e Byte(s)

[4]

Figure 8.3 Symbol Allocation Information (cpu=2600a)

162

Description

[1] File name in which the function is defined, line number, and function name

[2] Parameter allocation

 X saved from Y: A parameter passed with Y is copied to X at the entry of the
 function.

REG ERx: If a parameter is allocated to a register, REG is

 indicated.

 0xffffffxx,0x000000xx: If a parameter is allocated to a stack, the offset from the
 address by the frame pointer (ER6) is indicated.

[3] Local variable allocation information

 This indicates where the local variables declared in a compound statement are stored. If they
are allocated to stacks, the offset from the address indicated by ER6 is shown. If they are
allocated to registers, REG is displayed.

[4] Allocation information on the stack frame used in a function

 Parameter Area Size: The total size of the bath area for parameters allocated to the

 stack and the area for return value address.

 Linkage Area Size: The total size of the linkage area (return PC area and
 frame pointer save area, frame pointer save area may not exist)
 For the interrupt function the size of saving area for CCR and
 EXR is added, where EXR is only for H8SX, H8S/2600 or
 H8S/2000.

Local Variable Size: The total size of both the local variable area in the function
and the parameter save area which is reserved when a
 parameter passed in a register is allocated to the stack.

 Temporary Size: The size of the temporary area used by the compiler in the
 function.

 Register Save Area Size: The size of the amount of memory required to save the
 register contents used by the function.

 Total Frame Size: The total size of stack frames allocated in the function.

Note: The following message is output instead of parameter allocation information and local
variable allocation information when the option optimize=1 is specified or when the CPU
is H8SX.

 Optimize Option Specified : No Allocation Information Available

Figure 8.4 shows an example of stack allocation corresponding to the symbol allocation
information shown in figure 8.3.

163

Stack

Parameter
area (for register
parameter)

Local
variable
area

Lower address

Upper address

Register save
area *4

Local
variable
size
area*3

Total
stack
frame
size*5

Linkage area*2

Parameter
area (for stack
parameter)*1

c

Return PC

ER6 (previous FP)

Frame pointer
ER6 (FP)

Copy

ER4

a

ER5

d

-14

-10

-8

a

b

-4

0

4

8

16

i

b

ER0

ER1

ER4

ER5

*1: Parameter Area
*2: Linkage Area
*3: Local Variable Area
*4: Register Save Area
*5: Total Frame Size

Notes:

Figure 8.4 Stack Allocation Example (cpu=2600a)

164

8.2.5 Object Information

Figures 8.5 and 8.6 show object listing examples when the source program listing is output to the
object information and when not output, respectively.

Figure 8.5 Object Information When Source Program Listing Is Output (show=source,
object, cpu=2600a)

Description

(1) Section name (P, C, D, B) of each section

(2) The offset indicates the offset address relative to the beginning of each section

(3) Contents of the offset address of each section

(4) Assembly code corresponding to machine code

(5) Line number and contents of source program

Note: When the show=expansion option is specified, the object listing is always output in the

format shown in figure 8.6.

165

************ OBJECT LISTING ************

FILE NAME: m0251.c

SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT
[1] [2] [3] [4]
P ; section
 ;*** File m0251.c , Line 4 ; block
 00000000 _sum: ; function: sum
 ;*** File m0251.c , Line 5 ; block
 ;*** File m0251.c , Line 9 ; expression statement
 00000000 1911 SUB.W R1,R1
 ;*** File m0251.c , Line 10 ; expression statement
 00000002 1988 SUB.W E0,E0
 ;*** File m0251.c , Line 10 ; for
 00000004 4004 BRA L8:8
 00000006 L7:
 ;*** File m0251.c , Line 10 ; block
 ;*** File m0251.c , Line 11 ; expression statement
 00000006 0981 ADD.W E0,R1
 ;*** File m0251.c , Line 10 ; expression statement
 00000008 0B58 INC.W #1,E0
 0000000A L8:
 0000000A 1D08 CMP.W R0,E0
 0000000C 4FF8 BLE L7:8
 ;*** File m0251.c , Line 13 ; return
 0000000E 0D10 MOV.W R1,R0
 ;*** File m0251.c , Line 14 ; block
 00000010 5470 RTS

Figure 8.6 Object Information When Source Program Listing Is Not Output
(show=nosource, object, cpu=2600a)

Description

(1) Section name (P, C, D, B) of each section

(2) The offset indicates the offset address relative to the beginning of each section

(3) Contents of the offset address of each section

(4) Assembly code corresponding to machine code

166

8.2.6 Statistics Information

Figure 8.7 shows an example of statistics information.

******* SECTION SIZE INFORMATION *******

PROGRAM SECTION(P): 0x00000012 Byte(s)
CONSTANT SECTION(C): 0x00000000 Byte(s)
DATA SECTION(D): 0x00000000 Byte(s)
BSS SECTION(B): 0x00000000 Byte(s)

TOTAL PROGRAM SECTION: 0x00000012 Byte(s) [1]
TOTAL CONSTANT SECTION: 0x00000000 Byte(s)
TOTAL DATA SECTION: 0x00000000 Byte(s)
TOTAL BSS SECTION: 0x00000000 Byte(s)

 TOTAL PROGRAM SIZE: 0x00000012 Byte(s)

** ASSEMBLER/LINKAGE EDITOR LIMITS INFORMATION **

NUMBER OF EXTERNAL REFERENCE SYMBOLS: 0
NUMBER OF EXTERNAL DEFINITION SYMBOLS: 1 [2]
NUMBER OF INTERNAL/EXTERNAL SYMBOLS: 3

***** COMPILE CONDITION INFORMATION ****

COMMAND LINE: -sh=allocation -opt=0 test.c [3]
cpu : 2600a [4]

Figure 8.7 Statistics Information

Description

(1) Size of each section and total size of sections

(2) Number of external reference symbols, number of external definition symbols, and total
number of internal and external labels in object program

(3) Contents of command line specification

(4) CPU/operating mode

Note: Statistics information is not output if an error-level error or fatal-level error has occurred

or when option noobject is specified. In addition, SECTION SIZE INFORMATION is
not output when option code=asmcode is specified.

167

8.3 Assembler Listings

8.3.1 Structure of Assembler Listings

Table 8.4 shows the structure and contents of assembler listings.

Table 8.4 Structure and Contents of Assembler Listings

List Structure

Contents

Option Specification
Method

Default

Source listing
information

Shows information relating
to source program

source Output

Cross reference
listing information

Shows information relating
to source program symbols

cross_reference Output

Section listing
information

Shows information relating
to source program section

section Output

Note: All of the options listed are valid when the list option is specified.

8.3.2 Source Listing

Source listing information is shown. Figures 8.8 shows an example of source listing.

168

 1 1 .CPU 2600A:32
 2 2 ;
 3 00000000 3 .SECTION AAA,CODE,ALIGN=2
 4 00000000 4 START
 5 00000000 7A0700000000 5 MOV.L #STACK:32,SP
 6 00000006 F800 6 MOV.B #0:8,R0L
 7 00000008 6AA800000000 7 MOV.B R0L,@ANS:32
 8 0000000E 7A0200001000 8 MOV.L #DATA:32,ER2
 9 9 .FOR.B (R1L=#1,#8,+#1)
 10 00000014 F901 S MOV #1,R1L
 11 00000016 5800000A S BRA _$F00002
 12 0000001A S _$F00000: .EQU $
 13 0000001A 6828 10 MOV.B @ER2,R0L
 14 0000001C 0B02 11 ADDS.L #1,ER2
 15 0000001E 5E000000 12 JSR @CHANGE:24
 16 13 .ENDF
 17 00000022 S _$F00001: .EQU $
 18 00000022 8901 S ADD #1,R1L
 19 00000024 S _$F00002: .EQU $
 20 00000024 A908 S CMP #8,R1L
 21 00000026 4FF2 S BLE _$F00000
 22 00000028 S _$F00003: .EQU $
 23 00000028 0180 14 SLEEP
 24 0000002A 40D4 15 BRA START
 25 16 ;
 26 0000002C 17 CHANGE
 27 0000002C 6A2900000000 18 MOV.B @ANS:32,R1L
 28 19 .IF.B (R1L<LT>R0L)
 29 00000032 1C98 S CMP R1L,R0L
 30 00000034 58F00006 S BLE _$I00000
 31 00000038 6AA800000000 20 MOV.B R0L,@ANS:32
 32 21 .ENDI
 33 0000003E S _$I00000: .EQU $
 34 0000003E S _$I00001: .EQU $
 35 0000003E 5470 22 RTS
 36 23 ;
 37 00001000 24 .SECTION BBB,DATA,LOCATE=H'00001000
 38 00001000 25 DATA
 39 00001000 03020405 26 .DATA.B H'03,H'02,H'04,H'05
 40 00001004 01080607 27 .DATA.B H'01,H'08,H'06,H'07
 41 28 ;
 42 00000000 29 .SECTION CCC,DATA,ALIGN=2
 43 00000000 30 ANS
 44 00000000 00000001 31 .RES.B 1
 45 32 ;
 46 00000000 33 .SECTION DDD,STACK,ALIGN=2
 47 00000000 00000500 34 .RES.B H'500
 48 00000500 35 STACK
 49 36 ;
 50 00000000 37 .END START

 (1) (2) (3) (4) (5) (6)
*****TOTAL ERRORS 0
*****TOTAL WARNINGS 0

Figure 8.8 Source Program Listing

169

Description

(1) Line numbers in list

(2) Value of the location counter

Displays absolute address for absolute address section and displays relative address for relative
address section.

(3) Object code

(4) Source line numbers

The line number of source statement in the source program. No line number is displayed for
source statements expanded by the assembler.

(5) Expansion type

Source statement of preprocessor function. The following expansion types are available.

I: File inclusion

C: Satisfied conditional assembly, performed iterated expansion, or satisfied conditional
 iterated expansion

M: Macro expansion

S: Structure assembly expansion

(6) Source statements

8.3.3 Cross Reference Listing

The cross reference listing is shown. Figure 8.9 shows an example of cross reference listing.

*** CROSS REFERENCE LIST
NAME SECTION ATTR VALUE SEQUENCE
AAA AAA SCT 00000000 3*
ANS CCC 00000000 7 27 31

43*
BBB BBB SCT 00001000 37*
CCC CCC SCT 00000000 42*
CHANGE AAA 0000002C 15 26*
DATA BBB 00001000 8 38*
DDD DDD SCT 00000000 46*
STACK DDD 00000500 5 48*
START AAA 00000000 4* 24 50
_$F00000 AAA EQU 0000001A 12* 21
_$F00001 AAA EQU 00000022 17*
_$F00002 AAA EQU 00000024 11 19*
_$F00003 AAA EQU 00000028 22*
_$I00000 AAA EQU 0000003E 30 33*
_$I00001 AAA EQU 0000003E 34*

 (1) (2) (3) (4) (5)

Figure 8.9 Cross Reference Listing

Description

(1) Symbol name

170

(2) Section name

The name of the section that includes the symbol. Up to eight characters are displayed.

(3) Symbol attribute

No display Label definition

EQU Symbol defined with the .EQU assembler directive

ASGN Symbol defined with the .ASSIGN assembler directive

IMPT Import symbol

EXPT Export symbol

SCT Section name

REG Symbol defined with the .REG assembler directive

MDEF Symbol defined two or more times

UDEF Undefined symbol

(4) Symbol value

The hexadecimal value of a symbol in eight digits

(5) List line numbers of symbol definition or reference

The list line numbers of the source statements where the symbol is defined or referenced. The
line number marked with an asterisk (*) is the line where the symbol is defined.

171

8.3.4 Section Information Listing

The section information listing is shown. Figure 8.10 shows an example of section information
listing.

*** SECTION DATA LIST

SECTION ATTRIBUTE SIZE START
AAA REL-CODE 0000040
BBB ABS-DATA 0000008 001000
CCC REL-DATA 0000001
DDD REL-STACK 0000500

 (1) (2) (3) (4)

Figure 8.10 Section Information Listing Output Example

Description

(1) Section name

(2) Section type and attribute

The section type and attribute are shown below:

 Section type

ABS Absolute address section

REL Relative address section

 Section attribute

CODE Code section

DATA Data section

STACK Stack section

DUMMY Dummy section

(3) Section size

The section size is displayed in hexadecimal.

(4) Section start address

The start address of absolute address sections. This will not be displayed in the relative address
sections.

8.4 Linkage Listings

This section covers the contents and format of the linkage listing output by the optimizing linkage
editor.

172

8.4.1 Structure of Linkage Listing

Table 8.5 shows the structure and contents of the linkage listing.

Table 8.5 Structure and Contents of Linkage Listing

Information Creating
List

Contents

Suboption

Default When show
Option Omitted*1

Option information Displays option strings
specified by a command line
or subcommand

— Output

Error information Displays error messages — Output

Linkage map information Displays a section name, start
and end addresses, size, and
type

— Output

Symbol information Displays static definition
symbol name, address, size,
and type in order based on the
address.

When the show=reference
option is specified, displays a
symbol reference count and
optimization information in
addition to the above
information.

show=
symbol

show=
reference

Not output

Not output

Symbol deletion
optimization information

Displays symbols deleted by
optimization

show=
symbol

Not output

Variable access
optimization symbol
information

Displays symbol reference
counts in 8-bit/16-bit absolute
addressing mode.

show=
reference

Not output

Function access
optimization symbol
information

Displays symbol reference
counts.

show=
reference

Not output

Cross-reference
information

Displays symbol reference
information

show =
xreference

Not output

Note: 1. The show option is valid only when the list option is specified.

173

8.4.2 Option Information

Option information displays option strings specified by a command line or a subcommand file.
The option information is output as shown in figure 8.11 when optlnk -sub=test.sub -list -show is
specified.

(Contents of test.sub)

INPUT test.obj

*** Options ***

-sub=test.sub
INPUT test.obj (2) (1)

-list
-show

Figure 8.11 Option Information Output Example (Linkage Listing)

Description

(1) Option strings specified by a command line or a subcommand in the specified order

(2) Subcommand in the test.sub subcommand file

8.4.3 Error Information

Error information outputs an error message as shown in figure 8.12.

*** Error information ***

** L2310 (E) Undefined external symbol "strcmp" referred to in "test.obj" (1)

Figure 8.12 Error Information Output Example (Linkage Listing)

Description

(1) Error message

174

8.4.4 Linkage Map Information

Linkage map information outputs the start and end addresses, size, and type of each section in
order of addresses in the format shown in figure 8.13.

*** Mapping List ***

SECTION START END SIZE ALIGN
 (1) (2) (3) (4) (5)
P
 00000000 000004d6 4d6 2
C
 000004d6 00000533 5d 2
D
 00000534 0000053c 8 2
B
 0000053c 00004112 3bd6 2

Figure 8.13 Linkage Map Information Output Example
(Linkage Listing)

Description

(1) Section name

(2) Start address

(3) End address

(4) Section size

(5) Section boundary alignment

8.4.5 Symbol Information

When the show=symbol option is specified, symbol information lists addresses of externally
defined symbols or static internally defined symbols, sizes, and types in order of address. When
the show=reference option is specified, symbol information lists symbol reference counts and
optimization information in addition to the information listed when the show=symbol option is
specified. Figure 8.14 shows an example of symbol information.

175

*** Symbol List ***

SECTION=(1)
FILE=(2) START END SIZE
 (3) (4) (5)
 SYMBOL ADDR SIZE INFO COUNTS OPT
 (6) (7) (8) (9) (10) (11)

SECTION=P
FILE=test.obj
 00000000 00000428 428
 _main
 00000000 2 func ,g 0
 _malloc
 00000000 32 func ,l 0
FILE=mvn3
 00000428 00000490 68
 $MVN#3
 00000428 0 none ,g 0

Figure 8.14 Symbol Information Output Example (Linkage Listing)

Description

(1) Section name

(2) File name

(3) Start address of a section included in the file in (2) above

(4) End address of a section included in the file in (2) above

(5) Section size of a section included in the file in (2) above

(6) Symbol name

(7) Symbol address

(8) Symbol size

(9) Symbol type as shown below:

Data type: func Function name

 data Variable name

 entry Entry function name

 none Undefined (label, assembler symbol)

Declaration type: g External definition

 l Internal definition

(10) Symbol reference count only when the show=reference option is specified. * is displayed
when the show=reference option is not specified.

(11) Optimization information as shown below:

ch Symbol modified by optimization

cr Symbol created by optimization

mv Symbol moved by optimization

176

8.4.6 Symbol Deletion Optimization Information

Symbol deletion optimization information lists the size and type of symbols deleted by symbol
deletion optimization (optimize=symbol_delete) as shown in figure 8.15.

*** Delete Symbols ***

SYMBOL SIZE INFO
 (1) (2) (3)
_Version
 4 data ,g

Figure 8.15 Symbol Deletion Information Output Example (Linkage Listing)

Description

(1) Deleted symbol name

(2) Deleted symbol size

(3) Deleted symbol type as shown below

Data type: func Function name

 data Variable name

Declaration type: g External definition

 l Internal definition

8.4.7 Variable Access Optimization Symbol Information

When the show=reference option is specified, variable access optimization symbol information
lists the size, reference count, and optimization information of the symbol to be optimized on
variable access optimization (optimize=variable_access).

Information of symbols that can be accessed in 8-bit or 16-bit absolute addressing mode is listed
in the area "Variable Accessible with Abs8". Information of symbols that can be accessed in 16-
bit absolute addressing mode is listed in the area "Variable Accessible with Abs16".

Figure 8.16 shows an example of variable access optimization symbol information.

177

*** Variable Accessible with Abs8 ***

SYMBOL SIZE COUNTS OPTIMIZE
 (1) (2) (3) (4)
_Char1Glob
 1 2 done

*** Variable Accessible with Abs16 ***

SYMBOL SIZE COUNTS OPTIMIZE
 (1) (2) (3) (4)
_IntGlob
 2 2

Figure 8.16 Output Example of Variable Access Optimization Symbol Information
(Linkage Listing)

Description

(1) Symbol name

(2) Symbol size

(3) Symbol reference count

(4) Optimization information.

If optimization has been performed, "done" is displayed.

178

8.4.8 Function Access Optimization Symbol Information

When the show=reference option is specified, function access optimization symbol information
lists the reference count and optimization information of the symbol to be optimized on function
access optimization (optimize=function_call).

Figure 8.17 shows an example of function access optimization symbol information.

*** Function Call ***

SYMBOL COUNTS OPTIMIZE
 (1) (2) (3)
_malloc
 5 done
_Proc0
 4

Figure 8.17 Output Example of Function Access Optimization Symbol Information
(Linkage Listing)

Description

(1) Symbol name

(2) Symbol reference count

(3) Optimization information.

If optimization is performed, "done" is displayed.

179

8.4.9 Cross-Reference Information

The symbol reference information (cross-reference information) can be output. A cross-reference
information output example is shown in figure 8.18.

*** Cross Reference List ***

No Unit Name Global.Symbol Location External Information
(1) (2) (3) (4) (5)
0001 a
 SECTION=P
 _func
 00000100
 _func1
 00000116
 _main
 0000012c
 _g
 00000136
 SECTION=B
 _a
 00000190 0001(00000140:P)
 0002(00000178:P)
 0003(0000018c:P)
0002 b
 SECTION=P
 _func01
 00000154 0001(00000148:P)
 _func02
 00000166 0001(00000150:P)
0003 c
 SECTION=P
 _func03
 00000184

Figure 8.18 Cross-Reference Information Output Example (Linkage Listing)

Description:

(1) Unit number, which is an identification number in object units

(2) Object name, which specifies the input order at linkage

(3) Symbol name output in ascending order for every section

(4) Symbol allocation address, which is a relative value from the beginning of the section when
form=rel is specified

(5) Address from which an external symbol is referenced
Output format: <Unit number> (<address or offset in section>:<section name>)

180

8.5 Library Listings

This section covers the contents and format of the library listing output by the optimization
linkage editor.

8.5.1 Structure of Library Listing

Table 8.6 shows the structure and contents of the library listing.

Table 8.6 Structure and Contents of Library Listing

List Structure

Contents

Suboption

Default When show
Option Omitted*1

Option information Displays option strings
specified by a command line
or subcommand

— Output

Error information Displays error messages — Output

Library information Displays library information — Output

Information of module,
section, and symbol
within library

Displays module within the
library

When the show=symbol
option is specified, displays a
list of symbol names in a
module.

When the show=section
option is specified, displays a
list of section names and
symbol names in a module in
addition to the above
information.

show=
symbol

show=
section

Output

Not output

Not output

Note: 1. The show option is valid only when the list option is specified.

181

8.5.2 Option Information

Option information displays option strings specified by a command line or a subcommand file.
Figure 8.19 shows an example of option information when optlnk -sub=test.sub -list -show is
specified.

(Contents of test.sub)

form library
in adhry.obj
output test.lib

*** Options ***

-sub=test.sub
form library
in adhry.obj (2) (1)
output test.lib
-list
-show

Figure 8.19 Option Information Output Example (Library Listing)

Description

(1) Option strings specified by a command line or a subcommand in the specified order

(2) Subcommand in the test.sub subcommand file

182

8.5.3 Error Information

Error information outputs an error message as shown in figure 8.20.

*** Error information ***

** L1200 (W) Backed up file "main.lib" into "main.lbk" (1)

Figure 8.20 Error Information Output Example (Library Listing)

Description

(1) Error message

8.5.4 Library Information

Library information outputs the library type in the format shown in figure 8.21.

*** Library Information ***

LIBRARY NAME=test.lib (1)
CPU=H8S (2)
ENDIAN=Big (3)
ATTRIBUTE=system (4)
NUMBER OF MODULE=1 (5)

Figure 8.21 Library Information Output Example (Library Listing)

Description

(1) Library name

(2) CPU name

(3) Endian type

(4) Library file attribute as either system library or user library

(5) Number of modules within the library

183

8.5.5 Module, Section, and Symbol Information within Library

This information lists modules within the library.

When the show=symbol option is specified, symbol names in a module within the library are
listed. When the show=section option is specified, section names and symbol names in a module
within the library are additionally listed.

Figure 8.22 shows an output example of module, section, and symbol information within a library.

*** Library List ***

MODULE LAST UPDATE
 (1) (2)
 SECTION
 (3)
 SYMBOL
 (4)
adhry
 29-Feb-2000 12:34:56
 P
 _main
 _Proc0
 _Proc1
 C
 D
 _Version
 B
 _IntGlob
 _CharGlob

Figure 8.22 Output Example of Module, Section, and Symbol Information within Library
(Library Listing)

Description

(1) Module name

(2) Module definition date
If the module is updated, the latest module update date is displayed.

(3) Section name within a module

(4) Symbol within a section

184

185

Section 9 Programming

9.1 Program Structure

9.1.1 Sections

Each of the regions for execution instructions and data of the object programs output by the
C/C++ compiler or assembler comprises a section. A section is the smallest unit for data
placement in memory. Sections have the following properties.

• Section attributes

code Stores execution instructions

data Stores data

stack Stack area

• Format type

Relative-address format: A section that can be relocated by the optimizing linkage editor.

Absolute-address format: A section of which the address has been determined; it cannot be
relocated by the optimizing linkage editor.

• Initial values

Specifies whether there are initial values at the start of program execution. Data which has
initial values and data which does not have initial values cannot be included in the same
section. If there is one initial value, the remaining area without initial values is initialized to
zero.

• Write operations

Specifies whether write operations are or are not possible during program execution.

• Boundary alignment

Corrections to addresses assigned to sections. The optimizing linkage editor corrects addresses
such that they are multiples of the boundary alignment.

9.1.2 C/C++ Program Sections

The correspondence between standard library memory areas and sections for C/C++ programs
is described in table 9.1.

186

Table 9.1 Summary of Memory Area Types and Their Properties

Section

Initial Values

Name

Name

Attribute

Format
Type

Write
Operations

Align-
ment

Description

Program area P*1 code Relative Yes

No

2
bytes

Stores machine code

Constant area C*1 data Relative Yes

No

2
bytes

Stores const-type data

Initialized data area D*1 data Relative Yes

Yes

2
bytes

Stores data with initial values

Uninitialized data
area

B*1 data Relative No

Yes

2
bytes

Stores data without initial
values

Constant area (8-
bit address space)

$ABS8C*1 data Relative Yes

No

1 byte Stores const-type 8-bit data
specified by the abs8 option,
or by _ _abs8, #pragma abs8

Initialized data area
(8-bit address
space)

$ABS8D*1 data Relative Yes

Yes

1 byte Stores 8-bit data with initial
values specified by the abs8
option, or by _ _abs8,
#pragma abs8

Uninitialized data
area (8-bit address
space)

$ABS8B*1 data Relative No

Yes

1 byte Stores 8-bit data without initial
values specified by the abs8
option, or by _ _abs8,
#pragma abs8

Constant area (16-
bit address space)

$ABS16C*1 data Relative Yes

No

2
bytes

Stores const-type data
specified by the abs16 option,
or by _ _abs8, #pragma abs8

Initialized data area
(16-bit address
space)

$ABS16D*1 data Relative Yes

Yes

2
bytes

Stores data with initial values
specified by the abs16 option,
or by _ _abs16, #pragma
abs16

Uninitialized data
area (16-bit
address space)

$ABS16B*1 data Relative No

Yes

2
bytes

Stores data without initial
values specified by the abs16
option, or by _ _abs16,
#pragma abs16

187

Table 9.1 Summary of Memory Area Types and Their Properties (cont)

Section IInitial Values

Name

Name

Attribute

Format
Type

Write
Operations

Align-
ment

Description

Function address
area (memory
indirect space)

$INDIRECT*1 data Relative Yes

No

2
bytes

Stores function addresses
specified by the
indirect=normal option, or by
_ _indirect, #pragma indirect

Function address
area (extended
memory indirect
space)

$EXINDIRECT
*1

data Relative Yes

No

2
bytes

Stores function addresses
specified by the
indirect=extended option, or
by _ _indirect_ex

Function address
area (memory
indirect space)

$VECTxx*1

xx: vector
number

data Absolute Yes

No

2
bytes

Stores function addresses
specified with vect=xx of
_ _indirect, #pragma indirect,
_ _indirect_ex, _ _interrupt,
#pragma interrupt,
_ _entry, or #pragma entry

1-byte data area yy$1*2
yy:C*1,D*1,B*1,
$ABS16C*1,
$ABS16D*1,
$ABS16B*1

data Relative 1 byte Handles 1-byte data when
the align=4 option is
specified, and is created in
each section

4-byte data area yy $4*2
yy:C*1,D*1,B*1,
$ABS16C*1,
$ABS16D*1,
$ABS16B*1

data Relative 4
bytes

Handles 4-byte data when
the align=4 option is
specified, and is created in
each section

188

Table 9.1 Summary of Memory Area Types and Their Properties (cont)

Section

Initial Values

Name

Name

Attribute

Format
Type

Write
Operations

Align-
ment

Description

Address area for
initialized data
section

C$DSEC*3 data Relative Yes

No

2
bytes

Stores ROM addresses, final
addresses in ROM, and
RAM addresses for
initialized data area sections

Address area for
uninitialized data
section

C$BSEC*3 data Relative Yes

No

2
bytes

Stores addresses and final
addresses for uninitialized
data area sections

C++ initial
processing/
postprocessing
data area

C$INIT*3 data Relative Yes

No

2
bytes

Stores addresses of
constructors and destructors
called for global class
objects

C++ virtual
function table
area

C$VTBL*3 data Relative Yes

No

2
bytes

Stores data for virtual
function calls when there is a
virtual function in a class
declaration

Stack area S stack Relative No

Yes

2
bytes

Area necessary for program
execution (see section 9.2.1
(2), Dynamic Area
Allocation)

Heap area Relative No

Yes

 Area used by library
functions malloc, realloc,
calloc, new (see section
9.2.1 (2), Dynamic Area
Allocation)

Absolute
address variable
area

$ADDRESS
$yy<address>
yy:C,D,B

data Absolute Yes/No

Yes/No*4

 Stores variables specified by
#pragma address

Notes: 1. Section names can be switched in the compiler option section, extension #pragma
section, #pragma abs8 section, #pragma abs16 section, or #pragma indirect section.

2. The data section name before data subdivision is to be displayed in place of yy.
 e.g. C -> C$1,C$4.

3. When the compiler option section=C=zz is specified, the prefix “C” becomes “zz”.
4. The initial value and write operation depend on the attributes of sections C, D, and B.

189

Example 1: A program example is used to demonstrate the correspondence between a C program
and the compiler-generated sections.

Example 2: A program example is used to demonstrate the correspondence between a C++
program and the compiler-generated sections.

9.1.3 Assembly Program Sections

In assembly programs, .SECTION directives are used to begin sections and declare attributes and
formats. The format for declaration of a .SECTION directive is given below. For details, refer to
section 11.3, Assembler Directives.

int a=1;

char b;

const int c=0;

void main(){

 ...

}

Program area (main() {...})

Constant area (c)

Initialized data area (a)

Uninitialized data area (b)

C program
Areas generated by the

compiler and stored data

Section name

P

C

D

B

class A{

 int m;

public:

 A(int p);

 ~A();

};

A a(1);

int b;

extern const char c=’a’;

int d=1;

void f(){...}

Program area (f() {...})

Constant area (c)

Initialized data area (d)

Uninitialized data areas (a,b))

Initial processing/postprocessing data

areas (&A::A, &A::~A)

C++ program

Areas generated by the
compiler and stored data

Section name

P

C

D

B

C$INIT

190

.SECTION <section name>[,<section attribute>[,<format type>]]

<format type>: In the case of a relative address section, align = <alignment boundary>
In the case of an absolute address section, locate = <address value>

Example: An example of an assembly program section declaration appears below.

 .CPU 2600A

 .OUTPUT DBG

SIZE : .EQU 8

;

 .SECTION A,CODE,ALIGN=2 …… (1)

START:

 MOV.L #CONST:32,ER0

 MOV.L #DATA:32,ER1

 MOV.L #SIZE:32,ER2

LOOP:

 CMP.L #0:32,ER2

 BEQ EXIT

 MOV.B @ER0,R3L

 MOV.B R3L,@ER1

 ADD.L #1:32,ER0

 ADD.L #1:32,ER1

 SUB.L #1:32,ER2

 BRA LOOP

EXIT:

 SLEEP

 BRA START

;

 .SECTION B,DATA,LOCATE=H'00001000 …… (2)

CONST

 .DATA.B H'01,H'02,H'03,H'04

 .DATA.B H'05,H'06,H'07,H'08

;

 .SECTION C,STACK,ALIGN=2 …… (3)

DATA

 .RES.B SIZE

;

 .END START

191

(1) Declares a code section with section name A, alignment boundary 2, and relative address
format.

(2) Declares a data section with section name B, allocated address H'1000, and absolute address
format.

(3) Declares a stack section with section name C, alignment boundary 2, and relative address
format.

9.1.4 Linking Sections

The optimizing linkage editor links the same sections within input object programs, and
allocates addresses specified using the start option.

(1) The same section names in different files are allocated continuously in the order of file input.

Section A

Section B

Section C

Section D

Section A

Section C

Section B

"file1.obj"

input file1.obj file2.obj
file3.obj

Options specified at linkage

file1. section A

file2. section A

file1. section B

file3. section B

file1. section C

file3. section C

file2. section D

0x1000

0x8000

"file2.obj" "file3.obj"

192

(2) Sections with the same name but different boundary alignments are linked after alignment.
Section alignment uses the larger of the section alignments.

Section A

(align=2,size=0x6E)

Section A

(align=4,size=0x100)

"file1.obj" "file2.obj"

input file1.obj file2.obj

start A/1000

Options specified at linkage

file1. section A

file2. section A

0x1000

0x1070

Alignment = 4
Size = 0x170

193

(3) When sections with the same name include both absolute-address and relative-address formats,
relative-address objects are linked following absolute-address objects. Even when relocatable
file (form=relocate) output is specified, the section in question becomes an absolute-address
section.

Section A

(align=4,size=0x100)

Section A

(locate=1000,size=0x6E)

"file1.obj" "file2.obj"

input file1.obj file2.obj

Options specified at linkage

file2. section A

 file1. section A

0x1000

0x1070

Absolute-address section
Size = 0x170

194

(4) Rules for the order of linking objects within the same section name are as follows.

a. Order specified by the input option or in the order of input files on the command line

b. Order specified for the user library by the library option and order of input of modules
within the library

c. Order specified for the system library by the library option and order of input of modules
within the library

d. Order specified for libraries by environment variables (HLNK_LIBRARY1 to
HLNK_LIBRARY3) and order of input of modules within the library

Section A

"file1.obj"

Options specified at linkage

Module 1 (Section A)

"usr1.lib"

Module 2 (Section A)

Module 5 (Section A)

"syslib1.lib"

Module 6 (Section A)

"file2.obj" "usr2.lib"

Module 3 (Section A)

Module 4 (Section A)

"syslib2.lib"

Module 7 (Section A)

Module 8 (Section A)

file1. section A

file2. section A

Module1. section A

Module2. section A

0x1000

Module5. section A

Module6. section A

Module7. section A

Module8. section A

Module4. section A

Environment variables

Section A

input file1.obj file2.obj
library syslib1.lib
usr1.lib

HLNK_LIBRARY1=syslib2.lib
HLNK_LIBRARY2=usr2.lib

Module3. section A

195

9.2 Creation of Initial Setting Programs

Here methods for embedding programs into systems employing the H8SX, AE5, H8S/2600,
H8S/2000, H8/300H and H8/300 are explained.

To embed a program in a system, the following preparations are necessary.

• Memory allocation
Each section, the stack area, and the heap area must be allocated to system ROM and RAM.

• Settings for the program execution environment
Processing to set the program execution environment includes register initialization, memory
initialization, and program startup.

In addition, when using I/O and other C/C++ library functions, the library must be initialized
during preparation of the execution environment. In particular, when using I/O (stdio.h, ios,
streambuf, istream, ostream) and memory allocation (stdlib.h, new), low-level I/O routines and
memory allocation routines must be created.

When using C library functions for program termination (the exit, atexit, abort functions), these
functions must be created separately according to the user system.

In section 9.2.1, the method used to determine addresses for program memory is explained, and
actual examples are used to describe the method for specifying options in the optimizing linkage
editor for determining addresses.

In section 9.2.2, execution environment settings are explained, and an actual example of a program
to set the execution environment is described.

Library function initialization processing, creation of low-level routines, and examples of creation
of functions for termination processing are also explained.

9.2.1 Memory Allocation

In order to embed an object program into a system, the size of the memory areas to be used by
the program must be determined, and these memory areas must be allocated to appropriate
memory addresses.

Memory areas used by a program include areas which are statically allocated, such as for
execution instructions corresponding to functions in the program and data declared using external
data definitions, and areas which are dynamically allocated, such as the stack area. Below,
methods for allocation of each type of area are explained.

196

(1) Static memory area allocation

(a) Contents of static memory area

Sections other than the stack area and heap area are allocated statically.

Each of the sections in a C/C++ program (program area, constant area, initialized data area,
uninitialized data area, function address area, initialized data section address area,
uninitialized data section address area, C++ initial processing/postprocessing data area,
and C++ virtual function table area) is allocated statically.

 (b) Calculation of size

The size of static memory is the sum of the sizes of the object programs generated by the
compiler and assembler and the sizes of the library functions used by the C/C++ program.

After linking an object program, the sizes of each section, including libraries, are output to
the linkage map information of the linkage list, and so the size of static memory can be
determined. Figure 9.1 shows an example of linkage map information in the linkage list.

*** Mapping List ***

SECTION START END SIZE ALIGN
 (1) (2) (3) (4) (5)
P
 00000000 000004d6 4d6 2
C
 000004d6 00000533 5d 2
D
 00000534 0000053c 8 2
B
 0000053c 00004112 3bd6 2

Figure 9.1 Example of Linkage Map Information in Linkage List

Section sizes of compiling and assembly units are output to the statistics information of the
compile list and section information of the assembly list. An example of compile list
statistics information is shown in figure 9.2, and an example of assembly list section
information appears in figure 9.3.

******* SECTION SIZE INFORMATION *******
PROGRAM SECTION (P): 0x00000080 Byte(s)
CONSTANT SECTION (C): 0x00000004 Byte(s)
DATA SECTION (D): 0x00000004 Byte(s)
BSS SECTION (B): 0x00000004 Byte(s)

TOTAL PROGRAM SECTION: 0x00000080 Byte(s)
TOTAL CONSTANT SECTION: 0x00000004 Byte(s)
TOTAL DATA SECTION: 0x00000004 Byte(s)
TOTAL BSS SECTION: 0x00000004 Byte(s)

TOTAL PROGRAM SIZE: 0x0000008C Byte(s)

Figure 9.2 Example of Compile List Statistics Information

197

 *** SECTION DATA LIST
 SECTION ATTRIBUTE SIZE START

 P REL-CODE 000000604
 D REL-DATA 000000008
 C REL-DATA 00000005D
 B REL-DATA 000003BD6

Figure 9.3 Example of Assembly List Section Information

When not using a standard library, the total of file-unit section sizes is the size of static
memory.

When using a standard library, memory area sizes used by library functions must be
added to the memory size for each section. Among the standard libraries provided by
the compiler are, in addition to C library functions stipulated by the C language
specifications and C++ class libraries for embedded use, routines to perform arithmetic
calculations (runtime routines) used for program execution. Hence even if use of library
functions is not specified in the source program, a standard library may be needed.

The runtime routines used by a program can be determined from the symbol allocation
information in the compile list output by the compiler. A specific example is presented
below.

C program

 long a,b;

 main()

 {

 a *= b;

 }

C compiler output symbol allocation information

 ******* STACK FRAME INFORMATION ******

 FILE NAME: main.c

 Function (File main.c , Line 2):main

 Parameter Area Size : 0x00000000 Byte(s)

 Linkage Area Size : 0x00000000 Byte(s)

 Local Variable Size : 0x00000000 Byte(s)

 Temporary Size : 0x00000000 Byte(s)

 Register Save Area Size : 0x00000000 Byte(s)

 Total Frame Size : 0x00000000 Byte(s)

 __

198

 Used Runtime Library Name
 $MULL$3 : Runtime routine

(c) ROM, RAM allocation

When writing a program to ROM, whether sections are allocated to RAM or to ROM is
determined by whether there are initial values and whether write operations are enabled.

When writing the sections of a C/C++ program to ROM, sections are allocated to ROM or
to RAM as follows.

• Program area (section P) ROM

• Constant areas (sections C, $ABS8C, $ABS16C) ROM

• Uninitialized data areas (sections B, $ABS8B, $ABS16B) RAM

• Initialized data areas (sections D, $ABS8D, $ABS16D) ROM, RAM

(see (d) below)

• Function address area (section $INDIRECT, $EXINDIRECT) ROM

• Initialized data section address area (section C$DSEC) ROM

• Uninitialized data section address area (section C$BSEC) ROM

• Initial processing data area*1 (section C$INIT) ROM

• Virtual function table area*2 (section C$VTBL) ROM

Notes: 1. Generated by the compiler when a C++ program has a global class object.

 2. Generated by the compiler when a C++ program contains virtual function declarations.

(d) Allocation of initialized data areas

Sections which have initial values and can be altered on program execution, such as
initialized data areas, are placed in ROM at link time and copied to RAM at the start of
program execution. Hence the rom option of the optimizing linkage editor must be used to
reserve the duplicate memory area both in ROM and in RAM. For an example of this, refer
to "(e) Example of memory allocation and address specification at link time" below. Initial
settings for sections to be copied from ROM to RAM are explained in section 9.2.2 (2),
Initial settings (PowerON_Reset).

 (e) Example of memory allocation and address specification at link time

When creating an absolute load module, addresses are specified per allocated area for each
section using an optimizing linkage editor option or a subcommand. Below, examples of
static memory allocation and of address specification at link time are explained.

Figure 9.4 shows an example of allocation of a static memory area in H8S/2600 advanced
mode.

199

Program area (P)

Interrupt vector

Internal ROM

RAM

Internal RAM

P, C, D, B: Default section names generated by the compiler.

R: Section name specified by ROM support function of the linkage editor.

Constant area (C)

Initialized data area (R)

Uninitialized data area (B)

Dynamic area

Initialized data area (D)

0x000000

0x000400

0x020000

0xFFEC00

0xFFFBFF

Figure 9.4 Example of Static Memory Allocation

When allocating memory as shown in figure 9.4, the following subcommands are specified at link
time.

ROM∆D=R ...[1]
START∆P,C,D/400,R,B/20000 ...[2]

Explanation [1] Space for section R of size equal to that of section D is secured in the output
load module. When symbols allocated to section D are referenced, relocation is
performed so that their addresses are in section R. Section D and section R are
initialized data sections on ROM and to RAM respectively.

Explanation [2] Sections P, C and D are allocated to contiguous areas of memory in internal
ROM starting from address 0x400. Sections R and B are allocated to contiguous
memory areas starting from address 0x20000 in RAM.

(2) Dynamic memory area allocation

(a) Contents of dynamic memory

The following two types of dynamic memory areas are used in C/C++ programs:

• Stack area

• Heap area (for memory allocation of library functions and other uses)

200

(b) Calculation of stack area size

The maximum stack area size used by C/C++ programs and standard libraries can be
calculated by specifying the stack option of the optimizing linkage editor to output a stack
information file, and using the stack usage analysis tool. For details of use of the stack
usage analysis tool, refer to section 6, Operating Stack Analysis Tool.

The stack analysis tool can calculate the stack usage, if label is specified by .STACK
directive. But it cannot calculate the stack area used by an assembly program, which was
assembled by the assembler unable to output to a stack information file. Instead, the stack
usage of an assembly program should be computed by the method outlined below for
calculating the stack usage of a C/C++ program, and the result should be added to the stack
usage calculated by the stack usage analysis tool.

Method for Calculating Stack Usage by C/C++ Program: Stack area is allocated for use
by a C/C++ program each time a function is called, and is released when the function
returns. In order to calculate the size of the stack area used, first the amount of stack space
used by each function is computed, and then the calling relations of functions are used to
calculate the actual stack space use.

The stack area used by each function can be found from the symbol allocation information
(total frame size) of the compile list.

The stack area used by each function can be found from the symbol allocation information
(total frame size) of the compile list.

The stack area used by the function is the total frame size of 0x12, that is, 18 bytes.

An example of function calling relationships and stack use by each function appears in
figure 9.5. Here, the size of the stack used when function g is called via function f is
calculated in table 9.2.

****** STACK FRAME INFORMATION ******

FILE NAME: test.c

Function (File test.c , Line 2):main

 Optimize Option Specified : No Allocation Information Available

Paramater Area Size : 0x00000008 Byte(s)

Linkage Area Size : 0x00000004 Byte(s)

Local Variable Size : 0x00000002 Byte(s)

Temporary Size : 0x00000000 Byte(s)

Register Save Area Size : 0x00000004 Byte(s)

Total Frame Size : 0x00000012 Byte(s)

201

main ()

f ()

g ()

Function Name Stack Size (Bytes)

main 18

f

g

32

24

Figure 9.5 Example of Function Calling Relationships and Stack Area Used

Table 9.2 Example of Calculation of Stack Area Used

Calling Path Stack Area Used Remarks

main (18) f (32) g(24) 74 Stack space used
(maximum)

main (18) g(24) 42

In this way, the stack area used is calculated for the function at the deepest calling level,
and stack area for this maximum value (in this case, 74 bytes) is allocated.

Note on stack consumption calculation

The fundamental to calculate the amount of stack consumption differs between Ver. 4.0 or
earlier or Ver. 6.0 except for H8SX and H8SX of Ver. 6.0. In this note, Ver. 4.0 or earlier
and Ver 6.0 except for H8SX is called the group A, and H8SX of Ver. 6.0 and H8S or
H8SX of Ver. 6.01 is called the group B. Take care if a function compiled by the group A
calls a function compiled by the group B, and vice versa.

The behavior of the SP, the stack pointer, differs between the group A and B. In the group
A, a parameter passed via the stack is stored after decrementing the SP using the push
instruction or the pre-decrement addressing mode (@-SP) as shown at [1] of the following
example. After the return from the function call, the stack area for the parameter is released
through incrementing the SP by the parameter size as shown at [2] of the following
example. In group A, the size of the parameter area in the stack differs depending on a
function, and that size is counted into the Parameter Area Size of the callee’s stack frame
size as shown at [3] of the following example.

202

On the other hand, in the group B, the compiler calculates the maximum amount of the
stack area used in the function beforehand, and that amount of stack area is reserved at the
function prolog as shown at [4] of the following example. The SP is unchagened until the
function epilog, and the SP is restored to the original value before the function itself is
called, as shown at [6] of the following example. In this case, a parameter is stored at an
address with 0 or positive offset from the SP without changing the SP, as shown at [5] of
the following example. In group B, the size including the maximum amount of parameter
usage of all the function calls is counted into the Temporary Size of the caller’s stack frame
size as shown at [7] of the following example

As shown at CASE 1 and CASE 4 below, if the groups of the caller and the callee are the
same, the total size of stack consumption for the function g to call the function f is exactly
12 bytes through summing up the Total Frame Size of g and f. As in CASE 2 below, if a
function of the group A calls that of the group B, the total size of stack consumption for the
function g to call the function f is mistakenly 8 bytes through summing up the Total Frame
Size of g and f. This underestimate of the stack consumption came from the fact that the
size for the parameter area in the stack is not summed up. As in CASE 3 below, if a
function of the group B calls that of the group A, the total size of stack consumption for the
function g to call the function f is mistakenly 16 bytes through summing up the Total
Frame Size of g and f. This overestimate of the stack consumption came from the fact that
the size for the parameter area in the stack is summed up twice.

In order to avoid such underestimate or overestimate, do not mix the group A and B, or
correct the estimate of stack consumption finding out the point where a function of the
group A calls that of the group B or the point where a function of the group B calls that of
the group A.

The amount of stack consumption:
CASE 1: the function g of the group A calls the function f of the group B: 8 + 4 = 12
CASE 2: the function g of the group A calls the function f of the group A: 4 + 4 = 8
CASE 3: the function g of the group B calls the function f of the group B: 8 + 8 = 16
CASE 4: the function g of the group B calls the function f of the group A: 8 + 4 = 12

203

 Example:

Source program The group A The group B

int f(struct S); _f: _f:
void g(void); SUB.W R0,R0 SUB.W R0,R0
struct S{long p;} st; RTS RTS
int x; _g: _g:
int f(struct S s){ ADD.W #-4:16,R7 ;[4]
 return 0; MOV.L @_st:32,ER0 MOV.L @_st:32,ER0
} PUSH.L ER0 ;[1] MOV.L ER0,@SP ;[5]
void g(void) BSR _f:8 BSR _f:8
{ ADDS.L #4,SP ;[2] MOV.W R0,@_x:32
 x=f(st); MOV.W R0,@_x:32 ADDS.L #4,SP ;[6]
} RTS RTS

Function f:
Parameter Area Size : 0x00000004 Byte(s)[3] 0x00000000 Byte(s)
Linkage Area Size : 0x00000004 Byte(s) 0x00000004 Byte(s)
Local Variable Size : 0x00000000 Byte(s) 0x00000000 Byte(s)
Temporary Size : 0x00000000 Byte(s) 0x00000000 Byte(s)
Register Save Area Size : 0x00000000 Byte(s) 0x00000000 Byte(s)
Total Frame Size : 0x00000008 Byte(s) 0x00000004 Byte(s)

Function g:
Parameter Area Size : 0x00000000 Byte(s) 0x00000000 Byte(s)
Linkage Area Size : 0x00000004 Byte(s) 0x00000004 Byte(s)
Local Variable Size : 0x00000000 Byte(s) 0x00000000 Byte(s)
Temporary Size : 0x00000000 Byte(s) 0x00000004 Byte(s)[7]
Register Save Area Size : 0x00000000 Byte(s) 0x00000000 Byte(s)
Total Frame Size : 0x00000004 Byte(s) 0x00000008 Byte(s)

(c) Calculation of heap area size

The size of the area of heap memory used is the sum of the areas allocated by memory
management library functions (calloc, malloc, realloc, and new) in the C/C++ program.
However, each time a memory management library function is called, either four bytes
(with cpu=H8SXN, cpu=H8SXM, cpu=H8SXA and ptr16 option, cpu=H8SXX and ptr16
option, cpu=2600n, cpu=2000n, cpu=300hn, or cpu=300 specified) or eight bytes (with
cpu=H8SXX without ptr16 option, cpu=H8SXA without ptr16 option, cpu=2600a,
cpu=2000a, or cpu=300ha specified) are used for management purposes; the actual area
used must be calculated including the sizes of these management areas added.

The compiler manages the heap area in units of a memory size specified by the user
(_sbrk_size). The method for specifying _sbrk_size is described in section 9.2.2 (5), C/C++
library function initial settings (_INITLIB). The heap area to be reserved (HEAPSIZE)
should be calculated as follows.

HEAPSIZE = _sbrk_size × n (n≥1)
(size of area allocated by memory management library functions) + management area
size ≤ HEAPSIZE

204

I/O library functions use memory management library functions for internal processing.
The size of memory allocated during I/O operations is:

With cpu=H8SXN, H8SXM, H8SXA (with ptr16 option), H8SXX (with ptr option), 2600n,
2000n, 300hn, 300 specified, 514 bytes x (maximum number of files open simultaneously)

With cpu=H8SXA (without ptr16 option), H8SXX (without ptr16 option), 2600a, 2000a,
300ha specified, 516 bytes x (maximum number of files open simultaneously)

Caution

Memory areas released using the free function or delete operator (C++) in the memory
management library functions are reused by memory management library functions to secure

memory; but if allocation is repeated, it is possible that requests for large memory areas cannot be
satisfied, even when there is sufficient free memory available, due to the fact that free memory is
broken up into smaller fragments. In order to avoid such occurrences, large memory areas should

be secured immediately after the start of program execution whenever possible. In addition, the
sizes of data areas which are freed and reused should be made uniform as much as possible.

(d) Dynamic memory area allocation

Dynamic areas are allocated in RAM.

The location for allocation of stack memory is determined by setting the uppermost address
of the stack section to the SP (stack pointer) in the reset routine on program startup.

By using _ _entry (or #pragma entry) and #pragma stacksize, the C/C++ compiler
automatically creates the stack area (S section) and outputs the SP initial setting code in the
reset program.

The location for heap memory is determined by the initial settings for low-level interface
routines (sbrk).

Details of each of these appear in section 9.2.2 (2), Initial settings (PowerON_Reset), and
section 9.2.2 (7), Low-level interface routines, respectively.

205

9.2.2 Execution Environment Settings

Here processing to prepare the environment for program execution is explained. However, the
environment for program execution will differ among user systems, and so a program to set the
execution environment must be created according to the specifications of the user system.

Figure 9.6 shows an example of the structure of a program.

: Routines necessary when
 using libraries

PowerON_Reset VEC_TBLDTBL, BTBL

_INITLIB_CALL_INIT
*1

_CALL_END
*1

_INITSCT _CLOSEALL

Low-level
interface

: Tables always necessary

: Routines always necessary

: Supplied by the compiler

Power-on
reset

User
program

Standard
library

Termination
processing

function

Note: Necessary when there is a global class object declaration in the C++ program.

Figure 9.6 Example of Program Structure

The contents of each of the routines are as follows.

• Vector table (VEC_TBL)

Sets the vector table such that the register initial settings program (PowerON_Reset) is started
up at power-on reset.

• Initial settings (PowerON_Reset)

After initial register values are set, calls the initial setting routines in sequence.

• Section initialization tables (DTBL, BTBL)

Uses the section address operator to set the leading and ending addresses for the section used
in the section initialization routine.

206

• Section initialization (_INITSCT)*1

Initializes to zero any static variable areas (uninitialized data areas) for which no initial values
are set. Also copies initial values of initialized data areas from ROM to RAM.

• Global class object initialization processing (_CALL_INIT)*1*2

Calls the constructors for globally declared class objects.

• Global class object postprocessing (_CALL_END)*1*2

After execution of the main function, calls the destructors for global class objects.

• C/C++ library function initial settings (_INITLIB)

When using C/C++ library functions, performs initial settings for those functions requiring it.

• Close files (_CLOSEALL)

Closes all open files.

• Low-level interface routines

Routines providing an interface between the user system and library functions which are
necessary when standard I/O (stdio.h, ios, streambuf, istream, ostream) and memory
management libraries (stdlib.h, new) are used.

• Termination processing routine*3

Processing for terminating the program.

Notes *1: Provided as a standard library. Include <_h_c_lib.h> to use _INITSCT, _CALL_INIT
or _CALL_END

 *2: Required processing when there is a declaration of a global class object in a C++
program.

 *3: When using the C library functions exit, atexit, or abort to terminate a program, these
functions must be created as appropriate to the user system.

 When using the C library macro assert, the abort function must always be created.

207

Below the method for processing according to the above description is explained.

(1) Vector table settings (VEC_TBL)

In order to have the initial settings function PowerON_Reset called when the system is reset at
power-on, the address for the PowerON_Reset function must be set at address 0 of the vector
table.

When using interrupt processing and indirect function calls in the user system, the interrupt
vectors and address table must be set appropriately.

The vector table is automatically generated by the compiler when the vect parameter is
specified using the _ _entry (or #pragma entry), _ _interrupt (or #pragma interrupt), or
_ _indirect (or #pragma indirect) extended functions of the C/C++ compiler. A code example
is shown below.

_ _entry(vect=0) void PowerON_Reset(void) // PowerON_Reset function address set at address 0

{

 :

}

_ _interrupt(vect=3) void INT_NMI(void) // INT_NMI function address set at vector number 3

{

 :

}

_ _indirect(vect=4) char f // f function address set at vector number 4
{
 :

}

208

(2) Initial settings (PowerON_Reset)

The initial settings functions set the initial values of the stack pointer (SP) and of the condition
code register (CCR) and other registers, and calls the section initialization routine (_INITSCT)
before calling the main function. When a global class object exists in a C++ program, the
_CALL_INIT and _CALL_END functions, which call initialization/termination processing
functions in sequence, are called before and after the main function call.

The compiler automatically generates code to set SP when _ _entry (or #pragma entry) is used.
The initial setting for the condition code register is set using an embedded function
(set_imask_ccr etc.).

_INITSCT and the _CALL_INIT and _CALL_END functions are provided as standard library
functions. To use this function, include <_h_c_lib.h>.

When using a C/C++ library function, _INITLIB, which initializes library settings, and
_CLOSEALL, which performs processing to close files, shall be called.

A code example is shown below.

209

#include <machine.h> // Include <machine.h>
#include <_h_c_lib.h> // Include <_h_c_lib.h>
#pragma stacksize 0x200 // Set the size of section S (the stack)

extern void PowerON_Reset(void);
extern void main(void);

#ifdef _ _cplusplus
extern "C" {
#endif
extern void _INITLIB(void);
extern void _CLOSEALL(void);
#ifdef _ _cplusplus
}
#endif

_ _entry(vect=0) void PowerON_Reset(void)
{ // Set SP to the uppermost address of section S
 set_vbr(0x0); // Make the initial setting of VBR for H8SX if necessary
 set_imask_ccr(1); // Mask interrupt
 _INITSCT(); // Call section initialization routine

#ifdef _ _cplusplus
 _CALL_INIT(); // Called when there is a global class object of C++
#endif

 _INITLIB(); // Call library initial setting function
 set_imask_ccr(0); // Release interrupt mask
 main();
 _CLOSEALL(); // Call function to close files

#ifdef _ _cplusplus
 _CALL_END(); // Called when there is a global class object of C++

#endif

 sleep();
}

210

(3) Tables for section initialization (DTBL, BTBL)

The section initialization routine (_INITSCT) initializes any uninitialized data sections to zero,
and copies initialization data in for initialized data sections in ROM to RAM. Here the starting
and ending addresses of sections which is read by the _INITSCT function are set in the table
for section initialization using the section address operator.

Section names in the section initialization table are declared, using C$BSEC for uninitialized
data areas, and C$DSEC for initialized data areas.

A code example is shown below.

Note: Be sure to compile the above program as a C language program, i.e., either make the file
extension “c” or specify the lang=c option. If the program is compiled as a C++ program
(i.e., either the file extension is “cpp”, “cc” or “cp”, or the lang=cpp option is specified),
the table for section initialization will be deleted as an unused static data by the compiler
and the program will be wrong.

#ifdef __ABS16__ // Section name is C$DSEC.
#pragma abs16 section $DSEC
#else
#pragma section $DSEC
#endif
static const struct DSEC{
 void * rom_s; // Start address member of the initialization data section in ROM
 void * rom_e; // End address member of the initialization data section in ROM
 void * ram_s; // Start address member of initialization data section in RAM
}DTBL[]={
 {_ _sectop (“D”), _ _secend (“D”), _ _sectop (“R”)},
 {_ _sectop (“$ABS8D”), _ _secend (“$ABS8D”), _ _sectop (“$ABS8R”)},
 {_ _sectop (“$ABS16D”), _ _secend (“$ABS16D”), _ _sectop (“$ABS16R”)}
};

#ifdef _ _ABS16_ _ // Section name is C$BSEC.
#pragma abs16 section $BSEC
#else
#pragma section $BSEC
#endif
static const struct BSEC{
 void * b_s; // Start address member of uninitialized data section
 void * b_e; // End address member of uninitialized data section
}BTBL[]={
 {_ _sectop (“B”), _ _secend (“B”)},
 {_ _sectop (“$ABS8B”), _ _secend (“$ABS8B”)},
 {_ _sectop (“$ABS16B”), _ _secend (“$ABS16B”)}
};

#ifdef _ _ABS16_ _
#pragma abs16 section
#else
#pragma section
#endif

211

The section initialization routine (_INITSCT), provided as the standard library, operates similarly
to the program shown below.

static const struct DSEC{ // Initialization table struct for D defined in previous example
 void * rom_s; // Start address member of the initialization data section in ROM
 void * rom_e; // End address member of the initialization data section in ROM
 void * ram_s; // Start address member of initialization data section in RAM
};

static const struct BSEC{ // Initialization table struct for B defined in previous example
 void * b_s; // Start address member of uninitialized data section
 void * b_e; // End address member of uninitialized data section
};

static void clearblock(void *b_top, void *b_end);
static void copyblock (void *d_top, void *d_end, void *r_top);

#ifdef _ _cplusplus
extern “c” // Linked to C
#endif
void _INITSCT(void) // Section initialization routine
{
 const struct BSEC *btbl; // Initialization table structure for section B
 const struct DSEC *dtbl; // Initialization table structure for section D
 // Initializes the uninitialized data section
 for(btbl =_ _sectop (“C$BSEC”);
 btbl <(struct BSEC *)_ _secend (“C$BSEC”); btbl++)
 clearblock(btbl->b_s, btbl->b_e);
 // Initializes the initialized data section
 // Copies the initialized data from ROM to RAM
 for(dtbl =_ _sectop (“C$DSEC”);
 dtbl <(struct DSEC *)_ _secend (“C$DSEC”); dtbl++)
 copyblock(dtbl->rom_s, dtbl->rom_e, dtbl->ram_s);
}

static void clearblock(void *b_top, void *b_end)
{ // Initializes the uninitialized data section by 0
 char *p;
 for(p=b_top; p<(char *)b_end; p++)
 *p = 0;
}
static void copyblock(void *d_top, void *d_end, void *r_top)
{ // Copies the initialized data from ROM to RAM
 char *p, *q;
 for(p=r_top, q=d_top; q<(char *)d_end; p++, q++)
 *p = *q;
}

212

(4) C++ global class object initial settings (_CALL_INIT)

The _CALL_INIT function calls a constructor of the class object that has been globally
declared in C++. Although this function is provided in the library header file of <_h_c_lib,h>.
An example is shown below to show the behaivor.

(5) C/C++ library function initial settings (_INITLIB)

Here, the method for setting initial values for C/C++ library functions is explained.

In order to set only those values which are necessary for the functions that are actually used,
please refer to the following guidelines.

 When using the stdio.h, ios, streambuf, istream, or ostream functions or the assert macro,
the standard I/O initial setting (_INIT_IOLIB) is necessary.

 When an initial setting is required in the created low-level interface routine, the initial
setting (_INIT_LOWLEVEL) in accordance with the specifications of the low-level
interface routine is necessary.

 When using the rand function or the strtok function, initial settings other than those for
standard I/O (_INIT_OTHERLIB) are necessary.

An example of a program to perform initial library settings is shown below. FILE-type data is
shown in figure 9.7.

extern “C” void _CALL_INIT(void);

typedef void (**FPP)(void); // Function-pointer type

extern “C” void _CALL_INIT(void)

{ // Global class object initialization routine
 FPP top = (FPP)_ _sectop("C$INIT");

 FPP end = (FPP)_ _secend("C$INIT");

 while (top < end)

 (*top++)(); // Calls a constructor
}

213

#include <stdio.h>
#include <stdlib.h>
#define IOSTREAM 3
const size_t _sbrk_size = 520; // Specify minimum size to be reserved for heap area
// If omitted: _sbrk_size=1032 in advanced without ptr16 option, or maximum without ptr16 option
// _sbrk_size=1028 in normal, middle, advanced with ptr16 option, maximum with ptr16 option, or 300
const int _nfiles = IOSTREAM; // Specify number of I/O files (20 if omitted)
struct _iobuf _iob[IOSTREAM];
unsigned char sml_buf[IOSTREAM];
extern char *_s1ptr;

#ifdef _ _cplusplus
extern "C" {
#endif
void _INITLIB (void)
{
 _INIT_LOWLEVEL(); // Set initial values for low-level interface routines
 _INIT_IOLIB(); // Set initial values for I/O library
 _INIT_OTHERLIB(); // Set initial values for rand function, strtok function
}

void _INIT_LOWLEVEL (void)
{
 //Set necessary initial values for low-level library
}

void _INIT_IOLIB(void)
{
FILE *fp;
 for(fp = _iob; fp < _iob + _nfiles; fp++) // Set initial values for FILE-type data
 {
 fp->_bufptr = NULL;
 fp->_bufcnt = 0;
 fp->_buflen = 0;
 fp->_bufbase = NULL;
 fp->_ioflag1 = 0;
 fp->_ioflag2 = 0;
 fp->_iofd = 0;
 }
 if(freopen("stdin*1", "r", stdin)== NULL) // Open standard I/O file
 stdin->_ioflag1 = 0xff;// Forbid file access if open fails
 stdin->_ioflag1 |= _IOUNBUF; // Set without data buffering*2
 if(freopen("stdout*1", "w", stdout)== NULL) // Open standard I/O file
 stdout->_ioflag1 = oxff; // Forbid file access if open fails
 stdout->_ioflag1 |= _IOUNBUF; // Set without data buffering*2
 if(freopen("stderr*1", "w", stderr)== NULL) // Open standard error file
 stderr->_ioflag1 = 0xff; // Forbid file access if open fails
 stderr->_ioflag1 |= _IOUNBUF; // Set without data buffering*2
}
void _INIT_OTHERLIB(void)
{
 srand(1); // Set initial value if using rand function
 _s1ptr=NULL; // Set initial value if using strtok function
}
#ifdef _ _cplusplus
}
#endif

214

Notes: 1. Specify the filename for the standard I/O file. This name is used in the low-level
interface routine "open".

 2. In the case of a console or other dialog-based device, a flag is set to prevent the use of
buffering.

Figure 9.7 FILE-Type Data

(6) Closing files (_CLOSEALL)

Normally, output to files is held in a buffer area in memory, and only when the buffer becomes
full is the data actually written to the external recording device. Hence if a file is not closed
properly, it is possible that data output to a file may not actually be written to the external
recording device.

In the case of a program intended for embedded use, normally the program is not terminated.
However, if the main function is terminated due to a program error or for some other reason,
any open files must all be closed.

This processing closes all the files that are open at the time of termination of the main function.

An example of a program to close all the open files is shown below.

#include <stdio.h>

#ifdef _ _cplusplus
extern "C"
#endif
void _CLOSEALL(void)
{
int i;

 for(i=0; i < _nfiles; i++)

 // Check to see whether the file is open or not
 if(_iob[i]._ioflag1 & (_IOREAD | _IOWRITE | _IORW))
 fclose(&_iob[i]); // Close the file
}

// File-type data declaration in C language

struct_iobuf{
 unsigned char _bufptr; // Pointer to buffer
 long _bufcnt; // Buffer counter
 unsinged char _bufbase; // Buffer base pointer
 long _buflen; // Buffer length
 char _ioflag1; // I/O flag
 char _ioflag2; // I/O flag
 char _iofd; // I/O flag
}iob[_nfiles];

215

(7) Low-level interface routines

When using standard I/O or memory management library functions in a C/C++ program, low-
level interface routines must be created. Table 9.3 lists the low-level interface routines used by
C library functions.

Table 9.3 List of Low-Level Interface Routines

Name Description

open Opens file

close Closes file

read Reads from files

write Writes to files

lseek Sets the read/write position in a file

sbrk Secures area in memory

error_addr* Obtains errno address

wait_sem* Waits and acquires semaphore

signal_sem* Releases semaphore

Note: Necessary when using a reentrant library.

Initialization necessary for low-level interface routines must be performed on program startup.
This initialization should be performed using the _INIT_LOWERLEVEL function described in
section 9.2.2 (5), C/C++ library function initial settings (_INITLIB).

Below, after explaining the basic approach to low-level I/O, the specifications for each
interface routine are described.

Caution

The function names open, close, read, write, lseek, and sbrk are reserved words for low-level
interface routine. They should not be used in user programs.

(a) Approach to I/O

In the standard I/O library, files are managed by means of FILE-type data; but in low-level
interface routines, positive integers are assigned to actual files in a one-to-one
correspondence for management. These integers are called file numbers.

In the open routine, a file number is provided for an input filename. The open routine must
set the following information such that this number can be used for file input and output.

• The device type of the file (console, printer, disk file, etc.) (In the cases of special
devices such as consoles or printers, special filenames must be set by the system and
identified in the open routine.)

• When using file buffering, information such as the buffer position and size

216

• In the case of a disk file, the byte offset from the start of the file to the position for
reading or writing

Based on the information set using the open routine, all subsequent I/O (read and write
routines) and read/write positioning (lseek routine) is performed.

When output buffering is being used, the close routine should be executed to kick out the
contents of the buffer to the actual file, so that the data area set by the open routine can be
reused.

(b) Specifications of low-level interface routines

In this section, specifications for creation of low-level interface routines are described. For
each routine, the interface for calling the routine, its operation, and any important
information for using the routine are described.

The interface for the routines is indicated using the following format. Low-level interface
routines should always be given a prototype declaration. When declared in a C++ program,
extern “C” should be added.

(Routine name) Concise explanations

Description (A summary of the routine operations is given)

Return value Normal: (The meaning of the return value on normal termination is
explained)

 Error: (The return value when an error occurs is given)

Parameters (Name) (Meaning)

 (The name of the parameter (The meaning of the value
 appearing in the interface) passed as an parameter)

int open(char *name, int mode, int flg) Opens file

Description Prepares for operations on the file corresponding to the filename of the first
parameter. In the open routine, the file instance (console, printer, disk file,
etc.) must be determined in order to enable reading or writing at a later time.
The file instance must be accessed using the file number returned by the open
routine each time reading or writing is to be performed.

 The second parameter, mode, specifies processing to be performed when the
file is opened. The meaning of each bit of this parameter is as follows.

217

mode

0_RDONLY
0_WRONLY
0_RDWR
0_CREAT
0_TRUNC
0_APPEND

15 45 3 2 1 0

Table 9.4 Explanation of Bits in Parameter "mode" of the File Open Routine

mode Bit Description

O_RDONLY (bit 0) When this bit is 1, the file is opened in read-only mode

O_WRONLY (bit 1) When this bit is 1, the file is opened in write-only mode

O_RDWR (bit 2) When this bit is 1, the file is opened for both reading and
writing

O_CREAT (bit 3) When this bit is 1 and if a file with the filename given does not
exist, it is created

O_TRUNC (bit 4) When this bit is 1 and if a file with the given filename exists,
the file contents are deleted, and the file size is set to 0

O_APPEND (bit 5) Sets the position within the file for the next read/write
operation

 When 0: Set to read/write from file beginning

 When 1: Set to read/write from file end

When there is a contradiction between the file processing specified by mode and the
properties of the actual file, error processing should be performed. When the file is
opened normally, the file number (a positive integer) is returned to subsequently read,
write, lseek, and close routines. The correspondence between file numbers and the
actual files must be managed by low-level interface routines. If the open operation fails,
-1 is returned.

Return value Normal: The file number for the successfully opened file
Error: -1

Parameters name: Filename of the file
mode: Specifies the type of processing when the file is opened
flg: Specifies processing when the file is opened (always 0777)

218

int close(int fileno) Closes file

Description The file number obtained using the open routine is passed as an parameter.
The file management information area set using the open routine should be
released to enable reuse. Also, when output file buffering is performed in
low-level interface routines, the buffer contents should be kicked out to the
actual file.

 When the file is closed successfully, 0 is returned; if the close operation fails,
1 is returned.

Return value Normal: 0
Error: -1

Parameters fileno: File number of the file to be closed

int read(int fileno, char *buf, unsigned int count) Reads data

Description Data is read from the file specified by the first parameter (fileno) to the area
in memory specified by the second parameter (buf). The number of bytes of
data to be read is specified by the third parameter (count).

 When the end of the file is reached, only a number of bytes equal to or fewer
than count bytes can be read.

 The position for file reading/writing advances by the number of bytes read.

 When reading is performed successfully, the actual number of bytes read is
returned; if the read operation fails, -1 is returned.

Return value Normal: Actual number of bytes read
Error: -1

Parameters fileno File number of the file to be read
buf Memory area in which to store read data
count Number of bytes to read

219

int write(int fileno, char *buf, unsigned int count) Writes data

Description Writes data to the file indicated by the first parameter (fileno) from the
memory area indicated by the second parameter (buf). The number of bytes
to be written is indicated by the third parameter (count).

 If the device (disk etc.) of the file to be written is full, only a number of bytes
smaller than the count bytes can be written. It is recommended that, if the
number of bytes actually written is zero a certain number of times in
succession, the disk is judged to be full and an error (-1) is returned.

 The position for file reading/writing advances by the number of bytes
written. If writing is successful, the actual number of bytes written should be
returned; if the write operation fails, -1 should be returned.

Return value Normal: Actual number of bytes written
Error: -1

Parameters fileno File number of the file to which data is to be written
buf Memory area containing data for writing
count Number of bytes to write

long lseek(int fileno, long offset, int base) Set position in a file

Description Sets the position within the file, in byte units, for reading from and writing to
the file. The position within a new file should be calculated and set using the
following methods, depending on the third parameter (base).

(1) When base is 0: Set the position at offset bytes from the file beginning

(2) When base is 1: Set the position at the current position plus offset bytes

(3) When base is 2: Set the position at the file size plus offset bytes

When the file is a console, printer, or another interactive device, when the new offset is
negative, or when in cases (1) and (2) the file size is exceeded, an error occurs. When the
file position is located correctly, the new position for reading/writing is returned as an
offset from the file beginning; when the operation is not successful, -1 is returned.

Return value Normal: The new position for file reading/writing, as an offset in bytes
 from the file beginning
Error: -1

220

Parameters fileno File number of the target file
offset Position for reading/writing, as an offset (in bytes)
base Starting-point of the offset

char *sbrk(size_t size) Allocates memory areas

Description The size of the memory area to be allocated is passed as a parameter.

 When calling the sbrk routine continuously, memory areas should be
allocated in succession starting from lower addresses. If the memory area for
allocation is insufficient, an error should occur. When allocation is
successful, the address of the beginning of the allocated memory area is
returned; if unsuccessful, (char *) -1 is returned.

Return value Normal: Start address of allocated memory
Error: (char *) -1

Parameters size Size of area to be allocated

int *errno_addr(void) Acquires errno address

Description Returns the address of the error number of the current task.

 This routine is necessary when using a standard library, which was created
by the standard library configuration tool with the reent option specified.

Return value Address of the error number of the current task

int wait_sem (int semnum) Allocates semaphore

Description Waits and acquires the semaphore specified by semnum.

 When semaphore has been allocated normally, 1 is returned. Otherwise, 0 is
returned. This routine is necessary to use a standard library which was
created by the standard library configuration tool with the reent option
specified.

Return value Normal: 1
Error: 0

221

Parameter semnum Semaphore ID

int signal_sem (int semnum) Releases semaphore

Description Releases the semaphore specified by semnum.

 When semaphore has been released normally, 1 is returned. Otherwise, 0 is
returned. This routine is necessary to use a standard library which was
created by the standard library configuration tool with the reent option
specified.

Return value Normal: 1
Error: 0

Parameter semnum Semaphore ID

222

(c) Example of creation of a low-level interface routine
/***/

/* lowsrc.c: */

/*- -*/

/* H8S, H8/300 Series Simulator/Debugger Interface Routine */

/* - Only standard I/O files (stdin, stdout, stderr) are supported - */

/***/

#include <string.h>

/* file number */

#define STDIN 0 /* Standard input (console) */

#define STDOUT 1 /* Standard output (console) */

#define STDERR 2 /* Standard error output (console) */

#define FLMIN 0 /* Minimum file number */

#define FLMAX 3 /* Maximum number of files */

/* file flag */

#define O_RDONLY 0x0001 /* Read only */

#define O_WROMLY 0x0002 /* Write only */

#define O_RDWR 0x0004 /* Both read and Write */

/* special character code */

#define CR 0x0d /* Carriage return */

#define LF 0x0a /* Line feed */

/* Area size managed by sbrk */

#if _ _DATA_ADDRESS_SIZE_ _== 4

#define HEAPSIZE 2064

#else

#define HEAPSIZE 2056

#endif

/***/

/* Declaration of reference function */

/* Reference to assembly program in which the simulator debugger inputs or */

/* outputs characters to the console */

/***/

extern void charput(char); /* One character output */

extern char charget(void); /* One character input */

223

/***/

/* Definition of static variables: */

/* Definition of static variables used in low-level interface routines */

/***/

char flmod[FLMAX]; /* Open file mode specification area */

static union {

short dummy ; /* Dummy for 2-byte boundary */

char heap[HEAPSIZE]; /* Declaration of the area managed by sbrk */

} heap_area ;

static char *brk=(char)&heap_area; /* End address of area assigned by sbrk */

/*** */

/* open: file open */

/* Return value: File number (Pass) */

/* -1 (Failure) */

/*** */

extern open(char name, /* File name */

 int mode, /* File mode */

 int flg) /* Unused */

{

 /* Checks mode depending on file name and returns file numbers */

 if(strcmp(name,"stdin")==0){ /* Standard input file */

 if((mode&O_RDONLY)==0)

 return -1;

 flmod[STDIN]=mode;

 return STDIN;

 }

 else if(strcmp(name,"stdout")==0){ /* Standard output file */

 if((mode&O_WRONLY)==0)

 return -1;

 flmod[STDOUT]=mode;

 return STDOUT;

 }

 else if(strcmp(name,"stderr")==0){ /* Standard error file */

 if((mode&O_WRONLY)==0)

 return -1;

 flmod[STDERR]=mode;

 return STDERR;

 }

 else

 return -1; /* Error */

}

224

/*** */

/* close: File close */

/* Return value: 0 (Pass) */

/* -1 (Failure) */

/*** */

extern close(int fileno) /* File number */

{

 if(fileno<FLMIN || FLMAX<=fileno) /* File number range check */

 return -1;

 flmod[fileno]=0; /* File mode reset */
return 0;

}

/*** */

/* read: Data read */

/* Return value: Number of read characters (Pass) */

/* -1 (Failure) */

/*** */

extern read(int fileno, /* File number */

 char buf, /* Destination buffer address */

 int count) /* Number of read characters */

{

 int i;

 /* Checks mode according to file no. and stores each character in buffer */

 if(flmod[fileno]&O_RDONLY||flmod[fileno]&O_RDWR){

 for(i=count; i>0; i--){

 *buf=charget();

 if(*buf==CR) /* Line feed character replacement */

 *buf=LF;

 buf++;

 }

 return count;

 }

 else

 return -1;

}

225

/*** */

/* write: Data write */

/* Return value: Number of write characters (Pass) */

/* -1 (Failure) */

/*** */

extern write(int fileno, /* File number */

 char buf, /* Destination buffer address */

 int count) /* Number of write characters */

{

 int i;

 char c;

 /* Checks mode according to file no. and outputs each character */

 if(flmod[fileno]&O_WRONLY || flmod[fileno]&O_RDWR){

 for(i=count; i>0; i--){

 c=*buf++;

 charputc;

 }

 return count;

 }

 else

 return -1;

}

/*** */

/* lseek: Definition of file read/write position */

/* Return value: Offset from the top of file read/write position (Pass) */

/* -1 (Failure) */

/* (lseek is not supported in the console input/output) */

/*** */

extern long lseek(int fileno, /* File number */

 long offset, /* Read/write position */

 int base) /* Origin of offset */

{

 return -1L;

}

226

/*** */

/* sbrk: Data write */

/* Return value: Start address of the assigned area (Pass) */

/* -1 (Failure) */

/*** */

extern char sbrk(size_t size) /* Assigned area size */

{

 char *p ;

 if(brk+size>heap_area.heap+HEAPSIZE) /* Empty area size */

 return (char *)-1 ;

 p=brk ; /* Area assignment */

 brk += size ; /* End address update */

 return p ;

}

227

;-

; lowlvl.nor |

;-

; H8S, H8/300 Series Simulator/Debugger Interface Routine |

; -Input/output one character- |

;-

; H8SX, H8S/2600, H8S/2000, H8/300H normal mode |

; (cpu=H8SXN, 2600n, 2000n, 300hn) |

;-

 .CPU 2600N ; or H8SXN, 2000N, 300HN

 .EXPORT _charput

 .EXPORT _charget

SIM_IO: .EQU H'00FE ; Defines TRAP_ADDRESS

 .SECTION P,CODE,ALIGN=2

;-

; _charput: One character output |

; C program interface: charput(char) |

;-

_charput:

 MOV.B R0L,@IO_BUF ; Specifies parameter in buffer

 MOV.W #H'0102,R0 ; Specifies parameter and function code

 MOV.W #LWORD IO_BUF,R1

 MOV.W R1,@PARM ; Specifies I/O buffer address

 MOV.W #LWORD PARM,R1 ; Specifies parameter block address

 JSR @SIM_IO

 RTS

228

;-

; _charget: One character input |

; C program interface:char charget(void) |

;-

_charget:

 MOV.W #H'0101,R0 ; Specifies parameter and function code

 MOV.W #LWORD IO_BUF,R1

 MOV.W R1,@PARM ; Specifies I/O buffer address

 MOV.W #LWORD PARM,R1 ; Specifies parameter block address

 JSR @SIM_IO

 MOV.B @IO_BUF,R0L

 RTS

;-

; I/O buffer definition |

;-

 .SECTION B,DATA,ALIGN=2

PARM: .RES.W 1 ; Parameter block area

IO_BUF: .RES.B 1 ; I/O buffer area

 .END

229

;-

; lowlvl.adv |

;-

; H8S, H8/300 Series Simulator/Debugger Interface Routine |

; -Input/output one character- |

;-

; H8SX, H8S/2600, H8S/2000, and H8/300H in advanced mode (20|24-bit address) |

; (cpu=H8SXA:20|24, 2600a:20|24, 2000a:20|24, 300ha) |

;-

 .CPU 2600A ; or H8SXA, 2000A, 300HA

 .EXPORT _charput

 .EXPORT _charget

SIM_IO: .EQU H'01FE ; Defines TRAP_ADDRESS

 .SECTION P,CODE,ALIGN=2

;-

; _charput: One character output |

; C program interface: charput(char) |

;-

_charput:

 MOV.B R0L,@IO_BUF ; Specifies parameter in buffer

 MOV.W #H'0112,R0 ; Specifies parameter and function code

 MOV.L #IO_BUF,ER1

 MOV.L ER1,@PARM ; Specifies I/O buffer address

 MOV.L #PARM,ER1 ; Specifies parameter block address

 JSR @SIM_IO

 RTS

230

;-

; _charget: One character input |

; C program interface: char charget(void) |

;-

_charget:

 MOV.W #H'0111,R0 ; Specifies parameter and function code

 MOV.L #IO_BUF,ER1

 MOV.L ER1,@PARM ; Specifies I/O buffer address

 MOV.L #PARM,ER1 ; Specifies parameter block address

 JSR @SIM_IO

 MOV.B @IO_BUF,R0L

 RTS

;-

; I/O buffer definition |

;-

 .SECTION B,DATA,ALIGN=2

PARM: .RES.L 1 ; Parameter block area

IO_BUF: .RES.B 1 ; I/O buffer area

 .END

231

;-

; lowlvl.mid |

;-

; H8S, H8/300 Series Simulator/Debugger Interface Routine |

; Input/Output one character |

;-

; H8SX Middle mode, H8SX Advanced/Maximum mode(16-bit data address) |

; (cpu=H8SXM, cpu=H8SXA ptr16, cpu=H8SXX ptr16) |

;-

 .CPU H8SXM

 .EXPORT _charput

 .EXPORT _charget

SIM_IO: .EQU H'01FE ; Specify TRAP_ADDRESS

 .SECTION P, CODE, ALIGN=2

;-

; _charput: One character output |

; C program interface: charput(char) |

;-

_charput:

 MOV.B R0L,@IO_BUF ; Set parameter to buffer

 MOV.W #H'0102,R0 ; Set parameter and function code

 MOV.W #LWORD IO_BUF,R1

 MOV.W R1,@PARM ; Set I/O buffer address

 MOV.W #LWORD PARM,R1 ; Set parameter block address

 JSR @SIM_IO

 RTS

232

;-

; _charget: One character input |

; C program interface: char charget(void) |

;-

_charget:

 MOV.W #H'0101,R0 ; Set parameter and function code

 MOV.W #LWORD IO_BUF,R1

 MOV.W R1,@PARM ; Set I/O buffer address

 MOV.W #LWORD PARM,R1 ; Set parameter block address

 JSR @SIM_IO

 MOV.B @IO_BUF,R0L

 RTS

;-

; Definition of I/O buffer |

;-

 .SECTION B,DATA,ALIGN=2

PARM: .RES.W 1 ; Parameter block area

IO_BUF: .RES.B 1 ; I/O buffer area

 .END

233

;-

; lowlvl.max |

;-

; H8S, H8/300 Series Simulator/Debugger Interface Routine |

; Input/Output one character |

;-

; H8SX Maximum mode, H8SX,H8S/2600,H8S/2000 Advanced mode(28|32-bit address)|

; (cpu=H8SXX, H8SXA:28|32, 2600a:28|32, 2000a:28|32) |

;-

 .CPU H8SXX

 .EXPORT _charput

 .EXPORT _charget

SIM_IO: .EQU H'01FE ; Specify TRAP_ADDRESS

 .SECTION P, CODE, ALIGN=2

;-

; _charput: One character output |

; C program interface: charput(char) |

;-

_charput:

 MOV.B R0L,@IO_BUF ; Set parameter to buffer

 MOV.W #H'0122,R0 ; Set parameter and function code

 MOV.L IO_BUF,ER1

 MOV.L ER1,@PARM ; Set I/O buffer address

 MOV.L #PARM,ER1 ; Set parameter block address

 JSR @SIM_IO

 RTS

234

;-

; _charget: One character input |

; C program interface: char charget(void) |

;-

_charget:

 MOV.W #H'0121,R0 ; Set parameter and function code

 MOV.L IO_BUF,ER1

 MOV.L ER1,@PARM ; Set I/O buffer address

 MOV.L #PARM,ER1 ; Set parameter block address

 JSR @SIM_IO

 MOV.B @IO_BUF,R0L

 RTS

;-

; Definition of I/O buffer |

;-

 .SECTION B,DATA,ALIGN=2

PARM: .RES.L 1 ; Parameter block area

IO_BUF: .RES.B 1 ; I/O buffer area

 .END

235

;-

; lowlvl.reg |

;-

; H8S, H8/300 Series Simulator/Debugger Interface Routine |

; -Input/output one character- |

;-

; H8/300 (cpu=300) |

;-

 .CPU 300

 .EXPORT _charput

 .EXPORT _charget

SIM_IO: .EQU H'00FE ; Defines TRAP_ADDRESS

 .SECTION P,CODE,ALIGN=2

;-

; _charput: One character output |

; C program interface: charput(char) |

;-

_charput:

 MOV.B R0L,@IO_BUF ; Specifies parameter in buffer

 MOV.W #H'0102,R0 ; Specifies parameter and function code

 MOV.W #IO_BUF,R1

 MOV.W R1,@PARM ; Specifies I/O buffer address

 MOV.W #PARM,R1 ; Specifies parameter block address

 JSR @SIM_IO

 RTS

236

;-

; _charget: One character input |

; C program interface: char charget(void) |

;-

_charget:

 MOV.W #H'0101,R0 ; Specifies parameter and function code

 MOV.W #IO_BUF,R1

 MOV.W R1,@PARM ; Specifies I/O buffer address

 MOV.W #PARM,R1 ; Specifies parameter block address

 JSR @SIM_IO

 MOV.B @IO_BUF,R0L

 RTS

;-

; I/O buffer definition |

;-

 .SECTION B,DATA,ALIGN=2

PARM: .RES.W 1 ; Parameter block area

IO_BUF: .RES.B 1 ; I/O buffer area

 .END

237

(d) Example of low-level interface routines for reentrant library

An example of a low-level interface routine for reentrant library is shown below. This
routine is necessary when using a standard library, which was created by the standard
library generator with the reent option specified.

When an error is returned from the wait_sem function or signal_sem function, set errno as
follows to return from the library function.

Function errno Description

EMALRESM Failed to allocate semaphore resources for malloc

ETOKRESM Failed to allocate semaphore resources for strtok

wait_sem

EIOBRESM Failed to allocate semaphore resources for iob

EMALFRSM Failed to release semaphore resources for malloc

ETOKFRSM Failed to release semaphore resources for strtok

signal_sem

EIOBFRSM Failed to release semaphore resources for iob

When an interrupt with a priority level higher than the current level is generated after
semaphores have been allocated, dead locks will occur if semaphores are allocated again.
Therefore, be careful for processes that share resources because they might be nested by
interrupts.

238

#define MALLOC_SEM 1 /* Semaphore No. for malloc */

#define STRTOK_SEM 2 /* Semaphore No. for strtok */

#define FILE_TBL_SEM 3 /* Semaphore No. for _iob */

#define SEMSIZE 4

#define TRUE 1

#define FALSE 0

#define OK 1

#define NG 0

extern int *errno_addr(void);

extern int wait_sem(int);

extern int signal_sem(int);

int sem_errno;

int force_fail_signal_sem = FALSE;

static int semaphore[SEMSIZE];

/***/

/* errno_addr:Acquisition of errno address */

/* Return address: errno address */

/***/

int *errno_addr(void)

{

 /* Return the errno address of the current task */

 return (&sem_errno);

}

239

/***/

/* wait_sem: Acquires the specified number of semaphores */

/* Return value: OK(=1) (Normal) */

/* NG(=0) (Error) */

/***/

int wait_sem(int semnum) /* Semaphore ID */

{

 if((0 <= semnum) && (semnum < SEMSIZE)) {

 if(semaphore[semnum] == FALSE) {

 semaphore[semnum] = TRUE;

 return(OK);

 }

 }

 return(NG);

}

/***/

/* signal_sem: Releases the specified number of semaphores */

/* Return value: OK(=1) (Normal) */

/* NG(=0) (Error) */

/***/

int signal_sem(int semnum) /* Semaphore ID */

{

 if(!force_fail_signal_sem) {

 if((0 <= semnum) && (semnum < SEMSIZE)) {

 if(semaphore[semnum] == TRUE) {

 semaphore[semnum] = FALSE;

 return(OK);

 }

 }

 }

 return(NG);

}

240

(8) Termination processing routines

(a) Example of creation of a routine for termination processing registration and execution
(atexit)

The method for creation of the library function atexit to register termination processing is
described.

The atexit function registers, in a table for termination processing, a function address
passed as an parameter. If the number of functions registered exceeds the limit (in this case,
the number that can be registered is assumed to be 32), or if an attempt is made to register
the same function twice, NULL is returned. Otherwise, a value other than NULL (in this
case, the address of the registered function) is returned.

A program example is shown below.

#include <stdlib.h>
typedef void *atexit_t ;

int _atexit_count=0 ;

atexit_t (*_atexit_buf[32])(void) ;

#ifdef _ _cplusplus

extern "C"

#endif
atexit_t atexit(atexit_t (*f)(void))
{
 int i;

 for(i=0; i<_atexit_count ; i++) // Check whether the function has
 if(_atexit_buf[i]==f) // already been registered
 return NULL ;
 if (_atexit_count==32) // Check whether the limit for
 return NULL ; // registered functions is exceeded
 else {
 _ atexit_buf[_atexit_count++]=f;// Register the function address
 return f;
 }
}

241

(b) Example of creation of a routine for program termination (exit)

The method for creation of an exit library function for program termination is described.
Program termination processing will differ among user systems; refer to the program
example below when creating a termination procedure according to the specifications of
the user system.

The exit function performs termination processing for a program according to the
termination code for the program passed as a parameter, and returns to the environment in
which the program was started. Here the termination code is set to an external variable, and
execution returned to the environment saved by the setjmp function immediately before the
main function was called. In order to return to the environment prior to program execution,
the following callmain function should be created, and instead of calling the function main
from the PowerON_Reset initial setting function, the callmain function should be called.

A program example is shown below.

242

#include <setjmp.h>

#include <stddef.h>

typedef void * atexit_t ;

extern int _atexit_count ;

extern atexit_t (*_atexit_buf[32])(void) ;

#ifdef _ _cplusplus

extern "C"

#endif

void _CLOSEALL(void);

int main(void);

extern jmp_buf _init_env ;

int _exit_code ;

#ifdef _ _cplusplus

extern "C"

#endif

void exit(int code)

{

 int i;

 _exit_code=code ; // Set the return code in _exit_code
 for(i=_atexit_count-1; i>=0; i--) // Execute in sequence the functions registered by
 (*_atexit_buf[i])(); // the atexit function
 _CLOSEALL(); // Close all open functions
 longjmp(_init_env, 1) ; // Return to the environment saved by setjmp

#ifdef _ _cplusplus

extern "C"

#endif

void callmain(void)

{

 // Save the current environment using setjmp,
 // call the main function
 if(!setjmp(_init_env))

 _exit_code=main(); // On returning from the exit function,
 // terminate processing

}

243

#include <stdio.h>

#ifdef _ _cplusplus

extern "C"

#endif
void _CLOSEALL(void);

#ifdef _ _cplusplus

extern "C"

#endif
void abort(void)
{
 printf(“program aborted !!\n”); //Output message
 _CLOSEALL(); //Close all files
 while(1) ; //Begin endless loop
}

(c) Example of creation of an abnormal termination (abort) routine
On abnormal termination, execute the abnormal terminaton procedure according to the user
system.

When using the C++ program, the abort function is called in the following cases:

• When correct exception processing was not performed

• When a pure virtual function is called

• When dynamic_cast failed

• When typeid failed

• When information could not be obtained when the class array was deleted

• When contradiction occurred when destructor call information for class object was
called

Below is an example of a program which outputs a message to the standard output device, then
closes all files and begins an endless loop to wait for reset.

244

9.3 Linking C/C++ Programs and Assembly Programs

Through its support for #pragma statements, keywords and other extended features as well as
functions, this compiler provides all functions necessary for programs of embedded use equipment
via the C and C++ languages.

However, in cases where there are strict demands on performance, such as when hardware
timing is required or when the size of memory is limited, it may be necessary to write code in
assembly language integrated into the C/C++ program.

Keep the following in mind when joining C/C++ programs and assembly programs.

• Method for mutual referencing of external names

• Interface for function calling

9.3.1 Method for Mutual Referencing of External Names

External names which have been declared in a C/C++ program can be referenced and updated in
both directions between the C/C++ program and an assembly program. The compiler treats the
following items as external names.

• Global variables which are not static storage classes (C/C++ programs)

• Variable names declared as extern storage classes (C/C++ programs)

• Function names not specified as static memory classes (C programs)

• Non-member, non-inline function names not specified as static memory classes (C++
programs)

• Non-inline member function names (C++ programs)

• Static data member names (C++ programs)

245

(1) Method for referencing assembly program external names in C/C++ programs

In assembly programs, the .EXPORT directive is used to declare external symbol names
(preceded by an underscore (_)).

In C/C++ programs, symbol names (not preceded by an underscore) are declared using the
extern keyword.

Assembly program (defines the name) C/C++ program (references the name)

(2) Method for referencing C/C++ program external names (variables and C functions) from
assembly programs

A C/C++ program can define external variable names (without an underscore (_)).

In an assembly program, the .IMPORT directive is used to reference an external name
(preceded by an underscore).

C/C++ program (defines the name) Assembly program (references the name)

(3) Method for referencing C++ program external names (functions) from assembly programs

By declaring functions to be referenced from an assembly program using the extern "C"
keyword, the function can be referenced using the same rules as in (2) above. However,
functions declared using extern "C" cannot be overloaded.

C++ program (defines the name) Assembly program (references the name)

 .EXPORT _a,_b

 .SECTION D,DATA,ALIGN=2

_a: .DATA.W 1

_b: .DATA.W 1

 .END

extern int a,b;

f()

{

 a+=b;

}

char a,b;

.IMPORT _a,_b

.SECTION P,CODE,ALIGN=2
MOV.B @_a,R5L
MOV.B R5L,@_b
RTS
.END

extern "C"
int f(int a)
{
 …
}

.IMPORT _f

.SECTION P,CODE,ALIGN=2
 :
JSR @_f
 :
.END

246

9.3.2 Function Calling Interface

When calling functions in both directions between a C/C++ program and an assembly program,
four collections of rules, explained below, must be followed on the assembly program side.

• Rules concerning the stack pointer

• Rules concerning allocation and release of stack frames

• Rules concerning registers

• Rules concerning settings and referencing parameters and return values

(1) Rules concerning the stack pointer

No valid data must be stored in the stack area below (in the direction toward address 0) the
address indicated by the stack pointer. The data may become corrupted by interrupt processing.

(2) Rules concerning allocation and release of stack frames

At the time of a function call (after execution of a JSR or BSR instruction), the stack pointer
points to a return PC area. The calling function allocates area above this area and sets data.

When the function returns, the return PC area is released by the called function. This is
normally performed using the RTS instruction. Areas at addresses above this (return value
addresses and parameter areas) are released by the calling function.

SP
Return PC

Return value
address

Parameter area

Immediately after functin call

Lower address

0

Upper address

SP
Return value
address

Parameter area

Immediately afer returning
from a function

Lower address

0

Upper address

Figure 9.8 Rule for Allocation and Release of Stack Frames

247

(3) Rules concerning registers

There are registers which guarantee a value to remain the same before and after a function call,
and registers which do not. Rules for guaranteeing register values for different CPU types
appear in table 9.5.

Table 9.5 Rules for Guaranteeing Register Values Before and After Function Calls

CPU Type and Registers

Type

Number of
Registers
for Storing
Parameters

H8SX,
H8S/2600,
H8S/2000,
H8/300H

H8/300

Important Information When
Programming

2 ER0, ER1 R0, R1 Registers which
do not
guarantee
values
(caller-save)

3 ER0 to ER2 R0 to R2

If there is a valid value in a
register when a function is
called, the calling function saves
the value; the called function
can use the register without
saving its contents

2 ER2 to ER6 R2 to R6 Registers which
do guarantee
values
(callee-save)

3 ER3 to ER6 R3 to R6

The contents of the registers
used within the function are
saved, and are restored on
return

Note: The number of registers used to store parameters can be set using the regparam option or
_ _regparam2, _ _regparam3.

248

Below are specific examples of rules for guaranteeing register values, in the case of the
H8S/2600 advanced mode.

(a) Calling an assembly program subroutine from a C/C++ program

Assembly program (called function)

C/C++ program (calling function)

(b) Calling a C program subroutine from an assembly program
C program (called function)

Assembly program (calling function)

#ifdef _ _cplusplus

extern “C”

#endif

void sub(void);

void f(void)

{

 sub();

}

void sub(void)
{
 …
}

 .IMPORT _sub
 .SECTION P,CODE,ALIGN=2
 :
 MOV.L ER1,@(4,SP)
 MOV.L ER0,ER6
 JSR @_sub
 :
 RTS
 .END

If there are valid values in registers
ER0, ER1, they are saved by the
caller to unused registers or to the
stack

Function name referenced with _
prepended

 .EXPORT _sub

 .SECTION P,CODE,ALIGN=2

_sub: STM.L (ER4-ER6),@-SP

 SUB.L #10,SP

 :

 ADD.L #10,SP

 LDM.L @SP+,(ER4-ER6)

 RTS

 .END

Contents of registers to be used within
the function are saved by the callee
Function body (ER0, ER1 can be used
without saving)
Saved register contents restored

249

 (c) Calling a C++ program subroutine from an assembly program

C++ program (called function)

Assembly program (calling function)

 If there are valid values in registers ER0,
 ER1, they are saved by the caller to unused
registers or to resisters or to the stack

Note: Functions declared using extern "C" cannot be overloaded.

(4) Rules concerning settings and referencing parameters and return values

Below the method for setting and referencing parameters and return values is explained. Rules
for parameters and return values differ depending on whether, in the function declaration, the
type of each parameter and of the return value has been declared explicitly or not. In order to
make explicit declarations of the types of parameters and the return value, a function prototype
declaration is used.

In the following explanation, first general rules for parameters and return values are described;
then, assignment of parameters and the location for setting the return value are discussed.

(a) General rules for parameters and return values

• Passing parameters
The values of parameters must always be copied to the area allocated to parameters
before calling the function. The calling function does not reference the area allocated to
parameters after return, and so the called function can change the parameter values with
no direct effect on processing by the calling function.

• Rules for type conversion:
When passing parameters or returning a value, in some cases automatic type
conversions are performed. Below the rules for these type conversions are explained.

 Type conversion of return values:

Return values are converted into the type returned by the function.

extern "C"
void sub(void)
{
 …
}

 .IMPORT _sub
 .SECTION P,CODE,ALIGN=2
 :
 MOV.L ER1,@(4,SP)
 MOV.L ER0,ER6
 JSR @_sub
 :
 RTS
 .END

250

 Type conversion of parameters for which a type is declared:

Parameters for which a type has been declared using a prototype declaration
are converted to the declared type.

 Type conversion of parameters for which no type is declared:

Type conversions of parameters for which no type has been declared using a
prototype declaration are performed according to the following rules.

• Parameters with the char and unsigned char types are converted to the int type.

• Parameters with the float type are converted to the double type.

• All types other than the above are not converted.

Example:

(1)

The return value is converted to long.

(2)

1.0 is converted to int because int type is declared
for the parameter.

c is converted to int because no type is declared
for the parameter.

251

Caution

When parameter types are not declared using a prototype declaration, if the same type is not
specified by both the calling and the called function so as to ensure that the correct parameters are

passed, correct operation is not guaranteed.

In the example of a case in which correct operation is not guaranteed, the parameter x is
converted to the double type by the function main because function f has no parameter
prototype declaration. On the other hand, the parameter is declared as the float type by the
function f. Hence the parameter cannot be passed correctly. Either the parameter type
should be declared using a prototype declaration, or else the parameter declaration for
function f should be changed to the double type.

In the example of correct type specification, the parameter type is declared using a
prototype declaration.

(b) Area for allocation of parameters

Parameters are allocated to an area on the stack in some cases, and to registers in others.

Areas for allocation of parameters by object type are shown in table 9.6, and general rules
for areas for allocation of parameters are indicated in figure 9.9.

The “this” pointer of nonstatic function members in C++ programs is allocated to R0 or
ER0.

252

Figure 9.9 Memory Area for Allocation of Parameters

253

Table 9.6 General Rules for Memory for Allocation of Parameters

Rules for Allocation

Parameters for Allocation to Registers

CPU Type

Number of
Registers
for
Parameter
Storage

Parameter
Storage
Registers

Parameter Types for
Storage

Parameters for
Allocation to the
Stack

2 ER0, ER1 H8SX

H8S/2600

H8S/2000

H8/300H

3 ER0, ER1, ER2

char, unsigned char,
short, unsigned short,
int, unsigned int, long,
unsigned long, float,
structures (4 bytes or
less)*4, pointers,
references, pointers to
data members

2 R0, R1 H8/300

3 R0, R1, R2

char, unsigned char,
short, unsigned short,
int, unsigned int, long*3,
unsigned long*3, float*3,
structures (2 bytes or
less)*4, structures (4
bytes or less)*3*4,
pointers, references,
pointers to data
members

[1] Parameter type
is other than a
type allocable to
registers

[2] Function is
declared by a
prototype
declaration as a
function with a
variable number
of parameters*2

[3] Parameters
which cannot be
allocated to
registers because
of the large
number of
parameters

Notes: 1. The number of registers for parameter storage can be specified using the regparam
option or _ _regparam2 and _ _regparam3.

 2. When a function is declared using a prototype declaration as having a variable number
of parameters, parameters in the … part, and the parameter immediately preceding the
… part, are allocated on the stack.

Example: int f2(int, int, ...);
 f2(x,y,z); y, z are allocated to the stack

 3. When the longreg option is specified.
4 When the structreg option is specified.

(c) Parameter allocation

• Allocation of registers for parameter storage
Allocation of registers for parameter storage is performed in the order of parameter
declaration in the source program, starting from the LSB side of the lowest-numbered
register. An example of allocation of registers for parameter storage appears in
figure 9.10.

254

b

↑MSB LSB↑

Space a

E0 R0H R0L

f(char a,int b)
{
 .
 .
}

Figure 9.10 Example of Allocation of Registers for Parameter Storage (H8S/2600)

• Allocation to parameter area on the stack
Parameters are allocated to areas on the stack for parameters in the order specified in
the source program, starting from lowest addresses.

Caution

When specifying parameters that are structures, unions or classes, 2-byte boundary alignment is

used regardless of the normal byte alignment for that type, and an area with an even number of
bytes is used. This is because in the H8SX, AE5, H8S, H8/300H and H8/300 series, the stack
pointer changes in 2-byte units.

In section 9.3.3, Examples of Parameter Assignment, specific examples of parameter
allocation for different CPU/operating modes are described.

(d) Location for setting return values

Depending on the type of the value returned by a function, the return value may be set in
either a register or in memory. The relation between the return value type and the location
for storage is described in table 9.7. When setting a function return value in memory, the
return value is set in the area indicated by the return value address. The caller function
secures an area for the return value, the area for parameters, and the area to set the address
of the return value, calls the function (cf. figure 9.11).

If the return value of a function is of type void, no return value is set.

255

Table 9.7 Return Value Types and Location in Memory

Location for Setting Return Value

Return Value Type

H8SX, AE5, H8S/2600,
H8S/2000, H8/300H

H8/300

char, unsigned char Register (R0L) Register (R0L)

short, unsigned short, int,
unsigned int

Register (R0) Register (R0)

Ponter to function Register

 Normal mode: (R0)

 The other mode: (ER0)

Register (R0)

Pointer to data, reference,
pointer to a data member

Register

 Normal/Middle mode: (R0)

 Advanced/Maximum mode
 with ptr16 option or
 _ _ptr16 keyword: (R0)*3

Advanced/Maximum mode
 without ptr16 option and
 _ _ptr16 keyword: (ER0)

Register (R0)

long, unsigned long, float Register (ER0) Area for setting return values
(memory)

Register (R0, R1)*1

Structures of 2 bytes or less Area for setting return values
(memory)

Register (R0)*2

Area for setting return values
(memory)

Register (R0)*2

Structures of 3 or 4 bytes Area for setting return values
(memory)

Register (ER0)*2

Area for setting return values
(memory)

Register (R0, R1)*1*2

double, long double, structure,
union, class, pointer to a
function member

Area for setting return values
(memory)

Area for setting return values
(memory)

Notes: 1. When the longreg option is specified.
2. When the structreg option is specified.
3. The ptr16 option and the _ _ptr16 keyword are valid only with the H8SX and H8S CPU

256

Return value
address area

Return value setting
area
(allocated by the
caller side)

Parameter
area

Figure 9.11 Area for Setting Return Values in Memory

257

9.3.3 Examples of Parameter Assignment

(1) For the H8SX, H8S/2600, H8S/2000, H8/300H (cpu=H8SXN, cpu=H8SXM, cpu=H8SXA,
cpu=H8SXX, cpu=2600a, cpu=2600n, cpu=2000a, cpu=2000n, cpu=300ha, cpu=300hn)

Example 1: Parameters of types for passing to registers are assigned, in the order of
declaration, to registers ER0 and ER1*1.

Note: When there are three registers for storing parameters, the registers are ER0, ER1, and ER2.

258

Example 2: Parameters which cannot be assigned to registers are assigned to the stack. When
an parameter of type char is assigned to the parameter area on the stack, the lower bytes are
invalid.

(Case in which there are two registers for parameter storage)

int f(int,long,char);
 :
 f(1,2,3);
 :

R0

ER1

1

2

Parameter area
(stack)

Unused byte

3

Lower address

Upper address

2 bytes

Example 3: Parameters of types which cannot be assigned to registers are assigned to the stack.

struct s{long x,y;)a;

int f(char,struct s,char);

8 bytes

a. x

Parameter area
(Stack)

a. y

Lower address

Upper address

:

f(1,a,3);

:

1R0L

3R0H

259

Example 4: When a function is declared as having a variable number of parameters using a
prototype declaration, a parameter without a corresponding type and the immediately
preceding parameter are assigned to the stack in the order of declaration.

8 bytes1.0

Parameter area (stack)

2

3

Lower address

Upper address

int f(double,int,...);

:

f(1.0,2,3);

:

2

2 bytes

4 bytes

2 bytes

1

Parameter area (stack)

2

3

Lower address

Upper address

int f(long,...);

:

f(1,2,3);

:

1

2 bytes

2 bytes

260

Example 5: When there is no prototype declaration in a C program, char is expanded to the int
type, and float is expanded to the double type for passing.

8 bytes

R0 a

b

Lower address

Upper address

int f();

char a;

float b;
:

f(a,b);

:

Parameter area
(Stack)

Example 6: The pointer-to-data type and the reference type of C++ are assigned to 2-byte
areas in normal or middle mode and in advanced or maximum mode with ptr16 option or
 _ _ptr16 keyword, and to 4-byte areas in advanced or maximum mode without ptr16 option
and _ _ptr16 keyword. Note that ptr16 option and _ _ptr16 keyword is effective only with
H8SX and H8S.

int a, b;
int *f(int *, int &);

 :

 f(&a, b);

 :

R0

ER0

&a

&a

Normal mode
Middle mode
Advanced mode with ptr16 option
Maximum mode with ptr16 option

Advanced mode without ptr16 option
Maximum mode without ptr16 option

E0 &b

ER1 &b

int g(int _ _ptr16 *);

 :

 g(&a);

 :

R0 &a

Advanced mode with _ _ptr16 keyword
Maximum mode with _ _ ptr16 keyword

261

Example 7: The return value of pointer-to-data type are assigned to 2-byte areas in normal or
middle mode and in advanced or maximum mode with ptr16 option or _ _ptr16 keyword, and
to 4-byte areas in advanced or maximum mode without ptr16 option and _ _ptr16 keyword.
Note that ptr16 option and _ _ptr16 keyword is effective only with H8SX and H8S.

int *f(void);
int *p;

 :

 p = f();

 :

R0

ER0

f

f

Normal mode
Middle mode
Advanced mode with ptr16 option
Maximum mode with ptr16 option

Advanced mode without ptr16 option
Maximum mode without ptr16 option

int _ _ptr16 *g(void);
int _ _ptr16 *q;

 :

 q = g();

 :

R0 g

Advanced mode with _ _ptr16 keyword
Maximum mode with _ _ ptr16 keyword

262

Example 8: When the type returned by a function exceeds 4 bytes, or when it is a structure
(when structreg is not specified, or when the structure exceeds 4 bytes), the return value
address is set immediately before the parameter area. Also, when a structure size is an odd
number of bytes, one unused byte of memory area results.

struct s{char x,y,z;}a,b;
float f(struct s);
 :
 f(a);
 :
 :

Return value
address

2 bytes

Parameter area
(4 bytes)

Lower address

Upper address

a. x

a. y

a. z

Unused area

Return value
setting area

(4 bytes)

Return value
address

4 bytes

Parameter area
(4 bytes)

Lower address

Upper address

a. x

a. y

a. z

Unused area

Return value
setting area

(4 bytes)

Normal mode
Middle mode
Advanced mode with ptr16 option
Maximum mode with ptr16 option
 (stack)

Advanced mode without ptr16 option
Maximum mode without ptr16 option
 (stack)

263

(2) For the H8/300 (cpu=300)

Example 1: Parameters of types for passing to registers are assigned, in the order of
declaration, to registers R0 and R1*1.

2R1

3R0H

R0L 1

1R0L

2R0H

Note: When there are three registers for storing parameters, the registers are R0, R1, and R2.

Example 2: Parameters which cannot be assigned to registers are assigned to the stack. (Case
in which there are two registers for parameter storage)

int f(char,int,int,char);
 :
 f(1,2,3,4);
 :

R0L

R1

1

2

R0H 4

3

Parameter area
(stack)

2 bytes

Example 3: Parameters of types which cannot be assigned to registers are assigned to the stack.

int f(char,long,char);
 :
 f(1,2,3);
 :

R0L 1

R0H 3

2

Parameter area
(stack)

4 bytes

264

Example 4: When the longreg option is specified, four-byte data is assigned to registers R0
and R1.

R0

R1 2 bytes2

Parameter area
(Stack)

1
Upper2 bytes

Lower 2 bytes

Example 5: When the structreg option is specified, structures of 2 bytes or less are assigned
to registers.

R0L

str.b

str.a

R0H

Example 6: When a function is declared as having a variable number of parameters using a
prototype declaration, an parameter without a corresponding type and the immediately
preceding parameter are assigned to the stack in the order of declaration.

2 bytes

2 bytes

1

Parameter area
(Stack)

2

Lower address

Upper address

int f(int,...);

:

f(1,2);

:

1

4 bytes

2 bytes

1

Parameter area
(Stack)

2

3

Lower address

Upper address

int f(long,int,...);

:

f(1,2,3);

:

2

2 bytes

265

Example 7: When an parameter of type char is assigned to the parameter area on the stack, the
lower bytes are invalid.

2 bytes

Parameter area
(Stack)

Invalid byte

1

Lower address

Upper address

int f(char,...);

:

f(1);

:

Example 8: When there is no prototype declaration in a C program, char is expanded to the int
type, and float is expanded to the double type for passing.

8 bytes

R0 a

b

Lower address

Upper address

Parameter area
(Stack)

266

Example 9: When the type returned by a function exceeds 2 bytes, the return value address is
set immediately before the parameter area. Also, when a structure size is an odd number of
bytes, one unused byte of memory area results.

Parameter
area (4 bytes)

2 bytes

Stack

Unused area
a. z
a. y
a. x

Return value
address

Area for
setting return
values (4 bytes)

Lower address

Upper address

Example 10: When the longreg option is specified, if the type returned by a function exceeds
2 bytes, the return value is assigned to registers R0 and R1.

Parameter area (4 bytes)

Stack

Unused area
a. z
a. y
a. x

Lower address

Upper address

R0

Lower 16 bits of c

Upper 16 bits of c

R1

Example 11: When the structreg and longreg options are specified, if the type returned by a
function is a structure of 4 bytes or less, the return value is assigned to registers R0 and R1.

b.xR0L

b.yR0H

b.zR1L

267

9.3.4 Using the Registers and Stack Area

(1) For the H8SX advanced mode and maximum mode (cpu=H8SXA, cpu=H8SXX)

Parameter area

Stack area

Area for
saving register
contents
Return PC

Local variables
and temporary
area

Lower address

Upper address

4 bytes

4 bytes

ER0

ER0 to ER6: For storage of variables
 and temporary data
 (intermediate calculation results)

ER1
ER2
ER3
ER4
ER5
ER6

ER7 SP

For return value storage

P
aram

eter storage area*

→
S

tack fram
e

Note
*When there are three registers for parameter storage, ER2 is also
included in parameter storage area.

Area for saving parameters

Return value address

Figure 9.12 Using Registers and Stack Area (cpu=H8SXA*1, cpu=H8SXX*1)

Note: 1. Without the ptr16 option.

(2) For the H8SX middle mode, advanced mode with ptr16, maximum mode with ptr16

(cpu=H8SXM, cpu=H8SXA with ptr16, CPU=H8SXX with ptr16)

Parameter area

Stack area

Area for
saving register
contents
Return PC

Local variables
and temporary
area

Lower address

Upper address

4 bytes

2 bytes

ER0

ER0 to ER6: For storage of variables
 and temporary data
 (intermediate calculation results)

ER1
ER2
ER3
ER4
ER5
ER6

ER7 SP

For return value storage

P
aram

eter storage area*

→

S
tack fram

e

Note
*When there are three registers for parameter storage, ER2 is also
included in parameter storage area.

Area for saving parameters

Return value address

Figure 9.13 Using Registers and Stack Area (cpu=H8SXM, cpu=H8SXA*2, cpu=H8SXX*2)

Note: 2. With the ptr16 option.

268

(3) For the H8SX normal mode (cpu=H8SXN)

Parameter area

Stack area

Area for
saving register
contents
Return address

Local variables
and temporary
area

Lower address

Upper address

2 bytes

2 bytes

ER0

ER0 to ER6: For storage of variables
 and temporary data
 (intermediate calculation results)

ER1
ER2
ER3
ER4
ER5
ER6

ER7 SP

F
or return value storage

P
aram

eter storage area*

S
tack fram

e

→

Unfixed

Note
*When there are three registers for parameter storage, ER2 is also included in
parameter storage area.

Area for saving parameters

Return value address

Figure 9.14 Using Registers and Stack Area (cpu=H8SXN)

269

(4) For the H8S/2600, H8S/2000 and H8/300H advanced mode (cpu=2600a, cpu=2000a,
cpu=300ha)

Parameter area

Stack area

Area for
saving register
contents

Previous FP value

Return PC

Local variables
and temporary
area

Lower address

Upper address

4 bytes

4 bytes

4 bytes

ER0

ER0 to ER5: For storage of variables
 and temporary data
 (intermediate calculation results)

Note
*When there are three registers for parameter storage, ER2 is also included
in parameter storage area.

ER1
ER2
ER3
ER4
ER5

ER6 FP
ER7 SP

F
or return value storage

P
aram

eter storage area*

S
tack fram

e

→

Area for saving parameters

Return value address

Figure 9.15 Using Registers and Stack Area wthout Optimization (cpu=2600a, cpu=2000a,
cpu=300ha)

Parameter area

Stack area

Area for
saving register
contents
Return PC

Local variables
and temporary
area

Lower address

Upper address

4 bytes

4 bytes

ER0

ER0 to ER6: For storage of variables
 and temporary data
 (intermediate calculation results)

ER1
ER2
ER3
ER4
ER5
ER6

ER7 SP

For return value storage

P
aram

eter storage area*

→

S
tack fram

e

Note
*When there are three registers for parameter storage, ER2 is also
included in parameter storage area.

Area for saving parameters

Return value address

Figure 9.16 Using Registers and Stack Area with Optimization (cpu=2600a, cpu=2000a,
cpu=300ha)

270

(5) For the H8S/2600, H8S/2000, and H8/300H normal mode (cpu=2600n, cpu=2000n,
cpu=300hn)

Parameter area

Area for
saving register
contents
Previous FP value

Return PC

Local variables
and temporary
area

Lower address

Upper address

2 bytes

2 bytes

2 bytes

ER0

ER0 to ER5: For storage of variables
 and temporary data
 (intermediate calculation results)

ER1
ER2
ER3
ER4
ER5

ER6 FP
ER7 SP

Unfixed
Unfixed

For return value storage

P
aram

eter storage area*

S
tack fram

e
→

Stack area

Note
*When there are three registers for parameter storage, ER2 is also included
in parameter storage area.

Area for saving parameters

Return value address

Figure 9.17 Using Registers and Stack Area without Optimization (cpu=2600n, cpu=2000n,
cpu=300hn)

Parameter area

Stack area

Area for
saving register
contents
Return PC

Local variables
and temporary
area

Lower address

Upper address

2 bytes

2 bytes

ER0

ER0 to ER6: For storage of variables
 and temporary data
 (intermediate calculation results)

ER1
ER2
ER3
ER4
ER5
ER6

ER7 SP

F
or return value storage

P
aram

eter storage area*

S
tack fram

e

→

Unfixed

Note
*When there are three registers for parameter storage, ER2 is also included in
parameter storage area.

Area for saving parameters

Return value address

Figure 9.18 Using Registers and Stack Area with Optimization (cpu=2600n, cpu=2000n,
cpu=300hn)

271

(6) H8/300 (cpu=300)

Parameter area

Area for
saving register
contents

Return PC

Local variables
and temporary
area

Lower address

Upper address

2 bytes

2 bytes

2 bytes

R0

R0 to R5: For storage of variables
 and temporary data
 (intermediate calculation results)

R1
R2
R3
R4
R5

R6 FP
R7 SP

F
or return value storage

P
aram

eter storage area

S
tack fram

e

Stack area

*1

{

*2

Notes
*1: When there are three registers for parameter storage, R2 is also included in
 parameter storage area.
*2: When longreg is specified, R1 is included in return value storage area.

Return value address

Area for saving parameters

Figure 9.19 Using Registers and Stack Area without Optimization (cpu=H8/300)

Parameter area

Stack area

Area for
saving register
contents
Return PC

Local variables
and temporary
area

Lower address

Upper address

2 bytes

2 bytes

R0

R0 to R6: For storage of variables
 and temporary data
 (intermediate calculation results)

R1
R2
R3
R4
R5
R6

R7(SP)

F
or return value storage

P
aram

eter storage area

S
tack fram

e

*1

{

*2

Notes
*1: When there are three registers for parameter storage, R2 is also included
 in parameter storage area.
*2: When longreg is specified, R1 is included in return value storage area.

Area for saving parameters

Return value address

Figure 9.20 Using Registers and Stack Area with Optimization (cpu=H8/300)

272

9.4 Important Information on Program Creation

In this section, important information on writing program code for the compiler, and matters to
bear in mind during development of a program from compiling through debugging, are described.

9.4.1 Important Information on Program Coding

(1) Functions taking float type parameters

Functions which declare a float type parameter should always be given a prototype declaration,
or else the float type should be changed to the double type in the parameter declaration. If a
function which takes a float type parameter but does not have a prototype declaration is called,
correct operation is not guaranteed.

Example: void f(float); ------[1]
 void g(
 {
 float a;
 :
 f(a);
 }
 void f(float x)
 {
 :
 }
The function f takes a float type parameter. Here a prototype declaration like that in [1] should
always be used.

(2) Expressions for which order of evaluation is not specified by the C/C++ language

If an expression is used for which the order of evaluation is not stipulated by the C/C++
language, and the result of the expression changes depending on the order of evaluation, then
correct operation is not guaranteed.

Example:

a[i]=a[++i]; The value of i on the left-hand side changes depending on whether
 the assignment expression on the right is evaluated first or last.

sub(++i, i); The value of i of the second parameter changes depending on
 whether the first parameter of the function is evaluated first or last.

(3) Code which may be deleted through optimization

When the same variable is referenced continuously, or an expression whose result is not used
is written, such code may be deleted as redundant by the compiler as part of optimization. In
order to ensure constant access, the volatile keyword should be used in the declaration.

273

Example:

[1] b=a; /* The expression on the first line may be deleted as redundant code */

 b=a;
[2] while(1)a; /* The reference of the variable a and loop statement may be */

 /* deleted as redundant */

(4) Overflow operations and division by zero

No error message is output even if there is an overflow operation or division by zero. However,
in an operation on a single constant or a pair of constants, if there is an overflow or division by
zero, an error message is output at compile time. In H8SX, however, the compiler might not
detect division by zero.

Example:
void main(void)
{
 int ia;
 int ib;
 float fa;
 float fb;
 ib=32767;
 fb=3.4e+38f;

 /* Compiler error message is output in response to overflow or */

 /* division by zero for an operation on a constant or pair of constants */

 ia=99999999999; /* (W) Detects overflow of constant */

 fa=3.5e+40f /* (W) Detects overflow of floating-point operation */

 ia=1/0; /* (E) Detects division by zero excluding H8SX and H8S */

 fa=1.0/0.0; /* (W) Detects floating-point division by zero */

 /* excluding H8SX and H8S

/* No error message is output in response to an overflow at runtime */

 ib=ib+32767; /* Overflow in operation result ignored */

 fb=fb+3.4e+38f; /* Overflow in floating-point operation result ignored */
}

Caution

When the cpuexpand option is specified, no overflow or underflow errors are output.

274

(5) On the precision of mathematical library functions

The error in the acos(x) and asin(x) functions is great when x≅ 1; care should be taken when
using these functions. The error range is as follows.

Absolute error at double precision in acos(1.0-ε) 2-39 (ε = 2-33)

 At single precision 2-21 (ε = 2-19)

Absolute error at double precision in asin(1.0-ε) 2-39 (ε = 2-28)

 At single precision 2-21 (ε = 2-16)

(6) Writing to const type variables

Keep the following in mind. If a variable declared as const is converted to a type that is not
const via type conversion, or if types are not consistent among files compiled separately, then
the compiler cannot check for writing to a const type variable.

Examples:

 [1] const char *p; /* The first parameter of the library function strcat is */
 : /* a pointer to a char type, and so the area indicated */
 strcat(p,”abc”); /* by the parameter may be overwritten. */

 [2] File 1
 const int i;
 File 2
 extern int i; /* The variable i is not declared as const type in File 2. */
 : /* No error is detected against update of i. */
 i=10;

(7) Note on bit manipulation instructions

This compiler generates the bit manipulation instructions BSET, BCLR, BNOT, BST, and
BIST. These instructions read data in byte units, and after bit manipulation write data in byte
units again. On the other hand, if a write-only register is read, the CPU retrieves an undefined
value, regardless of the register contents. Hence in bit manipulation instructions for a write-
only register, bits other than the bit to be manipulated may change. The following is an
example of bit manipulation for a write-only register.

275

Example:

Contents of the include file (300x.h) Contents of the C source program

struct S_p4ddr{ #include "300x.h"
 unsigned char p7:1; unsigned char DDR;
 : // Prepare backup data for write-only
 unsigned char p0:1; // register
}; void sub(void)

union SS{ {
 unsigned char Schar; DDR &=~P0;
 struct S_p4ddr Sstr; P4DDR.Schar=DDR;
}; }
#define P4DDR (*(union SS *)0xffffc5)
#define P0 0x1

9.4.2 Important Information on Compiling a C Program with the C++ Compiler

(1) Function prototype declarations

Before using a function, a prototype declaration is necessary. At this time the types of
parameters should also be declared.

(2) Linkage of const objects

Whereas in C programs const objects are linked externally, in C++ programs they are linked
internally. In addition, const objects require initial values.

(3) Substitution from void*

In C++ programs, if explicit casting is not used, substitution into pointers to other objects
(excluding pointers to functions and to members) is not possible.

extern void func1();
void g()
{
 func1(1); // error in C++
}

extern void func1(int);
void g()
{
 func1(1); // OK
}

const int cvaluel;

// error in C++
const int cvalue2=1;

// local in C++

const int cvaluel=0;
// initial value required

extern int const cvslue2=1;
// has external linkage like C

void func(void *ptrv,int *ptri)
{
 ptri = ptrv; // error in C++
}

void func(void *ptrv,int *ptri)
{
 ptri = (int *)ptrv; // OK
}

276

9.4.3 Important Information on Program Development

Important information for program development, from program creation through debugging, is
described below.

(1) Information concerning selection of the CPU/operating mode

(a) The same CPU/operating mode should be specified at compile time and assembly time.

The CPU/operating mode specified using the cpu option at compile time and assembly
time must always be the same. If object programs created for different CPU/operating
modes are linked, operation of the object program at runtime is not guaranteed.

(b) The same CPU type as the CPU/operating mode specified at compile time should be
specified at assembly time.

When assembling an assembly program generated by the C compiler, the cpu option
should be used to specify the same CPU type specified by the CPU/operating mode at
compile time.

(c) The same CPU type as the CPU/operating mode specified at compile time should be
specified when creating standard libraries.

When creating standard libraries using the standard library configuration tool, the cpu
option should be used to specify the same CPU type specified by the CPU/operating mode
at compile time.

(2) Important information on options

The options relating to function interface listed below should always be the same at compile
time and when building libraries. If object programs created using different options are linked,
operation of the object program at runtime is not guaranteed.

 cpu

 exception/noexception

 rtti = on/off

 regparam

 longreg/nolongreg

 structreg/nostructreg

 stack

 double=float

 byteenum

 pack

 bit_order = left/right

 indirect = normal/extended *1

(It is possible to specify the indirect option to certain files of the whole source files, but a
mixture of normal and extended is not allowed.)

 ptr16

 sbr *2

277

Notes: 1. indirect = extended is only available for the H8SX.

 2. Only available for the H8SX.

278

279

Section 10 C/C++ Language Specifications

10.1 Language Specifications

10.1.1 Compiler Specifications

The following shows compiler specifications for the implementation-defined items which are not
prescribed by language specifications.

(1) Environment

Table 10.1 Environment Specifications

No. Item Compiler Specifications

1 Purpose of actual argument for the "main"
function

Not stipulated

2 Structure of interactive I/O devices Not stipulated

(2) Identifiers

Table 10.2 Identifier Specifications

No. Item Compiler Specifications

1 Number of valid letters in non externally-linked
identifiers (internal names)

Up to 8189 letters in both external and
internal names

2 Number of valid letters in externally-linked
identifiers (external names)

Up to 8191 letters in both external and
internal names

3 Distinction of uppercase and lowercase letters
in externally-linked identifiers (external names)

Uppercase and lowercase letters are
distinguished

280

(3) Characters

Table 10.3 Character Specifications

No. Item Compiler Specifications

1 Elements of source character sets and
execution environment character sets

Source program character sets and
execution environment character sets are
both ASCII character sets. However,
string literals and character constants can
be written in shift JIS or EUC Japanese
character code, or Latin1 code.

2 Shift states used in coding multi-byte
characters

Shift states are not supported.

3 Number of bits in characters in character sets
in program execution

8 bits

4 Relationship between source program
character sets in character constants and
string literals and characters in execution
environment character sets

Corresponds to same ASCII characters.

5 Values of integer character constants that
include characters or extended notations
which are not stipulated in language
specifications

Characters and extended notations which
are not stipulated in the language
specifications are not supported.

6 Values of character constants that include two
or more characters, and wide character
constants that include two or more multi-byte
characters

The first two characters of character
constants are valid. Wide character
constants are not supported. Note that a
warning error message is output if you
specify more than one character.

7 Specifications of locale used for converting
multi-byte characters to wide characters

locale is not supported.

8 char type value Same value range as signed char type.

281

(4) Integers

Table 10.4 Integer Specifications

No. Item Compiler Specifications

1 Representation and values of integers See table 10.5.

2 Values when integers are converted to shorter
signed integer types or unsigned integers are
converted to signed integer types of the same
size (when converted values cannot be
represented by the target type)

The value after conversion consists of the
lower-order four bytes (if the post-
conversion type is long), lower-order two
bytes (if the post-conversion type is
int/short), or lower-order byte (if the post-
conversion type is char) of the integer
value.

3 Result of bit-wise operations on signed
integers

Signed value.

4 Remainder sign in integer division Same sign as dividend.

5 Result of right shift of signed integral types
with a negative value

Maintains sign bit.

Table 10.5 Range of Integer Types and Values

No. Type Value Range Data Size

1 char −128 to 127 1 byte

2 signed char −128 to 127 1 byte

3 unsigned char 0 to 255 1 byte

4 short −32768 to 32767 2 bytes

5 unsigned short 0 to 65535 2 bytes

6 int −32768 to 32767 2 bytes

7 unsigned int 0 to 65535 2 bytes

8 long −2147483648 to 2147483647 4 bytes

9 unsigned long 0 to 4294967295 4 bytes

282

(5) Floating-point numbers

Table 10.6 Floating-Point Number Specifications

No. Item Compiler Specifications

1 Representation and values of floating-point
type

2 Method of truncation when integers are
converted into floating-point numbers that
cannot accurately represent the actual value

3 Methods of truncation or rounding when
floating-point numbers are converted into
shorter floating-point numbers

There are three types of floating-point
numbers: float, double, and long double
types. See section 10.1.3, Floating-Point
Number Specifications, for the internal
representation of floating-point types and
specifications for their conversion and
operation. Table 10.7 shows the limits of
floating-point type values that can be
expressed.

Table 10.7 Limits of Floating-Point Type Values

 Limits

No. Item Decimal Notation* Hexadecimal Notation

1 Maximum value of float type 3.4028235677973364e+38f
(3.4028234663852886e+38f)

7f7fffff

2 Minimum positive value of float
type

7.0064923216240862e−46f
(1.4012984643248171e−45f)

00000001

3 Maximum values of double
type and long double type

1.7976931348623158e+308
(1.7976931348623157e+308)

7fefffffffffffff

4 Minimum positive values of
double type and long double
type

4.9406564584124655e−324
(4.9406564584124654e−324)

0000000000000001

Note: The limits for decimal notation are the maximum value smaller than infinity and the
minimum value greater than 0. Values in parentheses are theoretical values.

283

(6) Arrays and Pointers

Table 10.8 Array and Pointer Specifications

No. Item Compiler Specifications

1 Integer type (size_t) required to hold
maximum array size

unsigned int type (H8/300)
unsigned int type (normal mode,
 H8S/2000 advanced mode with ptr16 option,
 H8S/2600 advanced mode with ptr16 option,
 H8SX middle mode,
 H8SX advanced mode with ptr16 option,
 H8SX maximum mode with ptr16 option)
unsigned long type
 (H8/300H advanced mode,
 H8S/2000 advanced mode without ptr16 option,
 H8S/2600 advanced mode without ptr16 option,
 H8SX advanced mode without ptr16 option,
 H8SX maximum mode without ptr16 option)

2 Conversion from pointer type to integer type
(pointer type size >= integer type size)

Value of least significant bytes of pointer type

3 Conversion from pointer type to integer type
(pointer type size < integer type size)

Zero extension

4 Conversion from integer type to pointer type
(integer type size >= pointer type size)

Value of least significant bytes of integer type

5 Conversion from integer type to pointer type
(integer type size < pointer type size)

Zero extension

6 Integer type (ptrdiff_t) required to hold
difference between pointers to members in
the same array

int type (H8/300)
int type (normal mode,
 H8SX middle mode,
 H8S/2000 advanced mode with ptr16 option,
 H8S/2600 advanced mode with ptr16 option,
 H8SX advanced mode with ptr16 option,
 H8SX maximum mode with ptr16 option)
long type
 (H8/300H advanced mode,
 H8S/2000 advanced mode without ptr16 option,
 H8S/2600 advanced mode without ptr16 option,
 H8SX advanced mode without ptr16 option,
 H8SX maximum mode without ptr16 option)

284

(7) Registers

Table 10.9 Register Specifications

No. Item Compiler Specifications

1 Registers to which register variables *5 can be
assigned

H8/300 Optimization: (R3) *1, R4, R5, R6
 No optimization: (R3) *1, R4, R5
Others Optimization: (ER3) *1, ER4, ER5,
 ER6
 No optimization: (ER3) *1, ER4,
 ER5, ER6*4

2 Types of register variables*5 that can be
assigned to registers

char, unsigned char,
short, unsigned short,
int, unsigned int,
long*2, unsigned long*2,
float*2, pointer, reference,
pointer to data member,
structure data of 4 bytes or less*3

Notes: 1. If the noregexpansion option is specified, no register variable is assigned to the
register in the parentheses, ().

2. If the H8/300-series CPU is selected as the CPU, variables these of types be assigned
to the register.

3. If the H8/300-series CPU is selected as the CPU, structure data of 2 bytes or less
can be assigned.

4. Only if the H8SX-series and H8S CPU is selected as the CPU, register variable(s) can
be assigned to ER6 even without optimization.

5. Allocation of a variable to a register is not affected by the register storage-class
specifier. If the enable_register option is specified, however, variables for which the
register-storage class has been declared will be preferentially assigned to registers.

285

(8) Class, Structure, Union, and Enumeration Types, and Bit Fields

Table 10.10 Class, Structure, Union, and Enumeration Type, and Bit Field Specifications

No. Item Compiler Specifications

1 Referencing members in union type accessed
by members of another type

Can be referenced but value cannot be
guaranteed.

2 Boundary alignment of class members Class consisting of only char type members
are aligned to a 1-byte boundary. Other
class members are aligned to a 2-byte
boundary. For details on assignment, see
section 10.1.2 (2), Compound Type (C),
Class Type (C++).

3 Sign of bit fields of simple int type signed int type

4 Order of bit fields within int type size Assigned from the most significant bit.*1 *2

5 Method of assignment when the size of a bit
field assigned after a bit field is assigned
within the int type size exceeds the remaining
size in the int type

Assigned to the next int type area. *1

6 Permissible type specifiers in bit fields char, unsigned char, short,
unsigned short, int, unsigned int, long,
unsigned long type

7 Integer type representing enumeration type int, unsigned char*3, char*3 type

Note: 1. For details of assignment of bit fields, see section 10.1.2 (3), Bit Fields.
2. Specifying the bit_order=right option assigns bit fields from the least significant bit.

3. When byteenum option is specified, type is unsigned char or char according to the
value.

(9) Qualifiers

Table 10.11 Qualifier Specifications

No. Item Compiler Specifications

1 Types of volatile data access Not stipulated

286

(10) Declarations

Table 10.12 Declaration Specifications

No. Item Compiler Specifications

1 Number of types modifying basic types
(arithmetic types, structure types, union types)

16 (max.)

 The following shows examples of counting the number of types modifying basic types.

i. int i; Here, i has the int type (basic type) and the number of types modifying the basic type
is 0.

ii. char *f(); Here, f has a function type returning a pointer type to a char type (basic type),
and the number of types modifying the basic type is 2.

(11) Statements

Table 10.13 Statement Specifications

No. Item Compiler Specifications

1 Number of case labels that can be declared in
one switch statement

2,147,483,646 (max.)

287

(12) Preprocessor

Table 10.14 Preprocessor Specifications

No. Item Compiler Specifications

1 Whether the value of a single-character
constant in a constant expression that controls
conditional inclusion matches the value of the
same character constant in the execution
character set.

Preprocessor statement character
constants are the same as the execution
environment character set.

2 Method of locating include files Files enclosed in "<" and ">" are read
from the directory specified in the include
option. If this specification is not made,
files are read from the directory specified
in the environment variable CH38.

3 Support for include files enclosed in double
quotation marks

Supported. Include files are read from
the current directory. If not found in the
current directory, the file is searched for
as described in 2, above.

4 White-space characters in string literals after
code is expanded when string literals of real
value parameters in a #define statement are
white-space characters

A string of white-space characters is
expanded as one white-space character.

5 Operation of #pragma statements See section 10.2.1, #pragma Extension
Specifiers and Keywords.

6 _ _DATE_ _ and _ _TIME_ _ values A value is specified based on the host
computer's timer at the start of compiling.

288

10.1.2 Internal Data Representation

This section explains the internal representation of data types. The internal data representation is
determined according to the following four items:

1. Size

Shows the memory size necessary to store the data.

2. Boundary alignment

Restricts the addresses to which data is allocated. There are two types of alignment; 1-byte
alignment in which data can be allocated to any address, and 2-byte alignment in which data is
allocated to an even byte address.

3. Data range

Shows the range of data of scalar type (C) or basic type (C++).

4. Data allocation example

Shows an example of assignment of element data of compound type (C) or class type (C++).

(1) Scalar Type (C), Basic Type (C++)

Table 10.15 shows internal representation of scalar-type data in C and basic type data in C++.

289

Table 10.15 Internal Representation of Scalar-Type and Basic-Type Data

Data Range
Data Type

Size
(bytes)

Alignment
(bytes)

Sign Minimum Value Maximum Value

char 1 1 Used −27 (−128) 27 − 1 (127)

signed char 1 1 Used −27 (−128) 27 − 1 (127)

unsigned char 1 1 Unused 0 28 − 1 (255)

short 2 2 Used −215 (−32768) 215 − 1 (32767)

unsigned short 2 2 Unused 0 216 − 1 (65535)

int 2 2 Used −215 (−32768) 215 − 1 (32767)

unsigned int 2 2 Unused 0 216 − 1 (65535)

long 4 2 Used −231
(−2147483648)

231 − 1
(2147483647)

unsigned long 4 2 Unused 0 232 − 1
(4294967295)

enum (the value range is
-128 to 127 and byteenum
option is specified)

1 1 Used −27 (−128) 27 − 1 (127)

enum (the value range is 0
to 255 and byteenum
option is specified)

1 1 Unused 0 28 − 1 (255)

enum (other
than above)

2 2 Used −215 (−32768) 215 − 1 (32767)

bool*1 1 1 Used −27 (-128) 27 − 1 (127)

float 4 2 Used −∞ +∞

double*2,
long double

8 2 Used −∞ +∞

Pointer
(H8SX normal mode,
H8SX middle mode,
H8S/2600 normal mode,
H8S/2000 normal mode,
H8/300H normal mode,
and H8/300)

2 2 Unused 0 216 − 1 (65535)

Pointer*3 (H8/300H
advanced mode)

4 2 Unused 0 224 − 1 (16777215)

290

Table 10.15 Internal Representation of Scalar-Type and Basic-Type Data (cont)

Data Range
Data Type

Size
(bytes)

Alignment
(bytes)

Sign Minimum Value Maximum Value

Pointer*4
(H8SX advanced mode,
H8SX maximum mode,
H8S/2600 advanced mode,
and H8S/2000 advanced
mode)

4 2 Unused 0 232 − 1
(4294967295)

Reference*1
(H8SX normal mode,
H8SX middle mode,
H8S/2600 normal mode,
H8S/2000 normal mode,
H8/300H normal mode,
and H8/300)

2 2 Unused 0 216 − 1 (65535)

Reference*1*3
(H8/300H advanced mode)

4 2 Unused 0 224 − 1 (16777215)

Reference*1*4
(H8SX advanced mode,
H8SX maximum mode,
H8S/2600 advanced mode,
and H8S/2000 advanced
mode)

4 2 Unused 0 232 − 1
(4294967295)

Pointer to data member*1
(H8SX normal mode,
H8SX middle mode,
H8S/2600 normal mode,
H8S/2000 normal mode,
H8/300H normal mode,
and H8/300)

2 2 Unused 0 216 − 1 (65535)

Pointer to data
member*1*3

(H8/300H advanced mode)

4 2 Unused 0 224 − 1 (16777215)

Pointer to data
member*1*4

(H8SX advanced mode,
H8SX maximum mode,
H8S/2600 advanced mode
and H8S/2000 advanced
mode)

4 2 Unused 0 232 − 1
(4294967295)

291

Table 10.15 Internal Representation of Scalar-Type and Basic-Type Data (cont)

Data Range
Data Type

Size
(bytes)

Alignment
(bytes)

Sign Minimum Value Maximum Value

Pointer to function
member*1*6
(H8SX normal mode,
H8S/2600 normal mode,
H8S/2000 normal mode,
H8/300H normal mode,
and H8/300)

6 2 N/A N/A N/A

Pointer to function
member*1*6
(H8SX middle mode)

8 2 N/A N/A N/A

Pointer to function
member*1*5*6
(H8SX advanced mode,
H8SX maximum mode,
H8S/2600 advanced mode,
H8S/2000 advanced mode,
H8/300H advanced mode)

10 2 N/A N/A N/A

Pointer to virtual function
member*1*6
(H8SX normal mode,
H8S/2600 normal mode,
H8S/2000 normal mode,
H8/300H normal mode,
and H8/300)

6 2 N/A N/A N/A

Pointer to virtual function
member*1*6
(H8SX middle mode)

8 2 N/A N/A N/A

Pointer to virtual function
member*1*5*6
(H8SX advanced mode,
H8SX maximum mode,
H8S/2600 advanced mode,
H8S/2000 advanced mode,
and H8/300H advanced
mode)

10 2 N/A N/A N/A

Notes: 1. These data types are valid only with C++ compilation.
 2. The size of double type is 4 bytes if double=float is specified.
 3. The lower three bytes indicate address data and the highest byte has an indefinite

value.
 4. In the H8SX advanced/maximum mode with ptr16 option or _ _ptr16 keyword, the size

is 2.
 5. In other H8/300H advanced mode with ptr16 option, the size is 8.

292

 6. Pointers to function and virtual function members are represented by classes in the
following.

 class _PMF{

 public:

 size_t delta; //Object offset value.

 short index; //Index in the virtual

 //function table when

 //the target function is a

 //virtual function.

 union{

 int (*_deffun)(); //Address of a function when

 //the target function is a

 //non-virtual function.

 size_t vt_offset; //Object offset value of the

 }; //virtual function table

 }; //when the target function

 //is a virtual function.

293

(2) Compound Type (C), Class Type (C++)

This section explains internal representation of array type, structure type, and union type data in C
and class type data in C++.

Table 10.16 shows internal representation of compound type and class type data.

Table 10.16 Internal Representation of Compound Type and Class Type Data

Data Type Alignment (bytes) Size (bytes) Data Allocation Example

Array type Array element alignment Number of array elements
× element size

char a[10];
 Alignment: 1 byte
 Size: 10 bytes

Structure
type

Maximum structure
member alignment

Total size of members.
Refer to Structure Data
Allocation, below.

struct {
char a,b;
};
 Alignment: 1 byte
 Size: 2 bytes

Union type Maximum union member
alignment

Maximum size of member.
Refer to Union Data
Allocation, below.

union {
char a,b;
};
 Alignment: 1 byte
 Size: 1 byte

Class type 1. Always 2 if a virtual

function is included

2. Other than 1 above:
maximum member
alignment

Sum of data members,
pointer to the virtual function
table, and pointer to the
virtual base class
Refer to Class Data
Allocation, below.

H8S/2600 advanced mode:
class B:public A {
 virtual void f();
};
 Alignment: 2-byte
 Size: 6 bytes

class A {
 char a;
};
 Alignment: 1-byte
 Size: 1 byte

294

Structure Data Allocation:

• When structure members are allocated, 1-byte unused area may be generated between structure
members to align them to their own boundaries.

struct {
 char a;
 int b;
 }z;

z. a z. b

4 bytes

1 byte

Space

• If a structure has 2-byte alignment and the last member ends at an odd-byte address, the
following one byte is included in this structure.

struct {
 int a;
 char b;
 }x;

x. a x. b

4 bytes

1 byte

295

Union Data Allocation:

• When a union has 2-byte alignment and its maximum member size is odd, the following
one byte is included in this union.

union {
 int a;
 char b[3];
 }w; w. b[0]

w. a

w. b[1] w. b[2]

4 bytes

1 byte

Class Data Allocation:

• For classes having no base class or virtual functions, data members are allocated according to
the allocation rules of structure data.

class A{

 char data1;

 short data2;

public:

 A();

 int getData1(){return data1;}

}obj;

• If the start member for a class is 1-byte data and if the boundary alignment of the base class is
1, data members are allocated in order not to make a space.

class A{

 char data1;

};

class B:public A{

 char data2;

 short data3;

}obj;

2 bytes

obj.data1

obj.data2

2 bytes

obj.data1

obj.data3

obj.data2

296

• For a class having a virtual base class, a pointer to the virtual base class is allocated.

Pointer to virtual
base class

(created by the
compiler)

2 bytes

class A{

short data1;

};

class B: virtual protected A{

char data2;

}obj;

obj .data2

obj.data1

• For a class having virtual functions, the compiler creates a virtual function table and allocates a
pointer to the virtual function table.

class A{

char data1;

public:

virtual int getData1();

}obj;

Virtual function table

(created by the compiler)

Pointer to virtual

function table

(created by the

compiler)

obj.data1

0

A::getData1

2 bytes

297

• An example is shown for class having virtual base class, base class, and virtual functions.

class A{

char data1;

virtual short getData1();

};

class B:virtual public A{

char data2;

char getData2();

short getData1();

};

class C:virtual protected A{

int data3;

};

class D:virtual public A,public B,public C{

public:

int data4;

short getData1();

}obj;

obj.data2

Virtual function table
(created by compiler)

Pointer to virtual function

table (created by the
compiler)

obj.data1

18

obj.data4

obj.data3

Pointer to virtual base

class (created by the
compiler)

Pointer to virtual base

class (created by the
compiler)

Pointer to virtual function

table (created by the
compiler)

2 bytes

Virtual function table
(created by compiler)

B::getData1

0

A::getData1

298

• For an empty class, a 1-byte dummy area is assigned.

class A{

 void fun();

}obj;

• For an empty class having an empty class as its base class, the dummy area is 1 byte.

class A{

 void fun();

};

class B: A{

 void sub();

};

• When the class size is 0, a dummy area for an empty class is allocated. For a base class or

derived class with data members, or for a class with virtual functions, no dummy area is
allocated.

class A{

 void fun();

};

class B: A{

 char data1;

}obj;

Dummy area

1 byte

Dummy area

1 byte

obj.data1

1 byte

299

(3) Bit Fields

A bit field is a member allocated with a specified size in a structure, union, or class. This part
explains how bit fields are allocated.

Bit Field Members: Table 10.17 shows the specifications of bit field members.

Table 10.17 Bit Field Member Specifications

Item Specifications

Type specifier allowed for bit fields char, unsigned char
short, unsigned short,
int, unsigned int
long, unsigned long

How to treat a sign when data is
extended to the declared type*1

A bit field with no sign (unsigned is specified for type):
Zero extension*2

 A bit field with a sign (unsigned is not specified for type): Sign
extension

Notes: 1. To use a member of a bit field, data in the bit field is extended to the declared type.
 2. Zero extension: Zeros are written to the upper bits to extend data.
 Sign extension: The most significant bit of a bit field is used as a sign and the sign is

written to all higher-order bits to extend data.

Note: One-bit bit field data with a sign (declared with signed) is interpreted as the sign, and can
only represent 0 and -1. To represent 0 and 1, bit field data must be declared with
unsigned.

300

Bit Field Allocation: Bit field members are allocated according to the following five rules:

• Bit field members are placed in an area beginning from the left, that is, the most significant bit.

0

struct b1{
 int a:2;
 int b:3;
 }x;

struct b1{
 enum E1{o,p,q} a:2;
 enum E1 b:3;
 }u;

• Consecutive bit field members having type specifiers of the same size are placed in the same
area as much as possible.

struct b1{
 int a:2;
 unsigned short b:3;
 }y;

• Bit field members having type specifiers with different sizes are allocated to separate areas.

struct b1{
 int a:5;
 char b:4;
 }z;

0

301

• If the number of remaining bits in an area is less than the next bit field size, though the type
specifiers indicate the same size, the remaining area is not used and the next bit field is
allocated to the next area.

struct b2{
 char a:5;
 char b:4;
 }v; 0

0

• If a bit field member with a bit field size of 0 is declared, the next member is allocated to the
next area.

0

struct b2{
 char a:5;
 char :0;
 char c:3;
 }w;

0

Note: When the H8SX is selected as the CPU, bit field members can be aligned to the lower-bit
side. For details, refer to the description of the bit_order option in section 2.2,
Interpretation of Options, or the description of the #pragma bit_order in section 10.2.1,
#pragma Extension Specifiers and Keywords.

302

10.1.3 Floating-Point Number Specifications

(1) Internal Representation of Floating-Point Numbers
Floating-point numbers handled by this compiler are internally represented in the standard
IEEE format. This section outlines the internal representation of floating-point numbers in the
IEEE format.

(a) Format for internal representation

float types are represented in the IEEE single-precision (32-bit) format, while double types
and long double types are represented in the IEEE double-precision (64-bit) format.

(b) Structure of internal representation
Figure 10.1 shows the structure of the internal representation of float, double, and long
double types.

float type

31 30 23 22 0

 Exponent (8 bits) Mantissa (23 bits)

Sign (1 bit)

double type and long double type

63 62 52 51 0

 Exponent (11 bits) Mantissa (52 bits)

Sign (1 bit)

Figure 10.1 Structure of Internal Representation of Floating-Point Numbers

The internal representation format consists of the following parts:

i. Sign

Shows the sign of the floating-point number. 0 is positive, and 1 is negative.

ii. Exponent

Shows the exponent of the floating-point number to the power of 2.

iii. Mantissa

Shows the data corresponding to the significant digits of the floating-point number.

303

(c) Types of represented values of floating-point number

In addition to the normal real numbers, floating-point numbers can also represent values
such as infinity. The following describes the types of values represented by floating-point
numbers.

i. Normalized number

When the exponent is not 0 or not all bits are 1. Represents a normal real value.

ii. Denormalized number

When the exponent is 0 and the mantissa is other than 0. Represents a real value having
a small absolute value.

iii. Zero

When the exponent and mantissa are 0. Represents the value 0.0.

iv. Infinity

When all bits of the exponent are 1 and the mantissa is 0. Represents infinity.

v. Not-a-number

When all bits of the exponents are 1 and the mantissa is other than 0. Represents the
result of operation such as "0.0/0.0", "∞/∞", or "∞-∞", which does not correspond to a
number or infinity.

Table 10.18 shows the types of values represented as floating-point numbers.

Table 10.18 Types of Values Represented as Floating-Point Numbers

 Exponent

Mantissa 0 Not 0 or not all bits are 1 All bits are 1

0 0 Infinity

Other than 0 Denormalized number

Normalized number

Not-a-number

Note: Denormalized numbers are floating-point numbers of small absolute values that are outside
the range that can be represented by normalized numbers. There are fewer valid digits in a
denormalized number than in a normalized number. Therefore, if the result or intermediate
result of a calculation is a denormalized number, the number of valid digits in the result
cannot be guaranteed.

304

(2) float type

The float type is internally represented by a 1-bit sign, an 8-bit exponent, and a 23-bit
mantissa.

i. Normalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
between 1 and 254 (28−2). The actual exponent is gained by subtracting 127 from this
value. The range is between −126 and 127. The mantissa is between 0 and 223−1. The
actual mantissa is interpreted as the value of which the 223rd bit is 1 and this bit is followed
by the decimal point. Values of normalized numbers are as follows:

(−1)sign × 2exponent−127 × (1+(mantissa) × 2−23)

Example:

31 30 23 22 0

1 1 0 0 0 0 0 0 0 1 1 0

Sign: −

Exponent: 10000000(2) − 127 = 1, where (2) indicates binary

Mantissa: 1.11(2) = 1.75

Value: −1.75 × 21 = −3.5

ii. Denormalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
0 and the actual exponent is −126. The mantissa is between 1 and 223−1, and the actual
mantissa is interpreted as the value of which the 223rd bit is 0 and this bit is followed by the
decimal point. Values of denormalized numbers are as follows:

(−1)sign × 2−126 × ((mantissa) × 2−23)

Example:

31 30 23 22 0

0 0 0 0 0 0 0 0 0 1 1 0

Sign: +

Exponent: −126

Mantissa: 0.11(2) = 0.75, where (2) indicates binary

Value: 0.75 × 2−126

305

iii. Zero

The sign is 0 (positive) or 1 (negative), indicating +0.0 or −0.0, respectively. The exponent
and mantissa are both 0.

+0.0 and −0.0 are both the value 0.0. See section 10.1.3 (4), Floating-Point Operation
Specifications, for the functional differences deriving from the sign used with zero.

iv. Infinity

The sign is 0 (positive) or 1 (negative), indicating +∞ or −∞, respectively.
The exponent is 255 (28−1).

The mantissa is 0.

v. Not-a-number

The exponent is 255 (28−1).

The mantissa is a value other than 0.

Note: There are no stipulations regarding the mantissa values (other than 0) or the sign of not-a-

number.

(3) double type and long double type

The double type and the long double types are internally represented by a 1-bit sign, a 11-bit
exponent, and a 52-bit mantissa.

i. Normalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
between 1 and 2046 (211−2). The actual exponent is gained by subtracting 1023 from this
value. The range is between −1022 and 1023. The mantissa is between 0 and 252−1. The
actual mantissa is interpreted as the value of which the 252nd bit is 1 and this bit is followed
by the decimal point. Values of normalized numbers are as follows:

(−1)sign × 2exponent−1023 × (1+(mantissa) × 2−52)

Example:

63 62 52 51 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Sign: +

Exponent: 1111111111(2) −1023 = 0, where (2) indicates binary

Mantissa: 1.111(2) = 1.875

Value: 1.875 × 20 = 1.875

306

ii. Denormalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
0 and the actual exponent is -1022. The mantissa is between 1 and 252-1, and the actual
mantissa is interpreted as the value of which the 252nd bit is 0 and this bit is followed by the
decimal point. Values of denormalized numbers are as follows:
(-1)sign × 2−1022 × ((mantissa) × 2-52)

Example:

63 62 52 51 0

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

Sign: −

Exponent: −1022

Mantissa: 0.111(2) = 0.875, where (2) indicates binary

Value: 0.875 × 2−1022

iii. Zero

The sign is 0 (positive) or 1 (negative), indicating +0.0 or −0.0, respectively. The exponent
and mantissa are both 0.

+0.0 and −0.0 are both the value 0.0. See section 10.1.3 (4), Floating-Point Operation
Specifications, for the functional differences deriving from the sign used with zero.

iv. Infinity

The sign is 0 (positive) or 1 (negative), indicating +∞ or −∞, respectively. The exponent is
2047 (211−1).

The mantissa is 0.

v. Not-a-number

The exponent is 2047 (211−1).

The mantissa is a value other than 0.

Note: There are no stipulations regarding the mantissa values (other than 0) or the sign of not-a-

number.

307

(4) Floating-Point Operation Specifications
This section describes the specifications for arithmetic operations on floating-point numbers in
C/C++, and for conversion between the decimal representation of floating-point numbers and
their internal representation during compilation and in C library processing.

(a) Specifications for arithmetic operations

i. Rounding of results

When the result of arithmetic operations on floating-point numbers exceeds the number
of valid limit in the mantissa in internal representation, the result is rounded according
to the following rules:

a. The result is rounded toward the closer of the two internal representations of the
approximating floating-point numbers.

b. When the result is exactly between the two approximating floating-point numbers, it
is rounded to the floating-point number of which the last digit of the mantissa is 0.

ii. Processing of overflows, underflows, and illegal operations
The following is performed in the event of an overflow, underflow, or illegal operation.

a. In the case of an overflow, the result is a positive or negative infinity, depending on
the sign of the result.

b. In the case of an underflow, the result is a positive or negative zero, depending on
the sign of the result.

c. In the case of an illegal operation, in which infinity values of the opposite sign have
been added, in which an infinity has been subtracted from another infinity of the
same sign, in which zero has been multiplied by infinity, in which zero is divided by
zero, or in which infinity is divided by infinity, the result is a not-a-number.

d. For the cases above, error numbers are set to variable errno which indicates an
error. For details on error numbers, refer to section 12.3, C Library Error
Messages. Whether an error has occurred can be checked by the errno value.

Note: Operations are performed on constant expressions during compilation. If an

overflow, underflow, or illegal operation occurs, a warning level error message
is output.

308

iii. Notes on operations on special values

The following are notes on operations on special values (zero, infinity, and not-a-
number).

a. The sum of a positive zero and a negative zero is a positive zero.

b. The difference between two zeros of the same sign is a positive zero.

c. The result of operations that include not-a-number in one or both operands is always
a not-a-number.

d. In comparative operations, positive zeros and negative zeros are processed as equal.

e. The result of comparative operations or equivalence operations where either one or
both operands are not-a-number is true for "!=" and false in all other cases.

(b) Conversion between decimal and internal representation

This section describes the specifications for conversions between floating-point numbers in
a source program and internal representation, and conversion by library functions between
the decimal representation of floating-point numbers in ASCII strings and their internal
representation.

i. When converting from decimal to internal representation, the decimal value is first
converted to its normalized form. The normalized form of a decimal value is
"±M × 10±N", where M and N are in the following range:

a. Normalized form of float type

0 ≤ M ≤ 109−1

0 ≤ N ≤ 99

b. Normalized form of double and long double types

0 ≤ M ≤ 1017−1

0 ≤ N ≤ 999

If a decimal value cannot be converted to its normalized form, an overflow or
underflow occurs. If the decimal representation contains more valid numerals than
the normalized form, the trailing digits are truncated. In this case, a warning level
error message is output at compilation and the corresponding error number is set in
errno when the program is executed. For conversion to its normalized form, the
original decimal representation must, in the form of an ASCII string, be within 511
characters. If not, an error occurs at compilation and the corresponding error
number is set in errno when the program is executed. When converting from
internal representation to decimal, the value is first converted to the normalized
decimal form, then converted to an ASCII string according to the specified format.

309

ii. Conversion between normalized form of decimals and internal representation

When converting from the normalized form of decimals to internal representation, and
vice versa, errors cannot be avoided when the exponent is large or small. The
following describes the range within which conversion is accurate, and the error limits
when the values are outside that range.

a. Range for accurate conversion

The rounding shown in (a) i, "Rounding of results" is correctly applied for floating-
point numbers within the ranges shown below. No overflow or underflow will
occur within these ranges.

(1) float types: 0 ≤ M ≤ 109−1, 0 ≤ N ≤ 13

(2) double and long double types: 0 ≤ M ≤ 1017−1, 0 ≤ N ≤ 27

b. Error limits

The difference between the error that occurs when converting values that do not fall
in the ranges shown in a. above and the error that occurs when rounding is correctly
performed does not exceed 0.47 times the smallest digit of the valid numerals. If
the value exceeds the ranges shown in a. above, an overflow or underflow may
occur during conversion. In this case, a warning level error message is output
during compilation, and the corresponding error number is set in errno when the
program is executed.

310

10.1.4 Operator Evaluation Order

If an expression includes multiple operators, the evaluation order of these operators is determined
according to the precedence indicated as positive value and the associativity indicated by right or
left.

Table 10.19 shows each operator precedence and associativity.

Table 10.19 Operator Precedence and Associativity

Precedence Operators Associativity Applicable Expression

1 () [] -> . ++ - - (postfix) Left Postfix expression

2 ! ~ ++ - - (prefix) + - * & sizeof Right Monomial expression

3 (Type name) Right Cast expression

4 * / % Left Multiplicative expression

5 + - - Left Additive expression

6 << >> Left Shift expression

7 < <= > >= Left Relational expression

8 == != Left Equality expression

9 & Left Bitwise AND expression

10 ^ Left Bitwise XOR expression

11 | Left Bitwise OR expression

12 && Left Logical AND operation

13 || Left Logical OR expression

14 ?: Left Conditional expression

15 = += -= *= /= %= <<= >>= &= |= ^= Right Assignment expression

16 , Left Comma expression

311

10.2 Extended Functions

The compiler supports the following three kinds of extended specifications:

• #pragma extension and keywords

• Section address operator

• Intrinsic functions

10.2.1 #pragma Extension Specifiers and Keywords

Tables 10.20 to 10.22 list #pragma extension and keywords.

Table 10.20 #pragma Extension Specifier Related to Memory Allocation

#pragma Extension Specifier Keyword Function

#pragma stacksize – Creates a stack section

#pragma section,
#pragma abs8 section,
#pragma abs16 section,
#pragma indirect section

– Switches sections

#pragma abs8,
#pragma abs16

_ abs8,
 _abs16

Specifies a variable to access in short absolute
addressing mode

– _ near8,
 _near16

Specifies an address calculation size for
array and structure

– _ _ptr16 Specifies the pointer size

#pragma bit_order – Specifies the order of bit field assignment

312

Table 10.21 Extended Specifications Related to Functions

#pragma Extension Specifier Keyword Function

#pragma interrupt _ _interrupt Creates an interrupt function

#pragma entry _ _entry Creates an entry function

#pragma indirect _ _indirect Specifies a function to be called in memory
indirect addressing mode

– _ indirectex Specifies a function to be called in the
extended memory indirect addressing mode

#pragma inline _ _inline Performs inline expansion of functions

#pragma inline_asm – Expands an assembly-language description
function.

#pragma regsave,
#pragma noregsave

_ regsave,
 _noregsave

Controls generation of code to save and
restore register contents.

– _ regparam2,
 _regparam3

Specifies the number of parameter registers.

#pragma option – Specifies an optimization option on function by
function basis.

313

Table 10.22 Other Extended Specifications

#pragma Extension Specifier Keyword Function

#pragma asm,
#pragma endasm

– Embeds assembly-language instructions.

– _ _asm Performs assembly functions

#pragma global_register _ globalregister Allocates global variables to registers

#pragma pack 1,
#pragma pack 2,
#pragma unpack

– Specifies the boundary alignment of
structures, unions, and classes.

– _ _evenaccess Specifies an even byte access.

#pragma address – Allocates a variable to the specified address.

Note: The first keyword or #pragma extension specified for a function or variable is valid.
Once an attribute has been specified, a different attribute cannot be specified for the same
function or variable. It is also not possible to specify both a #pragma extension and
keyword for the same variable.

 Error examples:
// Different keywords cannot be specified for a prototype declaration and definition.
_ _regsave void func(void);
_ _interrupt void func(void) {}

// Different attributes cannot be specified in pragma in the same way.
#pragma regsave func
_ _interrupt void func(void) {}

 To specify more than one attribute for one function or variable, specify all the attributes at
the same time as a combination of keywords in a declaration or definition.

 Example that will be compiled correctly:
// Keywords can be specified together at the same time in a declaration or definition.
_ _regsave _ _interrupt void func(void);
void func(void) {}

314

(1) Extended Specifications Related to Memory Allocation

#pragma stacksize

Description Format: #pragma stacksize <constant>

Description: Creates the stack section S whose size is <constant>.

Example: #pragma stacksize 100 <Code expansion example>
 .SECTION S,STACK
 .RES.W 50

Remarks: 1. Must specify an even number for stack size <constant>
2. #pragma stacksize can only be specified once within a file

#pragma section
#pragma abs8 section
#pragma abs16 section
#pragma indirect section

Description Format: #pragma section [{<name> | <numeric value>}]
#pragma abs8 section [{<name> | <numeric value>}]
#pragma abs16 section [{<name> | <numeric value>}]
#pragma indirect section [{<name> | <numeric value>}]

Description: Switches the section to be output by the compiler.
Table 10.23 lists the default section names and section names after switching
sections.

315

Table 10.23 Section Switching and Section Name

Target Area

Specification

Default Section
Name

After Switching
Section

Program area P* P<xx>

Constant area C* C<xx>

Initialized data area D* D<xx>

Uninitialized data area

#pragma section
<xx>

B* B<xx>

Constant area $ABS8C $ABS8C<xx>

Initialized data
area

$ABS8D $ABS8D<xx>

8-bit absolute
address area

Uninitialized data
area

#pragma abs8
section <xx>

$ABS8B $ABS8B<xx>

Constant area $ABS16C $ABS16C<xx>

Initialized data
area

$ABS16D $ABS16D<xx>

16-bit absolute
address area

Uninitialized data
area

#pragma abs16
section <xx>

$ABS16B $ABS16B<xx>

Area in memory
indirect
addressing mode

Function address
area

#pragma indirect
section <xx>

$INDIRECT
$EXINDIRECT

$INDIRECT<xx>
$EXINDIRECT<xx>

Note: The default section name can be modified by the section option.
If <name> or <numeric value> is not specified, the default section names will be used.

316

Example: #pragma section abc
int a; /* a is assigned to section Babc */
const int c=1; /* c is assigned to section Cabc */
void f(void) /* f is assigned to section Pabc */
{
 a=c;
}
#pragma section
int b; /* b is assigned to section B */
void g(void) /* g is assigned to section P */
{
 b=c;
}

Remarks: 1. Declare #pragma section, #pragma abs8 section, #pragma abs16
 section, and #pragma indirect section outside function
 definitions.

 2. Up to 64 names can be declared for each section within a file.

317

#pragma abs8
#pragma abs16
_ _abs8
_ _abs16

Description Format: #pragma abs8 (<variable name> [,…])
#pragma abs16 (<variable name> [,…])
_ _abs8 <type specifier><variable name>
<type specifier>_ _abs8<variable name>
_ _abs16 <type specifier><variable name>
 <type specifier>_ _abs16<variable name>

Description: Declares variables to allocate in the 8-bit and 16-bit absolute address area.
1. The variables declared in #pragma abs8 and _ _abs8 are output to
 sections “$ABS8C”, “$ABS8D”, and “$ABS8B”, and the code to
 access them in 8-bit absolute addressing mode (@aa:8) is generated.
2. The variables declared in #pragma abs16 and _ _abs16 are output to
 sections “$ABS16C”, “$ABS16D”, and “$ABS16B”, and the code to
 access them in 16-bit absolute addressing mode (@aa:16) is generated.
3. For details on section name switching, refer to description on #pragma
 abs8 section and #pragma abs16 section above.

Example: #pragma abs8(c1)
#pragma abs16(i1)
char c1; /* c1 is assigned to $ABS8B */
int i1; /* i1 is assigned to $ABS16B */
char _ _abs8 c2; /* c2 is assigned to $ABS8B */
char _ _abs16 i2; /* i2 is assigned to $ABS16B */
long l; /* 1 is assigned to B */
void f(void){
 c1=c2=10; /* c1 and c2 are accessed by 8-bit */
 /* absolute address */
 i1=i2=100; /* i1 and i2 are accessed by 16-bit */
 /* absolute address */
 1=1000; /* 1 is accessed by 32-bit */
 /* absolute address */
}

318

Remarks: 1. The variables in the definition and declaration after the #pragma abs8 or
 #pragma abs16 declaration will be treated as the target variables.
2. Only variables to be allocated to the static area can be specified with
 #pragma abs8, _ _abs8, #pragma abs16, and _ _ abs16.
3. Up to 63 variables can be specified in one #pragma abs8 or
 #pragma abs16 directive.
4. The variables specified with #pragma abs8, _ _abs8, #pragma abs16,
 or _ _ abs16 are output to section $ABS8C, $ABS8D, $ABS8B,
 $ABS16C, $ABS16D, or $ABS16B when neither #pragma abs8 section
 <xx> nor #pragma abs16 section <xx> is used. Allocate the target
 section to the 8-bit or 16-bit absolute addressing area at linkage.
5. If the variables declared by #pragma abs8 cannot be accessed in 1 byte
 units, an error will occur. Declare a variable, array, or structure that is
 aligned to a 1-byte boundary.

319

_ _near8
_ _near16

Description Format: <type specifier> _ _near8 <variable name>
_ _near8 <type specifier> <variable name>
<type specifier> _ _near16 <variable name>
_ _near16 <type specifier> <variable name>

Description: Specifies an array or structure whose address can be calculated by an 8-bit or
16-bit address. When _ _near 8 is specified, calculates an array or structure
address using the lower 1 byte. When _ _near16 is specified, calculates an
array or structure address using the lower 2 bytes.

Example: When _ _near8 is not specified When _ _near8 is specified
struct a{ struct a{
 short a1; short a1;
 short a2,a3; short a2,a3;
}; };
struct a aa[10]; struct a _ _near8 aa[10];
void f(){ void f(){
 int i; int i;
 for(i=0;i<11;i++) for(i=0;i<11;i++)
 aa[i].al = 0; aa[i].al =0;
} }
<Code expansion example> <Code expansion example>
 MOV.L #_aa,ER1 MOV.L #_aa,ER1
 SUB.L ER0,ER0 SUB.L ER0,ER0
Ld: Ld:
 MOV.W R0,@ER1 MOV.W R0,@ER1
 INC.W #H'1,E0 INC.W #H'1,E0
 ADDS.L #H'4,ER1 ADD.B #H'6,R1L
 INC.L #H'2,ER1 CMP.W #H'B,E0
 CMP.W #H'B,E0 BLT Ld:8
 BLT Ld:8 RTS
 RTS

320

Remarks: 1. When _ _near8 or _ _near16 is specified for an array or a structure, that
 array or structure must be allocated to the area where no overflow occurs
 during 8-bit or 16-bit address calculation.
2. If an array or a structure to which _ _near 8 or _ _near16 is specified is
 not allocated correctly, an error occurs at linkage.
3. If a variable is not allocated on the 8-bit or 16-bit address boundary,
 the compiler operation cannot be guaranteed. In this case, _ _near8 or
 _ _near16 cannot be specified.

H'400

test[100]

H'500

Allocate so that
the address
can be calculated
within 1 byte.

struct b{

char buffer1;

char buffer2;

};

struct b _ _near8 test[100];

321

_ _ptr16

Description Format: <type specifier> _ _ptr16 <*>

Description: Specifies the pointer size as two bytes. A pointer value will be specified by
two signed bytes, and the target to be accessed must be allocated to the 16-bit
absolute address area.

Example: When _ _ptr16 is not specified When _ _ptr16 is specified
abs16 int a; _ _abs16 int a;
int *b; int _ _ptr16 *b;

func() func()
{ {
 b = &a; b = (int _ _ptr16 *)&a;
} }

<Code expansion example> <Code expansion example>
_func: _func:
 mov.l #_a,er0 mov.l #_a,er0
 mov.l er0,@_b:32 mov.w r0,@_b:16

Remarks: 1. This keyword must be specified before a unary operator *.

2. This keyword is effective only with H8SX advanced mode, H8SX
 maximum mode, H8S/2600 advanced mode, or H8S/2000 advanced
mode.

322

#pragma bit_order

Description Format: #pragma bit_order [{left|right}]

Description: Switches the order of bit field assignment.

 When left is specified, bit field members are assigned from the most
significant bit side. When right is specified, members are assigned from the
least significant bit side.

 The default setting is the interpretation of the bit_order option.
If #pragma bit_order is specified without left or right specifiler, the
interpretation of the bit_order option is effective below the line.

Example:
#pragma bit_order left

typedef struct{

unsigned char a:2;

unsigned char b:3;

}x;

#pragma bit_order right

typedef struct{

unsigned char a:2;

unsigned char b:3;

}y;

// Member with different size

#pragma bit_order right

typedef struct{

unsigned int a:3;

unsigned char b:4;

}z;

// Size of a type is exceeded

#pragma bit_order right

typedef struct{

unsigned char a:5;

unsigned char b:4;

}v;

 7 6 5 4 3 2 1 0

v.a

v.b

 7 6 5 4 3 2 1 0

x.a x.b

0

0

0

0

4 37

7

7

3 2

4 3

5 4

y.ay.b

z.a

z.b

Space

Remarks: 1. The specified order of assignment is valid until it is switched again.
2. The order of bit field assignment can also be specified by a compiler
 option. For details, refer to section 2.2.2, Object Options.
3. For details of bit field, refer to section 10.1.2 (3), Bit Fields.

323

(2) Extended Specifications Related to Functions

#pragma interrupt
_ _interrupt

Description Format: #pragma interrupt (<function name>[(interrupt specification)][,…])
_ _interrupt[(interrupt specification)]<type specifier><function name>
<type specifier> _ _interrupt[(interrupt specification)]<function name>

Description: Declares an interrupt function.
Table 10.24 lists interrupt specifications.

Table 10.24 Interrupt Specifications

Item Form Options Specifications

Stack switching sp= {<variable>
|&<variable>
|<constant>
|<variable>+<constant>
|&<variable>+<constant>
}

The address of a new stack is specified
with a variable or a constant.
<variable>: Variable (pointer type)
&<variable>: Variable (object type)
 address
<constant>: Constant value

Trap-instruction
return

tn= <constant> Termination is specified by the TRAPA
instruction
<constant>: Constant value
 (trap vector number)

Interrupt function
termination

sy= {<function name>
|<constant>
|$<function name>
}

Termination is specified by a jump
instruction to an interrupt function
<function name>: Interrupt function
 name
<constant>: Absolute address
$<function name>: Interrupt function
 name without an
 underscore (_)

Vector table
specification

vect= <vector number> A vector number to which an interrupt
function address is assigned is specified

1. An interrupt function declared by #pragma interrupt preserves the
register values of R0,R1and (R2 with regparam=3) in H8/300 or ER0
ER1 and (ER3 with regparam=3) in the other CPU before processing and
executes the RTE instruction at the end of the function.

 2. If the trap-instruction return (tn=) is specified, the TRAPA instruction is
 executed at the end of the function.

324

 Example:

 extern char STK[100];
 #pragma interrupt (f(sp=STK+100, tn=2))
 (1) (2)
 _ _interrupt(sp=STK+100, tn=2) void g(void);
 (1) (2)

 1. STK+100 is set as the stack pointer used by interrupt functions f and g.

2. After the interrupt function has completed its processing, trap exception
processing starts by TRAPA #2. The SP at the beginning of the trap
exception processing is shown in the figure below. In the trap routine,
the previous PC, CCR (condition code register), and EXR (extended
control register: only for the H8SX, H8S/2600 and H8S/2000) must be
popped from the stack by the RTE instruction, then control must be
returned from the interrupt function.

Interrupt termination
(immediately before
TRAPA instruction)

Lower
address

STK[0]

STK[99]

Immediately
after interrupt

STK+ 100

Higher
address

sp

Inside interrupt
function

STK[0]

STK SP

Previous PC

Lower
address

sp

sp

·
·
·
·

·
·
·
·

Higher
address

Previous CCR

Previous PC

Previous CCR

Previous PC

Previous CCR

Stack
of
interrupt
function

Stack
of
interrupted
function

Figure 10.2 Stack Processing by an Interrupt Function

3. When an interrupt function termination is specified (sy=), the program
jumps to the address specified by the JMP instruction. For the function
name of the interrupt function termination specification, $ + <function
name> can be specified as well as <function name>. If $ + <function
name> is specified, no underscore character (_) to mean an external
identifier is added at the beginning of the function name.

325

 Example:

 #pragma interrupt (f1(sy=$f2)) /* No underscore (_) */
 /* added to the head */
 /* of function name */
void f2(void) /* Returns by JMP @f2:24*/
{
 :
}

 4. When a vector table is specified (vect=), a function address is assigned to
 the
 address corresponding to the vector number.

Example: (cpu=300)

 #pragma interrupt (f2(vect=4)) /* Function f2 address */
 /* is assigned to */
void f1(void) /* address 8 */
 /* (vector number 4) */
{
 :
}

5. An interrupt function with no interrupt specification is processed as
 a simple interrupt function.

326

Remarks: 1. The functions in the definition and declaration after the #pragma
 interrupt declaration will be treated as the interrupt functions.

 Example:
#pragma interrupt (A::f) /* The functions in the */
 /* definition and declaration */
 /* after #pragma interrupt */
 /* declaration will be */
 /* treated as the */
 /* interrupt functions */
class A{
public:
 static void f(void); /* Static member function */
 /* handled as interrupt */
 /* function */
};
void A::f(void)
{
 ...
}
2. Functions that can be defined as an interrupt function are global functions

and static member functions. The function must return only void data.
The return statement cannot have a return value. If attempted, an error is
output.

 Example:

 #pragma interrupt(f1(sp=100),f2)
void f1(void) /* Correct declaration. */
{
 ...
}
int f2(void) /* When the return type is not void,*/
 /* a error is output. */
{
 ...
}
3. A function declared as an interrupt function cannot be called within the

program. If attempted, an error is output. However, if the function is
called within a program which does not declare it to be an interrupt
function, an error is not output but correct program execution is not
guaranteed.

327

Example:

#pragma interrupt(f1)
void f1(void)
{
 ...
}
int f2(void)/* Function f1 is declared as interrupt */
 /* function and an error is output. */
{
 f1();
}

4. A program can refer to a function declared as an interrupt function if the
 function is not explicitly called.

Example:

#pragma interrupt f
 void f(void)
 {
 ...
 }
 void (*VTBL)(void)={f}; /* Correct compilation is */
 /* guaranteed for references */
 /* except for function calls */

 5. Up to 63 functions can be declared in one #pragma interrupt directive

 line. Stack switching specification and trap-instruction return
 specifications, and stack switching specification and interrupt function
 termination specifications can be specified at the same time.
 If stack switching is specified for the interrupt function, the size of the
 area to save the contents of the previous SP and ER0 (R0 for H8/300)
 which is used to calculate the new SP value is included in the Linkage
 Area Size in the symbol allocation information shown in the compile
 listing.

328

#pragma entry
_ _entry

Description Format: #pragma entry <function name>[<entry specification>]
 _ _entry [(<entry specification>)] <type specifier> <function name>
 <type specifier> _ _entry[<entry specification>)] <function name>
 <entry specification>: {sp=<constant> | vect=<vector number>}

Description: Handles the function specified in <function name> as the entry function.

 1. Outputs the code for initial setting of the stack pointer at the beginning
 of the entry function when sp is specified. The <constant> specified
 by the sp is used as the stack-pointer initial value.

 Example: (cpu=300) <Code expansion example>

 #pragma entry INIT(sp=0x8000) .SECTION P,CODE
void INIT() INIT:
{ MOV.W #H’8000,SP
 : :
}

 2. If no sp is specified, the end address of the stack section created by
 the#pragmastacksize is used as the stack-pointer initial value.

 Example: (cpu=300) <Code expansion example>

 #pragma stacksize 100 .SECTION S,STACK
#pragma entry INIT .RES.W 50
void INIT() .SECTION P,CODE
{ _INIT:
 : MOV.W #STARTOF S + SIZEOF S,SP
} :

329

 3. If no sp is specified and no #pragma stacksize is declared in the
 program, section S with size 0 is created, and the end address of the S
 section is used as the stack-pointer initial value. Declare #pragma
 stacksize in the program or use the start option to allocate section S to the
 correct address at linkage.

 Example: (cpu=300) <Code expansion example>

 #pragma entry INIT .SECTION S,STACK
 ; Creates section S
 ; with size 0.
void INIT() .SECTION P,CODE
{ _INIT:
 : MOV.W #STARTOF S + SIZEOF S,SP
} :

 4. When vect is specified, a function address is assigned to the address
 corresponding to the vector number.

Example: (cpu=300)

 #pragma entry INIT(vect=0) /* Function INIT address */
 /* assigned to address 0 */
void INIT()
{
 :
}

 <Code expansion example>

 .SECTION VECT0, DATA, LOCATE=0
.DATA.W _INIT

 5. Does not output the save and restore code of the registers at the entry
 and exit of the entry function.

330

 6. When the CPU type is H8SX and an option or environment variable has
been used to change the SBR value, a function for which #pragma entry has
been specified will include automatic setting of the SBR value.

Example: (cpu=H8SXA)

 //-SBR=0xFF00 is specified for compilation as an example
#pragma entry INIT
void INIT()

 :
}

 <Code expansion example>

 .SECTION P,CODE
_INIT:
MOV.L #H’FF00, ER3
LDC.L ER3,SBR
 :

Remarks: 1. Specify the #pragma entry <function name> before declaring the
 <function name>.

 2. Keywords can be specified for both declaration and definition. Note,
 however, that SP or vect cannot be specified with a keyword specified for
 a function declaration.

 3. Only one entry function can be specified within one load module.

331

#pragma indirect
_ _indirect

Description Format: #pragma indirect (<function name>[(vect=<vector number>)][,…])
<type specifier> _ _indirect[(vect=<vector number>)] <function name>
_ _indirect[(vect=<vector number>)] <type specifier> <function name>

Description: Specifies the functions to be called in memory indirect addressing mode
(@@aa:8).

 1. The function declared by the #pragma indirect or _ _ indirect
 statement is called in the format of JSR @@$function_name:8.
 When vect is specified, the function address is assigned to the address
 corresponding to the vector number.
 When vect is not specified for the function declared in memory indirect
 function call statement, the “$function_name” label and the function
 address are stored in the section “$INDIRECT” as the address table for
 memory indirect function calls.

 2. For details on section switching, refer to the description of #pragma
indirect section in section 10.2.1 (1), Extended Specifications Related
to Memory Allocation.

332

Example: (cpu=300)

_ _indirect(vest=5) char f(void); /* Function f address is */
 /* assigned to address 10 */
char f(void)
{
 ...
}
#pragma indirect (g)
unsigned char g(void) /* $g is created in section $INDIRECT */
 /* and stores the function g address */
{
 ...
}
void sub()
{
 f(); /* Function is called in @@$f:8 memory */
 /* indirect addressing mode */
 g(); /* Function is called in @@$g:8 memory */
 /* indirect addressing mode */
}

Remarks: 1. The functions in the first definition and declaration after the #pragma
 indirect declaration having the same function names as in the #pragma
 indirect declaration are treated as the target functions.

 2. Up to 63 functions can be specified in one #pragma indirect directive.

 3. Up to 128 functions can be specified in the nomal and H8/300 mode and
 up to 64 in the other modes in total. The address table section that has
 been created without vect specification must be allocated within the
 range from H'0x0000 to 0x00FF at linkage.

4. Run-time routines can be called in the memory indirect addressing mode
by declaration of #include <indirect.h>. To select a run-time routine to
be called in the memory indirect addressing mode, change unnecessary
#pragma indirect statements into comments inside indirect.h.

333

_ _indirect_ex

Description Format: <type specifier> _ _indirect_ex[(vect=<vector number>)] <function name>
 _ _indirect_ex[(vect=<vector number>)] <type specifier> <function name>

Description: Declares a function to be called in the extended memory indirect addressing
mode (@@vec).

 The function declared by the _ _ indirect_ex statement is called in the format
of JSR @@ $$function_name:7.
When vect is specified, the function address is assigned to the address
corresponding to the vector number. The vector number is 128 to 255.
When vect is not specified for the function declared in an extended memory
indirect function call statement, the “$$function_name” label and the
function address are stored in the section “$EXINDIRECT” as the address
table for extended memory indirect function calls.

Example: (cpu=300)
_ _indirect_ex(vect=128)char f1(void);/*Function f1 address is*/
 /*assigned to address 0x200 */
char f1(void)
{
 ...
}
void sub1(void)
{
 f1(); /* Function is called in @@$$f1:7, */
 /* extended memory indirect addressing mode */
}

Remarks: 1. This keyword is valid only when the CPU is H8SX.
2. Up to 128 functions can be specified to _ _indirect_ex in the whole
 program.The address table section ($EXINDRECT) that has been created
 without the vect specification must be allocated within the range from
 0x0100 to 0x01FF for H8SX normal mode, or from 0x000200 to
 0x0003FF for H8SX middle mode, H8SX advanced mode and H8SX
 maximum mode.

334

#pragma inline
_ _inline

Description Format: #pragma inline (<function name>[,…])
_ _inline <type specifier> <function name>
<type specifier> _ _inline <function name>

Description: Declares functions for which inline expansion is performed.

When #pragma inline declares a function, the function code is directly
generated at the place where it is called. The code for calling the function by
the JSR or BSR instruction is not generated.

Example: #pragma inline (f) /* Declares function f as */
 /* an inline function */
int a,b,c;
int f(int x,int y)
{
 return x+y;
}
void sub(void)
{
 a=f(b,c); /* Expanded directly to */
 /* code a=b+c */
}

Remarks: 1. The functions in the first definition and declaration after the #pragma
 inline declaration having the same function names as in the #pragma
 inline declaration are treated as the target functions.
2. Up to 63 functions can be specified in one #pragma inline directive.
3. When the function declared by #pragma inline or _ _inline satisfies
 one of the following conditions, inline expansion will not be performed:
 The function is defined before the #pragma inline or _ _inline
 specification.
 A variable number of argmemts is used.
 A parameter address is referenced.
 The actual parameter type does not match the formal parameter type.
 The maximum size of inline expansion is exceeded.
 An address of a function to be expanded is used to call the function.
4. When a source program file includes an inline function description, be
 sure to specify static before the function declaration because an external
 definition is generated even for a function specified by #pragma inline
 or _ _inline. If static or inline(C++) is specified, an external definition
 will not be created.

335

#pragma inline_asm

Description Format: #pragma inline_asm (<function name>[,...])
<function name>: Do not specify a C++ member function or an overloaded
function.

Description: Performs inline expansion for the functions written in assembly language
declared by #pragma inline_asm.

Parameters of a function that is written in assembly language are referenced
in an inline_asm function because they are stacked or stored in registers in
the same way as general function calls. The return value of an inline
function written in assembly language should be set to (E)R0.

Example: #pragma inline_asm(shlu)
extern unsigned int x;
static unsigned int shlu(unsigned int a)
{ /* Function shlu is deleted */
 SHLL.W R0
 BCC ?L1
 SUB.W R0,R0
 ?L1: /* Local label starts with ? */
}
void main(void)
{
 x = shlu(x) /* Inline expansion is performed */
 /* within the main function */
}

Remarks: 1. Compile the program using the object-type specification option
 code=asmcode.
2. The functions in the definitions after the #pragma inline_asm will be
 treated as the target functions.

 3. Specify #pragma inline_asm before the definition of the function.
 External definition will be generated for functions specified by #pragma
 inline_asm. When a source program includes the same inline function
 description, be sure to specify static before the function declaration.
 If static is specified, an external definition will not be created.

336

 4. Use local labels in an intrinsic inline function written in assembly
 language. For details on local labels, refer to section 11, Assembly
 Specifications.

 5. When using registers ER2 to ER6 in an intrinsic inline function written
 in assembly language, the contents of these registers must be saved and
 restored at the beginning and end of the function.

 6. Do not use RTS at the end of an inline function written in the assembly
 language.

 7. When the compiler outputs an assembly program, and inline expansion is
 performed to the program, the assembler may display error message
 “402 ILLEGAL VALUE IN OPERAND”. This is the compiler generates
 the code without displacement. So be assembled it with optimize option.
 Or use the JMP instruction and modify the assembly-language program
 to satisfy the required branch width if necessary.

 Example: Before modification After modification
 : :
 BEQ L1 BNE Ld
 : JMP L1
 Ld:

337

#pragma regsave
#pragma noregsave
_ _regsave
_ _noregsave

Description Format: #pragma regsave (<function name>[,…])
#pragma noregsave (<function name>[,…])
_ _regsave <function specifier> <function name>
<function specifier> _ _regsave <function name>
_ _noregsave <function specifier> <function name>
<type specifier> _ _noregsave <function name>

Description: Controls generation of code to save and restore the contents of registers.
1. Functions declared by #pragma regsave and _ _regsave generate
 codes that save and restore, at the entry and exit of the functions,
 the contents of all callee-save registers that should remain unchanged
 over a function call whether or not the registers are used in the function.
 In addition, register variables are not assigned to callee-save registers
 whose contents remain unchanged over a function call.
2. Functions declared by #pragma noregsave or _ _noregsave do not
 generate codes for saving and restoring registers whether or not
 the registers are used by the function.
3. When a function declared by #pragma noregsave or _ _noregsave is
 called, register variables are not assigned to registers whose contents
 should be retained after function call.

Example: (Compiled with CPU=2600a)

 #pragma regsave (f,g) /* Declares generation of code */
 /* for saving and restoring */
 /* register contents */
#pragma interrupt g /* Function g is an interrupt */
 /* function */
void f(void){} /* Saves and restores ER2 to ER6 */
void g(void){} /* Saves and restores ER0 to ER6 */

Remarks: 1. The first definition or declaration after the #pragma regsave or #pragma
 noregsave directive is treated as the target function.
2. Up to 63 functions can be declared in one #pragma regsave/noregsave
 directive.
3. A function call via a pointer-to-function is a standard function call even
 though an address of a function to which _ _noregsave or #pragma
 noregsave is specified is assigned to that pointer. Hence the compiler
 may allocate a value to a callee-save register over the function call. The

338

 value of the register may be changed by the call to the function with
 _ _noregsave or #pragma noregsave.
Example:
 #pragma noregsave f
 void (*p)(void);
 int sub(void)
 {
 int a=8; // assume a is assigned to R4
 p=f;
 // R4 is saved before call below
 f(); // noregsave function call
 // R4 is restored after call above

 // R4 is NOT saved
 (*p)(); // standard function call
 // R4 is NOT restored
 return a;
 }

_ _regparam2
_ _regparam3

Description Format: <type specifier> _ _regparam2 <function name>
<type specifier> _ _regparam3 <function name>

Description: Specifies the number of parameter registers. Functions specified by
_ _regparam2 use the ER0 and ER1 registers (the R0 and R1 registers for
the H8/300). Functions specified by _ _regparam3 use the ER0, ER1, and
ER2 registers (the R0, R1, and R2 registers for the H8/300).

Example: void _ _regparam2 func1(long a, int b, int c, long d);
void _ _regparam3 func2(long a, int b, int c, long d);
int long a; int b; int c; long d;

void main(void)
{ /* Variable allocation pattern*/
 : /* when cpu=2600a */
 funcl(a, b, c, d); /* long a : ER0 */
 : /* int b : E1 */
 : /* int c : R1 */
 : /* long d : stack */
 :

339

 func2(a, b, c, d); /* long a : ER0 */
 : /* int b : E1 */
 : /* int c : R1 */
} /* long d : ER2 */

Remarks: This keyword cannot be specified prior to the <type specifier> and must be
specified prior to the function name.

#pragma option

Description Format: #pragma option [<option string>]

Description: Enables the options in the option string specified by #pragma option.
This specification is valid until the file end is reached or until the point where
#pragma option without <option string> is specified is reached.

 If #pragma option <keyword> is specified, optimization specified by the
keyword is performed. Table 10.25 lists the specifiable optimization options.
For details on optimization options, refer to section 2, C/C++ Compiler
Operating Method.

Table 10.25 Specifiable Optimization Options

Option Specification Method Option Cancellation Method

case = {auto | ifthen | table} None

Cmncode nocmncode

Cpuexpand nocpuexpand

Macsave nomacsave

Regexpansion noregexpansion

optimize nooptimize

speed = {speed suboption} None

sbr = {address} None

 Table 10.26 shows the speed sub-options.

340

Table 10.26 Specifiable speed Options

Option Specification Method Option Cancellation Method

register noregister

shift noshift

loop noloop

switch noswitch

inline noinline

struct nostruct

expression noexpression

 When #pragma option without <option string> is specified, the previously-
specified #pragma option <option string> is ignored and options specified
on the command line become valid.

Example: #pragma option speed
void func(void) // speed option becomes valid
{
 :
}
#pragma option cpuexpand
void test(void) // speed and cupexpand become
 // valid
{
 :
}
#pragma option // Command line specification
void sub1(void) // becomes valid
{
 :
}

Remarks: #pragma option=speed=inline=<value> cannot be specified for H8SX and
H8S (without legacy=v4). If #pragma option speed=inline=<value> for
H8SX is attempted, the compiler assumes that
 #pragma option speed=inline is specified.

341

(3) Other Extended Specifications

#pragma asm

Description Format: #pragma asm
 <assembly-language instruction sequence>
#pragma endasm

Description: The assembly-language instructions must be preceded by #pragma asm and
be followed by #pragma endasm.
The compiler expands the assembly-language instructions enclosed by
#pragma asm and #pragma endasm into the object code generated by the
compiler.

Example: void func(void)
{
#pragma asm
 CLRMAC ; Clears the MAC register to 0
#pragma endasm
 :
}

Remarks: 1. Specify assembly program output with the code=asmcode option when
 compiling. If not specified, the assembly-language instructions enclosed
by #pragma asm and #pragma endasm are ignored.
2. The compiler checks neither the syntax of the assembly-language
 instructions, nor their influence over the code generated by the
 compiler. When the optimize=1 or speed option is specified when
 compiling, the expanded code or location of the assembly-language
 instructions may differ from that specified using #pragma asm and
 #pragma endasm. Check the output code and program operation by
 yourself, when using this feature.
3. The #pragma asm and #pragma endasm specification cannot be
 nested. If attempted, an error will occur.
4. If #pragma asm and #pragma endasm are specified in a conditional or
 loop statement, the assembly-language instructions including
 #pragma asm and #pragma endasm must be enclosed by { }. If not,
 results are not guaranteed.
5. The assembler may display error message “402 ILLEGAL VALUE
 IN OPERAND”. This is the compiler generates the code without
 displacement. So be assembled it with optimize option. Or use the JMP
 instruction and modify the assembly-language program to satisfy the
 required branch width if necessary.

342

Example:
while(a==0)
{ ……………… Must always be specified
#pragma asm
 <assembly-language instruction string>
#pragma endasm
} ……………… Must always be specified

_ _asm

Description Format: _ _asm{
 ...
}

Description: Assembly-language instructions can be written in the range between
_ _asm { and }. This range is called an _ _asm block afterwards.
The language specification in the _ _asm block is described below.

 1. Syntax
 • The compiler regards an _ _asm block as a statement of
 C/C++ language. Though an _ _ asm block can be written
 where a statement can be written, the block cannot be written
 outside a function or before the declaration in a compound statement
 of C language.
 • Up to one instruction can be written in one line.
 • One instruction cannot be written across multiple lines.
 In the assembler, writing the ‘+’ sign at a predetermined position allows
 to continue the current line to the next. In the _ _asm block, however,
 the ‘+’ sign is ineffective.
 • A colon, ‘:’ is necessary right after a label.
 The assembler regards a symbol beginning at the first column as a
 label. In the _ _asm block, however, an instruction can be written from
 the first column. For the compiler to recognize a label in an _ _asm
 block, a colon, ‘:’ is necessary.
 • A local label which begins with a ‘?’ is not allowed.
 • The comment in the C/C++ language format (/* */ and //) is allowed.
 The comment in the assembly language format (;) is not allowed.
 • Any comment in the _ _asm block is not displayed in the assembly
 source output or in the object listing output.
 • Except the .DATA directive, any assembly directives cannot be written.
 File inclusion, conditional assembly, macro and structured assembly are
 not supported.

343

 2. Symbol
2-1 Variable name
 • The name of a statically allocated variable is regarded as an address.
 The name of an auto variable is regarded as the displacement from the
 SP, the stack pointer. The prefix ‘_’ appended to external variables by
 the compiler is not required in an _ _asm block. In the following
 example, x will be an absolute address, and y will be the displacement
 from the SP.
 Example:
 int x;
 void func()
 {
 int y;
 _ _asm {
 mov.w @x,r0 //mov.w @_x,r0
 mov.w @(y,sp),r1 //mov.w @(0,sp),r1
 }
 }

 • C/C++ variables referred to from an _ _asm block will be allocated in
 the memory.
 • auto variables and parameters of C++ cannot be referred to from an
 _ _asm block.
2-2 Function name
 • Function names can be referred to from an _ _asm block if they have C
 linkage. The prefix ‘_’ appended to external function name by the
 compiler is not required in an _ _asm block
2-3 Label
 • Labels in C/C++ program cannot be referred to from an _ _asm block,
 and vice versa. A label in one _ _asm block cannot be referred to from
 another _ _asm block.
 • Location counter, ‘$’ can be used in an _ _asm block.
2-4 Enumrator name
 • An enumrator name of enum type data can be used as a constant.
2-5 Struct member name
 • “<struct variable name>.<memeber name>” will be an address if the
 variable is a statically allocated variable, or will be the offset
 from the SP if the variable is an auto variable.
 • “OFFSET <struct variable name>.<memeber name>” or
 “OFFSET (<struct variable name>.<memeber name>)” will be
 the offset of the member from the top of the struct.
 • The “->” operator used as “<struct variable name>-><memeber
 name>” or “OFFSET (<struct variable name>-><memeber name>)”
 is not allowed.

344

 • Bit field cannot be written in an _ _asm block.
 • Example:
 struct S {
 int a;
 int b;
 } x, *p;
 void func()
 {
 _ _asm {
 mov.w @x.b,r0 // mov.w @_x+2,r0
 mov.l @p,er1 // mov.l @_p,er1
 mov.w r0,@(OFFSET(x.b),er1)
 // mov.w r0,@(2,er1)
 }
 }
2-6 Section name
 • A section name can be used only as an operand of STARTOF or
 SIZEOF operator.

 3. Operator
 • Operators of assembly language can be used in an _ _asm block.
 They are shown below.
 unary plus: +, unary minus: -,
 addition: +, subtraction: -, multiplication: *, division: /,
 unary not: ~, bit-wise and: &, bit-wise or: |, bit-wise exclusive or: ~,
 arithmetic left shift: <<, arithmetic right shift: >>,
 section start address: STARTOF, section size: SIZEOF
 upper byte: HIGH, lower byte: LOW,
 upper word: HWORD, lower word: LWORD .

 4. Integer constant
 • An integer constant can be specified in the C/C++ language format
 rather than in the assembly language format. For example, a
 exadecimal number should be written as 0xFF rather than H’FF.

 5. Character constant
 • A character constant can be specified in the C/C++ language format
 rather than in the assembly language format. For example, a character
 constant should be written as ‘a’ rather than “a”. “a” is regarded as a
 string followed by a null character.

345

 6. Register convention
 • The register convention of an _ _asm block is similar to that of a
 function. Even though a caller-save register such as ER0, ER1 or
 (ER2) is used in an _ _asm block, the register is not saved or restored at
 the entry or exit of the block. If a callee-save register such as (ER2,)
 ER3, ER4, ER5 or ER6 is used in an _ _asm block, the compiler
 automatically generates code to save and restore the register at the entry
 and exit of the block, respectively. It is assumed that the SP is
 nchanged from the entry to the exit of an _ _asm block. After making a
 function call changes the SP, put back the SP to the original value
 before the call is made.
 • Even though the MAC register is used in an _ _asm block, the compiler
 never generates code to save/restore the MAC register at the
 entrance/exit of the _ _asm block. When the MAC register is changed
 inside an _ _asm block and if the value of the MAC register should be
 preserved over the _ _asm block, add code to save/restore the MAC
 register in the _ _asm block. The compiler does not recognize that the
 MAC register is written even when the macsave option is specified to
 an interrupt function.

Example: // -cpu=h8sxa
 int g_x;
 struct ST {
 int a;
 char b;
 char c;

 } g_st;
 enum color {BLUE, GREEN, YELLOW, RED};
 /* Image of actual code */
 void func(void) // Places local variables on the stack
 { /* sub.w #6,r7 */
 int x;
 int y;
 struct ST l_st;
 // The __asm block saves the values of registers used
 // in func.
 __asm{ /* stm.l (er2-er3),@-sp */
 // y : local, scalar, offset from SP = 8
 // l_st : local, struct, offset from SP = 10
 mov.w @(y,sp),r0 /* mov.w @(8,sp)r0 */
 mov.l #y,er1 /* mov.l #8,er1 */
 mov.w @(l_st.b, sp),r0 /* mov.w @(12,sp),r0 */

346

 mov.l #l_st.c,er1 /* mov.l #13,er1 */
 mov.l #OFFSET l_st.c,er0 /* mov.l #3,er0 */
 mov.l #l_st,er2 /* mov.l #10,er2 */
 bra L1

 CHAR:
 .data.b 'a' /* .data.b H’61 */
 STRING:
 .data.w "abc" /* .data.w H’6263 */
 ENUM:
 .data.w YELLOW /* .data.w H’0002 */
 BOTTOM:
 .data.l STARTOF P + SIZEOF P
 /* .data.l H’00000000 */

 L1:
 // g_st :
 // g_x :
 mov.b #0xFF,@g_st.b /* mov.w #H'FF,@_g_st+2 */
 mov.l #g_st.b,er1 /* mov.w #_g_st+2,er1 */
 mov.l #OFFSET g_st.b,er2
 /* mov.w #2,er2 */
 mov.l #g_st,er3 /* mov.w #_g_st,er3 */
 mov.w #func,@g_x /* mov.w #_func,@_g_x */
 mov.l #g_x,er0 /* mov.w #_g_x,er0 */
 } // The contents of registers used in the __asm
 // block have been restored
 /* ldm.l @sp+,(er2-er3) */
}

Remarks: 1. This keyword is valid only when the CPU type is H8SX or H8S.
2. The assembly program written in the _ _ asm block can be compiled into
 an object file directly with the code=machine option.
3. If the SP is changed in the _ _asm block, the source-level debugging is
 not guaranteed.
4. The assembler may display error message “402 ILLEGAL VALUE IN
 OPERAND”. This is the compiler generates the code without 3.
 displacement. So be assembled it with optimize option. Or use the JMP
3. instruction and modify the assembly-language program to satisfy the 3.
 required branch width if necessary.

347

#pragma global_register
_ _global_register

Description Format: #pragma global_register (<variable name>=<register name>[,…])
_ _global_register(<register name>) <type specifier> <variable name>
<type specifier> _ _global_register(<register name>) <variable name>
 <variable name>: Local variable and C++ non-static member data
 cannot be specified
 <register name>: ER4, ER5 (R4, R5 for H8/300)

Description: Allocates the global variable specified in <variable name> to the register
specified in <register name>.

Example: #pragma global_register(x=R4) /* External variable */
 /* x is allocated to */
 /* R4 */
int x;
_ _global_register(R5L) char y; /* External variable */
 /* y is allocated to */
 /* R5L */
void func1(void)
{
 x++;
}
void func2(void)
{
 y=0;
}
void func(int a)
}
 x = a;
 func1();
 func2();
}

Remarks: 1. The variables defined and declared after the #pragma global_register
 are the target variables.
2. This function is used for a simple or pointer type variable in the global
 variable. Do not specify a double type variable.
3. The initial value cannot be set. In addition, the address cannot be
 referenced.

348

4. The specified variable cannot be referenced from the linked file which
 does not have the register specification.
5. Setting and reference in the interrupt functions are not guaranteed.
6. The duplication of the specification of the same variable or register is
 prohibited. You can not specify the variables which are specified with
 #pragma abs8, #pragma abs16, _ _abs8, _ _abs16, _ _near8, or
 _ _near16.

#pragma pack 1
#pragma pack 2
#pragma unpack

Description Format: #pragma pack 1
#pragma pack 2
#pragma unpack

Description: Specifies the boundary alignment for structure, unions, and class members
after the #pragma pack 1 or #pragma pack 2 is specified in the source
program. The boundary alignment value specified by the pack option is used
for structures, unions, and class members declared when #pragma pack 1 or
#pragma pack 2 has not been specified or after #pragma unpack has been
specified. Table 10.27 shows the boundary alignment specified by #pragma
pack 1, #pragma pack 2, and #pragma unpack.

Table 10.27 Boundary Alignment of Structures, Unions, and Class Members

Extension/
Member Type

#pragma pack 1

#pragma pack 2

#pragma unpack (or No
Extension Specified)

[unsigned] char 1 1 1

[unsigned] short,
[unsigned] int,
[unsigned] long,
floating-point number,
pointer type

1 2 Value specified by pack
option

Structures, unions, and
classes aligned to one-byte
boundary

1 1 1

Structures, unions, and
classes aligned to two-byte
boundary

1 2 Value specified by pack
option

349

Example: #pragma pack 2
 struct S1 {
 char a; /* offset: 0 */
 /* gap: 1 byte */
 int b; /* offset: 2 */
 char c; /* offset: 4 */
 /* gap: 1 byte */
 };
 #pragma pack 1
 struct S2 {
 char a; /* offset: 0 */
 int b; /* offset: 1 */
 char c; /* offset: 3 */
 };
 #pragma unpack /* Follows pack option. Assumes */
 /* pack=2 as default. */
 struct S3 {
 char a; /* offset: 0 */
 /* gap: 1 byte */
 int b; /* offset: 2 */
 char c; /* offset: 4 */
 /* gap: 1 byte */
 };
 struct S1 s1 = {1,2,3}; /* _s1: .data.b 1,0,0,2,3,0 */
 struct S2 s2 = {1,2,3}; /* _s2: .data.b 1,0,2,3 */
 struct S3 s3 = {1,2,3}; /* _s3: .data.b 1,0,0,2,3,0 */

 void test() /* _test: */
 { /* mov.w #1,R0 */
 s1.b=1; /* mov.w R0,@_s1+2 */
 s2.b=2; /* mov.w #2,R0;For members */
 : /* mov.b R0H,@_s2+1; aligned to */
 /* ; one-byte */
 /* ; boundary, */
 } /* mov.b R0L,@_s2+2; Settings */
 /* ; and */
 /* ; references */
 /* ; are done in */
 /* ; one-byte */
 /* ; units */

Remarks: 1. The boundary alignment for structure members can be specified also by
 the pack option. When the option, and the #pragma pack 1 or 2 are
 specified together, the #pragma pack 1 or 2 takes priority.
2. The boundary alignment for structures, unions, and classes equals to the
 maximum boundary alignment for the members. For details, refer to
 section 10.1.2, Internal Data Representation, (2) Compound Type (C),
 Class Type (C++).
3. A member of a struct, union or class to which #pragma pack 1 or
 the pack=1 option is specified must not be accessed via a pointer

350

 (including an access via a pointer in a member function).
 Example: (cpu=2600a)
 struct S {
 char x;
 int y;
 } s;
 int *p=&s.y; // address of s.y can be odd
 void test()
 {
 s.y=1; // accessed correctly
 *p =1; // can be accessed incorrectly
 }

351

_ _evenaccess

Description Format: _ _evenaccess <type specifier> <variable name>
<type specifier> _ _evenaccess <variable name>

Description: Ensures access to an integer-type variable to be done within the size
of the declared variable type.
For the H8/300, 4-byte scalar-type variables are accessed in 2-byte units.
For the H8SX, refer to the remarks below.

Example: #define A (*(volatile unsigned short _ _evenaccess
*)0xff0178)
void test(void)
{
 A &= ~0x2000 ;
}
When _ _evenaccess is not specified When _ _evenaccess is specified
(1-byte memory access by BCLR.B) (2-byte memory access by MOV.W)
_test: _test:
 MOV.L #H’FF0178,ER0 MOV.W @H’FF0178:24,R0
 BCLR.B #H’5,@ER0 BCLR.B #H’5,R0H
 RTS MOV.W R0,@H’FF0178:24
 RTS

Remarks: • If a 2-byte counter register is accessed in1-byte unit, the 1 byte that is
 not accessed may have an incorrect value. In this case, specify
 _ _evenaccess to the counter register to access it with the correct size.
• When the CPU is H8SX, _ _evenaccess can be specified for all types
 and the member including bit fields of structures,
 unions, and classes. When _ _evenaccess is specified for structures,
 unions, and classes, access is the same as that when specified for each
 member.
• The double type cannot be accessed in 8-byte units.
• When the little-endian space is supported by
 H8SX, access a datum in the size of its type using _ _evenaccess.
• In H8SX, an error will occur if the initial value is specified for the
 static variable with _ _evenaccess declaration in order to avoid placing
 the initial value of big endian in the little-endian space.

352

 Example:
_ _evenaccess long x=0x12345678; /* Error */
void f (void)
{
 …
}

• Structures cannot be used in simple assignment, as parameters, or
 as return values when the CPU setting is
 H8SXN/H8SXM/H8SXA/H8SXX and keyword evenaccess has
 been specified. In these cases, only member-by-member setting
 and reference are possible.

 Example:
typedef struct {
 int a;
 long b;
}str;

_ _evenaccess str st1;
str st2;
void func(str);

str main(void){
str temporary;
st2.a = st1.a; /* For a structure declared as */
st2.b = st2.b; /* _ _evenaccess, simple assignment */
 /* is achieved through member-by */
 /* -member operations. */

temporary.a = st1.a; /* Member-by-member assignment */
temporary.b = st1.b; /* of the structure declared */
func(temporary); /* as _ _evenaccess to a */
 /* structure not declared as */
 /* _ _evenaccess allows */
 /* specification of the latter */
 /* as a parameter. */

353

return (temporary); /* The structure not declared */
 /* as _ _evenaccess is usable */
 /* as a return value. */
}

#pragma address

Description Format: #pragma address (<variable name>=<absolute address> [,…])
 <absolute address> : Effective address
 (in hexadecimal notation of the C language)

Description: For linkage, the compiler allocates a single specified variable to
 <absolute address> by setting up the section to which the variable is allocated at
 <absolute address>. When consecutive addresses are specified for variables of
 the same section type, the compiler places them in the same section. If a variable
 is allocated to an address within the 8-bit or 16-bit short absolute area, the
 compiler outputs 8- and 16-bit absolute instructions (forms with :8 or :16),
 except in cases where a variable requiring even boundaries is specified for
 an 8-bit short absolute area.

Example: (1)
• Source program
#pragma address (io=0x100)
int io;

func(void){
 io = 0;
}

• Output object
When #pragma address is not specified
 .SECTION P,CODE
_func:
 MOV.W #0:4,@_io:32
 RTS
 .SECTION B,DATA,ALIGN=2
_io:
 .RES.W 1
 .END

354

When #pragma address is specified
 .SECTION P,CODE
_func:
 MOV.W #0, @_io:16
 RTS
 .SECTION $ADDRESS$B100,DATA,LOCATE=H'100
_io:
 .RES.W 1
 .END

(2)
• Source program
#pragma address (P1=0x100)
struct {
 unsigned char BYTE;
 unsigned short WORD;
}P1;

func()
{
 P1.WORD =10;
}

• Output object
When #pragma address is not specified
 .SECTION P,CODE
_func:
 MOV.W #10,@_P1+2:32
 RTS
 .SECTION B,DATA,ALIGN=2
_P1:
 .RES.W 2
 .END

355

When #pragma address is specified
 .SECTION P,CODE
_func:
 MOV.W #10,@_P1+2:16
 RTS
 .SECTION $ADDRESS$B100,DATA,LOCATE=H'100
_P1:
 .RES.W 2
 .END

 (3) Variables at consecutive addresses have the same section type
• Source program
#pragma address (io=0x100, io2=0x102)
int io;
int io2;

func(void){
 io =0;
 io2 =0;
}

• Output object
When #pragma address is not specified
 .SECTION P,CODE
_func:
 MOV.W #0:4,@_io2:32
 MOV.W #0:4,@_io:32
rts
 .SECTION B,DATA,ALIGN=2
_io:
 .RES.W 1
_io2:
 .RES.W 1
 .END

356

When #pragma address is specified
 .SECTION P,CODE
_func:
 MOV.W #0,@_io2:16
 MOV.W #0,@_io:16
 RTS
 .SECTION $ADDRESS$B100,DATA,LOCATE=H'100
_io:
 .RES.W 1
_io2:
 .RES.W 1
 .END

 (4) Variables have the same section type but are not consecutive
 (in the example below, this leaves two bytes empty).
• Source program
#pragma address (io=0x100, io2=0x104)
int io;
int io2;

func(void){
 io = io2 =0;
}

• Output object
When #pragma address is not specified
 .SECTION P,CODE
_func:
 MOV.W #0:4,@_io2:32
 MOV.W #0:4,@_io:32
 RTS
 .SECTION B,DATA,ALIGN=2
_io:
 .RES.W 1

_io2:
 .RES.W 1
 .END

357

When #pragma address is specified
 .SECTION P,CODE
_func:
 MOV.W #0,@_io2:16
 MOV.W #0,@_io:16
 RTS
 .SECTION $ADDRESS$B100,DATA,LOCATE=H'100
_io:
 .RES.W 1
 .SECTION $ADDRESS$B104,DATA,LOCATE=H'104
_io2:
 .RES.W 1
 .END

358

Remarks: • This function is only valid when the CPU type is H8SX or H8S.

 • For a given variable, #pragma address must be specified before the
 variable is declared.

• An error occurs if a compound/class-type member, static member, or
 symbolic name other than that of a variable is specified.

• An error occurs if an odd address is specified for a variable or structure
 requiring alignment with an even boundary.

• An error occurs if more than one #pragma address specification is made
 for the same variable.

• An error occurs if the same address is specified for different variables or
 the addresses of variables overlap.

• An error occurs if more than one of the following #pragma extensions is
 specified for the same variable.
 #pragma section
 #pragma abs8/abs16
 #pragma global_register

• Do not specify #pragma address for a variable initialized with data.
 If you do make such a specification, the compiler outputs message
 C1407 (W) #pragma address ignored.

359

10.2.2 Section Address Operator

_ _sectop
_ _secend

Description Format: _ _sectop(“<section name>”)
_ _secend(“<section name>”)

Description: Refers to the start address of <section name> specified by _ _sectop.
Refers to the end + 1 address of <section name> specified by _ _secend.

360

Example: #include <machine.h>
#pragma section $DSEC
static const struct {
 void *rom_s; /* Start address of initialized */
 /* data section in ROM */
 void *rom_e; /* End address of initialized */
 /* data section in ROM */
 void *ram_s; /* Start address of initialized */
 /* data section in RAM */
}DTBL[]={_ _sectop ("D"), _ _secend ("D"), _ _sectop ("R")};

#pragma section $BSEC
static const struct {
 void *b_s; /* Start address of uninitialized */
 /* data section */
 void *b_e; /* End address of uninitialized */
 /* data section */
}BTBL[]={_ _sectop ("B"), _ _secend ("B")};

#pragma section
#pragma stacksize 0x100 /* Declares stack section S */
#pragma entry INIT /* Declares function INIT as */
 /* an entry function */
void main(void); /* Declares main function */
void INIT(void) /* _INIT: Entry start function */
{ /* MOV #STARTOF S+SIZEOF S,SP */
 /* ; SP initial */
 /* ; settings */
 INITSCT(); /* JSR @ _INITSCT ; Initializes */
 /* ; section area*/
 main(); /* JSR @_main ; Calls main */
 /* ; function */
 sleep(); /* SLEEP ; Sleep state */
 /* ; in low-power*/
 /* ; consumption */
 /* ; mode */
}

 For details of section initialization, refer to section 9.2.2, Execution
Environment Settings.

361

10.2.3 Intrinsic Functions

The compiler provides the following functions that cannot be written in C/C++, as intrinsic
functions.

• Setting and referencing the condition code register

• Setting and referencing the extend register

• Multiply and accumulate (MAC) operation

• Rotation

• Special instructions (TRAPA, SLEEP, MOVFPE, MOVTPE, EEPMOV, TAS, NOP, and
XCH)

• Overflow testing

• Decimal operation

Intrinsic functions can be written in the same call format as regular functions. However, when
using intrinsic functions, #include <machine.h> must be declared.

Table 10.28 lists intrinsic functions.

Table 10.28 Intrinsic Functions

Item Specification Function

void set_imask_ccr(unsigned char mask) Sets value of parameter mask in the
interrupt mask

unsigned char get_imask_ccr(void) References the interrupt mask

void set_ccr(unsigned char ccr) Sets the condition code register
(value of parameter ccr -> CCR)

unsigned char get_ccr(void) References the condition code
register

void and_ccr(unsigned char ccr) ANDs the condition code register
(CCR & parameter ccr -> CCR)

void or_ccr(unsigned char ccr) ORs the condition code register
(CCR | parameter ccr -> CCR)

Condition
code register

void xor_ccr(unsigned char ccr) Exclusively ORs the condition code
register
(CCR ˆ parameter ccr -> CCR)

362

Table 10.28 Intrinsic Functions (cont)

Item Specification Function

void set_imask_exr(unsigned char mask) Sets the value of parameter mask in
the interrupt mask

unsigned char get_imask_exr (void) References the interrupt mask

void set_exr(unsigned char exr) Sets the extend register
(parameter exr -> EXR)

unsigned char get_exr (void) References the extend register

void and_exr(unsigned char exr) ANDs the extend register
(EXR & parameter exr -> EXR)

void or_exr(unsigned char exr) ORs the extend register
(EXR | parameter exr -> EXR)

Extend
register

void xor_exr(unsigned char exr) Exclusively ORs the extend register
(EXR ˆ parameter exr -> EXR)

Vector base
register

void set_vbr(void* vbr) Makes the VBR setting

long mac (long val,int* ptr1,
int* ptr2,unsigned long count)

Multiply and
accumulate
operation long macl (long val,int* ptr1,

int* ptr2,unsigned long count,
unsigned long mask)

Calculates
val+Σi=0,count-1(ptr1[i]*ptr2[i])
using MAC instruction, or calculates
val+Σi=0,count-1
(ptr1[i]**((ptr2+i)&mask))
using ring buffer function

long mulsu (long val1, long val2) Expanded to MULS/U instruction 64-bit
multiplication unsigned long muluu (unsigned long

val1,
unsigned long val2)

Expanded to MULU/U instruction

char rotlc(int count,char data)

int rotlw(int count,int data)

long rotll(int count,long data)

Rotates data to the left for the
number of bits specified in count

char rotrc(int count,char data)

int rotrw(int count,int data)

Rotation

long rotrl(int count,long data)

Rotates data to the right for the
number of bits specified in count

363

Table 10.28 Intrinsic Functions (cont)

Item Specification Function

void trapa(unsigned int trap_no) Expanded to TRAPA #trap_no

void sleep(void) Expanded to SLEEP instruction

void movfpe(char *addr,char data)
char _movfpe(char *addr)

Sets *addr in data using MOVFPE
instruction, or returns *addr

void movtpe(char data,char *addr) Sets data in *addr using MOVTPE
instruction

void tas(char *addr) Compares *addr with 0, sets the
results in the condition code register,
and sets most significant bit of *addr
as 1 by using the TAS instruction

void eepmov(void *dst,const void *src,
unsigned char size)

void eepmov(void *dst,const void *src,
unsigned int size)

void eepmovb (void *dst,const void *src,
unsigned char size)

void eepmovw (void *dst,const void *src,
unsigned int size)

void eepmovi (void *dst, const void *src,
unsigned char size)

void eepmovi (void *dst, void *src,
unsigned int size)

Transfers data for bytes specified in
size from *src to *dst by using
EEPMOV instruction

void movmdb (void *dst, const void *src
unsigned int count)

Transfers data from *src to *dst for
the number of times specified by
count by using movmd.b instruction

void movmdw (int *dst, const int *src,
unsigned int count)

Transfers data from *src to *dst for
the number of times specified by
count by using movmd.w instruction

void movmdl (long *dst, const long *src,
unsigned int count)

Transfers data from *src to *dst for
the number of times specified by
count by using movmd.l instruction

unsigned int movsd (char *dst,
const char *src unsigned int size)

Transfers data up to the maximum
number of bytes specified by size.
However, transferring a zero datum
terminates execution.

Special
instructions

void nop(void) Expanded to NOP instruction

364

Table 10.28 Intrinsic Functions (cont)

Item Specification Function

int ovfaddc(char dst,char src,char *rst)

int ovfadduc(unsigned char dst,
unsigned char src,unsigned char *rst)

int ovfaddw(int dst,int src,int *rst)

int ovfadduw(unsigned int dst,
unsigned int src,unsigned int *rst)

int ovfaddl(long dst,long src,long *rst)

int ovfaddul(unsigned long dst,
unsigned long src,unsigned long *rst)

Sets the results of dst + src in *rst
and reflects the results in the
condition code register

int ovfsubc(char dst,char src,char *rst)

int ovfsubuc(unsigned char dst, unsigned
char src,unsigned char *rst)

int ovfsubw(int dst,int src,int *rst)

int ovfsubuw(unsigned int dst,
unsigned int src,unsigned int *rst)

int ovfsubl(long dst,long src,long *rst)

Condition
code

operation

int ovfsubul(unsigned long dst,
unsigned long src,unsigned long *rst)

Set the results of dst – src in *rst and
reflects the results in the condition
code register

int ovfshalc(char des,char *rst)

int ovfshalw(int dst,int *rst)

int ovfshall(long dst,long *rst)

Sets the results of dst << 1 in *rst and
reflects the results in the condition
code register (arithmetical shift)

Int ovfshlluc(unsigned char des,
unsigned char *rst)

int ovfshlluw(unsigned int dst,
unsigned int *rst)

int ovfshllul(unsigned long dst,
unsigned long *rst)

Sets the results of dst << 1 in *rst and
reflects the results in the condition
code register (logical shift)

int ovfnegc(char dst,char *rst)

int ovfnegw(int dst,int *rst)

Condition
code

operation

int ovfnegl(long dst,long *rst)

Sets the 2's complement of dst in *rst
and reflects the results in the
condition code register

365

Table 10.28 Intrinsic Functions (cont)

Item Specification Function

void dadd(unsigned char size,
 char *ptr1,char *ptr2,char *rst)

Assumes ptr1 and ptr2 to be decimal
arrays consisting of digits indicated in
size, performs addition in decimals,
and sets the results in *rst

Decimal
operation

void dsub(unsigned char size,
 char *ptr1,char *ptr2,char *rst)

Assumes ptr1 and ptr2 to be decimal
array consisting of digits indicated in
size, performs subtraction in decimals,
and sets results in *rst

void set_imask_ccr(unsigned char mask)

Description: Sets the value of parameter mask (0 or 1) to the interrupt mask bit (I) of the
condition code register (CCR).

Header: <machine.h>

Parameters: mask Mask value (0 or 1)

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 set_imask_ccr(0); /* Clears interrupt mask bit */
}

unsigned char get_imask_ccr(void)

Description: References the value of parameter mask (0 or 1) of the interrupt mask bit (I)
of the condition code register (CCR).

Header: <machine.h>

Return value: Reference value of the interrupt mask bit of the condition code register
(CCR)

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 if(get_imask_ccr()) /*Refers to interrupt mask bit*/
 :
}

366

void set_ccr(unsigned char ccr)

Description: Sets the value of parameter ccr (8 bits) to the condition code register (CCR).

Header: <machine.h>

Parameters: ccr Setting value (8 bits)

Example: #include <machine.h> /* Must include <machine.h> */
main()
{
 set_ccr(0); /* Clears CCR */
}

unsigned char get_ccr(void)

Description: References the value of the condition code register (CCR).

Header: <machine.h>

Return value: Reference value of the condition code register (CCR)

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 unsigned char a;
 a=get_ccr(); /* Refers to CCR */
}

367

void and_ccr(unsigned char ccr)

Description: ANDs the condition code register (CCR) with the value of parameter ccr and
stores the results in the CCR.

Header: <machine.h>

Parameters: ccr Operand of logical AND operation

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 and_ccr(0x10); /* Sets CCR & 0x10 in CCR */
}

void or_ccr(unsigned char ccr)

Description: ORs the condition code register (CCR) with the value of parameter ccr and
stores the results in the CCR.

Header: <machine.h>

Parameters: ccr Operand of logical OR operation

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 or_ccr(0x10); /* Sets CCR | 0x10 in CCR */
}

368

void xor_ccr(unsigned char ccr)

Description: Exclusively ORs the condition code register (CCR) with the value of
parameter ccr and stores the results in the CCR.

Header: <machine.h>

Parameters: ccr Operand of logical exclusive OR operation

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 xor_ccr(0x10); /* Sets CCR ^ 0x10 in CCR */
}

void set_imask_exr(unsigned char mask)

Description: Sets the value of parameter mask (0 to 7) to the interrupt mask bits (I2 to I0)
of the extend register (EXR). This function can be used in H8SXN, H8SXM,
H8SXA, H8SXX, 2600a, 2000a, 2600n, and 2000n CPU/operating modes.

Header: <machine.h>

Parameters: mask Mask value

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 set_imask_exr(0); /* Sets mask level 0 to the */
 /* interrupt mask bits in the */
 /* extended register */
 :
}

369

unsigned char get_imask_exr(void)

Description: References the value (0 to 7) of the interrupt mask bits (I2 to I0) of the
extend register (EXR). This function can be used in H8SXN, H8SXM,
H8SXA, H8SXX, 2600a, 2000a, 2600n, and 2000n CPU/operating modes.

Header: <machine.h>

Return value: Reference value of the interrupt mask bits of the extended register (EXR)

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 if(get_imask_exr()); /* Refers to the interrupt */
 : /* mask bits of the extended */
 /* register */

 }

void set_exr(unsigned char exr)

Description: Sets the value of parameter exr (8 bits) to the extend register (EXR). This
function can be used in H8SXN, H8SXM, H8SXA, H8SXX, 2600a, 2000a,
2600n, and 2000n CPU/operating modes.

Header: <machine.h>

Parameters: exr Setting value

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 set_exr(0); /* Clears the extended register */
}

370

unsigned char get_exr(void)

Description: References the extend register (EXR). This function can be used in H8SXN,
H8SXM, H8SXA, H8SXX, 2600a, 2000a, 2600n, and 2000n
CPU/operating modes.

Header: <machine.h>

Parameters: Reference value of the extended register (EXR)

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
unsigned char a;
 a=get_exr(); /* Refers to the extended register */
 :
}

void and_exr(unsigned char exr)

Description: ANDs the extend register (EXR) with the value of parameter exr and stores
the result in the EXR. This function can be used in H8SXN, H8SXM,
H8SXA, H8SXX, 2600a, 2000a, 2600n, and 2000n CPU/operating modes.

Header: <machine.h>

Parameters: exr Operand of logical AND operation

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 and_exr(0x10); /* Sets EXR & 0x10 in EXR */
}

371

void or_exr(unsigned char exr)

Description: ORs the extend register (EXR) with the value of parameter exr and stores the
result in the EXR. This function can be used in H8SXN, H8SXM, H8SXA,
H8SXX, 2600a, 2000a, 2600n, and 2000n CPU/operating modes.

Header: <machine.h>

Parameters: exr Operand of logical OR operation

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 or_exr(0x10); /* Sets EXR | 0x10 in EXR */
}

void xor_exr(unsigned char exr)

Description: Exclusively ORs the extend register (EXR) with the value of parameter exr
and stores the result in the EXR. This function can be used in H8SXN,
H8SXM, H8SXA, H8SXX, 2600a, 2000a, 2600n, and 2000n
CPU/operating modes.

Header: <machine.h>

Parameters: exr Operand of logical exclusive OR operation

Example: #include <machine.h> /* Must include <machine.h> */
void main(void)
{
 xor_exr(0x10); /* Sets EXR ^ 0x10 in EXR */
}

372

void set_vbr(void* vbr)

Description: Sets vbr (32 bits) to the vector base register (VBR). This function can be
used when the CPU type is H8SXN, H8SXM, H8SXA, or H8SXX.

Header: <machine.h>

Parameters: vbr Setting value

Example: #include <machine.h> /* Be sure to include <machine.h> */
void main(void)
{
set_vbr((void*)0x20000); /* Sets 0x20000 to VBR
*/
}

long mac(long val,int *ptr1,int *ptr2,unsigned long count)
long macl(long val,int *ptr1,int *ptr2,unsigned long count,unsigned long mask)

Description: Expanded to the multiply-and-accumulate instruction, MAC.
The function mac sets parameter val to the MAC register as the initial value,
multiplies two bytes ptr1 and ptr2 with sign, adds the 4-byte result to the
MAC register contents, and adds two to ptr1 and ptr2. This operation is
repeated for the number of times specified by count.
The macl function logically ANDs the values of ptr2 and mask so that the
data of ptr2 can be used as a ring buffer.
These functions can be used in H8SXN:{M | MD}, H8SXM:{M | MD}
H8SXA:{M | MD}, H8SXX:{M | MD}, 2600a and 2600n CPU/operating
modes.

Header: <machine.h>

Return value: Result of multiply-and-accumulate operation

Parameters: val Initial value of the MAC register
ptr1, ptr2 Pointer to the multiplication data
count Number of loops
mask Mask value for the ring buffer

373

Example: #include <machine.h> /* Must include<machine.h>*/
int ptr1[10]={0,1,2,3,4,5,6,7,8,9};
int ptr2[10]={9,8,7,6,5,4,3,2,1,0};
long l1,l2;
 :
void main(void)
{
l1=mac(100,ptr1,ptr2,4); /* Executes */
 /* l1=100+0*9+1*8+2*7+3*6 */
l2=macl(100,ptr1,ptr2,4,-4); /* Executes */
 /* l2=100+0*9+1*8+2*9+3*8 */
 /* The data of ptr2[0] and */
 /* ptr2[1] is repeatedly used*/
 /* as a ring buffer. Since */
 /* ptr2 & mask is used as an */
 /* address, ptr2 must be */
 /* assigned to an address */
 /* that is a multiple of */
 /* eight. */
 }

Remarks: The boundary of the table pointed to by ptr2 in the macl function must be
aligned to a double of the mask value's complement. For example, in the case
above, the linkage map must be confirmed so that ptr2 is allocated to the address
of a multiple of eight.

374

long mulsu (long val1, long val2)
unsigned long muluu (unsigned long val1, unsigned long val2)

Description: Expanded to the muls/u or mulu/u instruction, which performs 32-bit x 32-bit
= 64-bit multiplication.
32-bit parameters (val1 and val2) for this intrinsic function are multiplied
and the upper 32 bits are returned as the operation result.

Header: <machine.h>

Parameters: val1 Multiplicand
val2 Multiplier

Example: #include <machine.h>
long s_val1, s_val2, s_ans;
unsigned long u_val1, u_val2, u_ans;
void f(void)
{
 s_ans = mulsu (s_val1, s_val2);
 /*Signed 32-bit multiplication*/

 u_ans = muluu (u_val1, u_val2);
 /*Unsigned 32-bit multiplication*/
}

Remarks: This intrinsic function is only valid when the CPU is H8SXN:{M | MD},
H8SXM:{M | MD}, H8SXA:{M | MD} or H8SXX:{M | MD}.

375

char rotlc (int count,char data)
int rotlw (int count,int data)
long rotll (int count,long data)

Description: Functions rotlc, rotlw, and rotll rotate 1-byte, 2-byte, and 4-byte data to the
left by the number of bits specified by count, respectively, and return the
results.

Header: <machine.h>

Return value: Result of data rotation

Parameters: count Number of bits to be rotated
data Data to be rotated

Example: #include <machine.h> /* Must include <machine.h> */
int i,data;
void f(void)
{
 i=rot1w(5,data); /* Rotates data 5 bits to the left */
 }

char rotrc (int count,char data)
int rotrw (int count,int data)
long rotrl (int count,long data)

Description: The functions rotrc, rotrw, and rotrl rotate 1-byte, 2-byte, and 4-byte data
to the right by the number of bits specified by count, respectively, and return
the results.

Header: <machine.h>

Return value: Result of data rotation

Parameters: count Number of bits to be rotated
data Data to be rotated

Example: #include <machine.h> /* Must include <machine.h> */
int i,data;
void f(void)
{
 i=rotrw(5,data); /* Rotates data 5 bits to the right*/
}

376

void trapa(unsigned int trap_no)

Description: Expanded to an unconditional trap instruction, TRAPA #trap_no. The
trap_no must be a constant from 0 to 3. This function cannot be used in 300
CPU/operating mode.

Header: <machine.h>

Parameters: trap_no Trap number for the vector address indicating the jump
 destination

Example: #include <machine.h> /* Must include <machine.h> */
void f(void)
{
 :
 trapa(0); /* Returns at trapa #0 */
}

void sleep(void)

Description: Expanded to a low-power consumption instruction, SLEEP.

Header: <machine.h>

Example: #include <machine.h> /* Must include <machine.h> */
void f(void)
{
 :
 sleep(); /* Expanded to a sleep */
 /* instruction */
}

377

void movfpe(char *addr,char data)
char _movfpe (char *addr)

Description: The contents of *addr is moved to data by the function movfpe or is
returned by the function _movfpe at a timing synchronous to the E clock
using the E clock-synchronous data transfer instruction, MOVFPE. For
*addr, specify a value that can be accessed by a 16-bit absolute address.

Header: <machine.h>

Return value: The movfpe function N/A
The _movfpe function Destination data

Parameters: addr Pointer to the source data
data Destination data (the movfpe function)

Example: #include <machine.h> /* Must include <machine.h> */
#pragma abs16 a /* Declares the first parameter */
char a,data; /* by #pragma abs16 to access it */
 /* by a 16-bit absolute address */
void f(void)
{
 movfpe(&a,data); /* Moves a to data by MOVFPE*/
 data = _movfpe(&a); /* Same operation as the above.*/
}

Remarks: char _movfpe(char * addr) is valid only with H8SX.

378

void movtpe(char data,char *addr)

Description: Moves the contents of data to *addr at a timing synchronous to the E clock
using the E clock-synchronous data transfer instruction, MOVTPE. For
*addr, specify a value that can be accessed by a 16-bit absolute address.

Header: <machine.h>

Parameters: data Source data
addr Pointer to the destination

Example: #include <machine.h> /* Must include <machine.h> */
#pragma abs16 a /* Declares the second parameter*/
char a,data; /* by #pragma abs16 to access it*/
 /* by a 16-bit absolute address */
void f(void)
{
 movtpe(data,&a); /* Moves data to a at a timing */
 /* synchronous to the E clock */
}

void tas(char *addr)

Description: Expanded to a test and set instruction, TAS. Compares the contents of
addr with 0, reflects the result in the condition code register (CCR), and
changes the highest-order bit of the addr contents to 1. This function
can be used in H8SXN, H8SXM, H8SXA, H8SXX, 2600a, 2000a, 2600n,
and 2000n CPU/operating modes.

Header: <machine.h>

Parameters: addr Pointer to the data to be tested and set

Example: #include <machine.h> /* Must include <machine.h> */
char a;
void f(void)
{
 tas(&a); /* Sets the result of a - 0 */
 /* in CCR and performs */
 /* a |= 0x80 */
}

379

void eepmov(void *dst,const void *src,unsigned char size)
void eepmov(void *dst,const void *src,unsigned int size)
void eepmovb(void *dst,const void *src,unsigned char size)
void eepmovw(void *dst,const void *src,unsigned int size)

Description: Transfers the bytes whose number is specified by the size from the address
specified by src to the address specified by dst using the block transfer
instruction, EEPMOV.

 For the eepmov intrinsic function, size must be a constant value. The
maximum size that can be specified is 255 in the 300 CPU/operating
mode and 65535 in other modes. However, when the size is in the
range of 256 to 65535, this function is expanded to EEPMOV.W.
If interrupts are requested, do not use this function. If size is zero,
no transfer occurs.

 For the eepmovb and eepmovw intrinsic functions, size can be a variable.
The eepmovb intrinsic function is always expanded to EEPMOV.B and the
eepmovw intrinsic function to EEPMOV.W.

Header: <machine.h>

Parameters: dst Pointer to the destination
src Pointer to the source
size Transfer size

Example: #include <machine.h> /* Must include <machine.h> */
char a[10],b[10];
void f(void)
{
 eepmov(b,a,10); /* The data of array a is */
 /* transferred to array b */
 /* using the EEPMOV instruction */
}

Remarks: The eepmovb and eepmovw intrinsic functions are valid only when the CPU
is H8SX and H8S(without legacy=v4 option).

380

void eepmovi(void *dst,const void *src,unsigned int size)

Description: Transfers the bytes whose number is specified by the size from the
address specified by src to the address specified by dst using the
block transfer instruction, EEPMOV. This function is expanded so that the
EEPMOV instruction can resume transfer after returning from an interrupt.

 size can be a constant or a variable. As a constant, up to 65535 can be
specified. If size is zero, no transfer occurs. If size is a constant of
less than 256 this function is expanded to one EEPMOV.B instruction.
If size is a constant in the range from 256 to 510, this function is
expanded to two EEPMOV.B instructions. If size is a constant no less
than 512 or a variable, this function is expanded using EEPMOV.W
as follows so that EEPMOV.W can resume transfer after an interrupt .
 L1: EEPMOV.W
 MOV.W R4,R4
 BNE L1

Header: <machine.h>

Parameters: dst Pointer to the destination
src Pointer to the source
size Transfer size

Example: #include <machine.h> /* Must include <machine.h> */
char a[10],b[10];
void f(void)
{
 eepmovi(b,a,10); /* The data of array a is */
 /* transferred to array b */
 /* using the EEPMOV instruction */
}

Remarks: This intrinsic function is valid only when the CPU is H8SX or H8S.

381

void movmdb(void *dst, const void *src, unsigned int count)
void movmdw(int *dst, const int *src, unsigned int count)
void movmdl(long *dst, const long *src, unsigned int count)

Description: The MOVMD.B, MOVMD.W or MOVMD.L instruction transfers a memory
block of 1, 2 or 4 bytes, respectively, the number of times specified by count
from the address specified by src to the address specified by dst.
count takes the value from zero to 65535. If count is zero, however, it is
interpreted as 65536.

Header: <machine.h>

Parameters: src Pointer to the source
dst Pointer to the destination
size Transfer count

Example: #include <machine.h> /* Must include <machine.h> */
char s1[100], d1[100];
int s2[50], d2[50]
long s4[25], d4[25]
void f(void)
{
 movmdb(d1, s1, 100); /* MOVMD.B transfers 100 bytes */
 /* from array s1 to array d1 */
 movmdw(d2, s2, 50); /* MOVMD.W transfers 100 bytes */
 /* from array s2 to array d2 */
 movmdl(d4, s4, 25); /* MOVMD.L transfers 100 bytes */
} /* from array s4 to array d4 */

Remarks: This intrinsic function is valid only when the CPU is H8SX.

382

unsigned int movsd(char *dst, const char *src, unsigned int size)

Description: Transfers a memory block using the block transfer instruction MOVSD from
the address specified by src to the address specified by dst either until a byte
whose value is zero (H'00) has been transferred or until the transferred size
has reached size. The return value is the value subtracting the size of
actually-transferred bytes from the size given by size.
size takes the value from zero to 65535. If size is zero, however, the
maximum size allowed to transfer is interpreted as 65536.

Header: <machine.h>

Return value: The value subtracting the size actually transferred from the given size

Parameters: src Pointer to the source
dst Pointer to the destination
size Maximum size allowed to transfer

Example: #include <machine.h> /* Must include <machine.h> */
const char *s;
char d[100];
unsigned int remain;

void f(void)
{
 remain = movsd(d, s, 100); /* The string s is copied */
 /* to the array d usingthe */
 /* MOVSD instruction within*/
} /* the limit of 100 bytes */

Remarks: This intrinsic function is valid only when the CPU is H8SX.

void nop(void)

Description: Expanded into a NOP instruction

Header file: <machine.h>

Example: #include <machine.h> /* Must include <machine.h> */

int a;

void f(void)
{

 while(a)nop(); /* Executes a NOP instruction */
 /* while a!=0 */

}

383

int ovfaddc(char dst,char src,char *rst)
int ovfaddw(int dst, int src,int *rst)
int ovfaddl(long dst,long src,long *rst)
int ovfadduc(unsigned char dst,unsigned char src,unsigned char *rst)
int ovfadduw(unsigned int dst,unsigned int src,unsigned int *rst)
int ovfaddul(unsigned long dst,unsigned long src,unsigned long *rst)

Description: The functions ovfaddc, ovfaddw, and ovfaddl add signed 1-byte, 2-byte,
and 4-byte data dst and src, respectively. The functions ovfadduc, ovfadduw,
and ovfaddul add unsigned 1-byte, 2-byte, and 4-byte data dst and src,
respectively. Then, these functions store the results to the area specified
by rst only when rst is not 0, and return 0 when the results do not overflow
or return a value other than 0 when they do overflow.
These functions can be used only in the conditional statements such
as if, do , while, and for statements.
The ovfaddl and ovfaddul functions are valid when the CPU is other than
H8/300.

Header file: <machine.h>

Return value: When the result overflows A value other than 0
 When the results does not overflow 0

Parameters: dst, src Operands of addition
rst Result storage area (The result is not stored if the rst value is 0)

Example: #include <machine.h> /* Must include <machine.h> */
int dst, src;
void f(void)
{
 if(ovfaddw(dst,src,0) /* Determine the result of */
 /* dst + src by BVC */
 dst=0;
)

384

int ovfsubc(char dst,char src,char *rst)
int ovfsubw(int dst,int src,int *rst)
int ovfsubl(long dst,long src,long *rst)
int ovfsubuc(unsigned char dst,unsigned char src,unsigned char *rst)
int ovfsubuw(unsigned int dst,unsigned int src,unsigned int *rst)
int ovfsubul(unsigned long dst,unsigned long src,unsigned long *rst)

Description: The functions ovfsubc, ovfsubw, and ovfsubl subtract signed 1-byte, 2-byte,
and 4-byte data dst and src, respectively (dst-src). The functions ovfsubuc,
ovfsubuw, and ovfsubul subtract unsigned 1-byte, 2-byte, and 4-byte data
dst and src, respectively.
Then, these functions store the results to the area specified by rst only
when rst is not 0, and return 0 when the results do not overflow or return
a value other than 0 when they do overflow.
These functions can be used only in the conditional statements such
as if, do , while, and for statements.
The ovfsubl and ovfsubul functions are valid when the CPU is other than
H8/300.

Header file: <machine.h>

Return value: When the result overflows A value other than 0
 When the results does not overflow 0

Parameters: dst, src Operands of subtraction
rst Result storage area (The result is not stored if rst value is 0)

Example: #include <machine.h> /* Must include <machine.h> */

int dst,src;

void f(void)
{

 if(ovfsubw(dst,src,0) /* Determines the result of */
 /* dst - src by BVC */
 dst=0;
}

385

int ovfshalc(char dst,char *rst)
int ovfshalw(int dst,int *rst)
int ovfshall(long dst,long *rst)

Description: The functions ovfshalc, ovfshalw, and ovfshall arithmetically shift 1-byte, 2-
byte, and 4-byte data dst to the left by one bit, respectively, store the results
to the area specified by rst only when rst is not 0, and return 0 when the
results do not overflow or a value other than 0 when they do overflow.
These functions can be used only in the conditional statements such as if, do,
while, and for statements.
The ovfshalw and ovfshall functions are valid when the CPU is other than
H8/300.

Header: <machine.h>

Return value: When the result overflows A value other than 0
When the results does not overflow 0

Parameters: dst Operand of bit shift operation
rst Result storage area (The result is not stored if the rst value is 0)

Example: #include <machine.h> /* Must include <machine.h> */
int dst;
void f(void)
{
 if(ovfshalw(dst,0)) /* Determines the result of */
 /* dst<<1 by BVC */
 dst=0;
}

386

int ovfshlluc(unsigned char dst,unsigned char *rst)
int ovfshlluw(unsigned int dst,unsigned int *rst)
int ovfshllul(unsigned long dst,unsigned long *rst)

Description: The functions ovfshlluc, ovfshlluw, and ovfshllul logically shift 1-byte, 2-
byte, and 4-byte data dst to the left by one bit, respectively, store the results
to the area specified by rst only when rst is not 0, and return 0 when the
results do not overflow or a value other than 0 when they do overflow.
These functions can be used only in the conditional statements such as if, do,
while, and for statements.
The ovfshlluw and ovfshllul functions are valid when the CPU is other than
H8/300.

Header: <machine.h>

Return value: When the result overflows A value other than 0
When the results does not overflow 0

Parameters: dst Operand of bit shift operation
rst Result storage area (The result is not stored if rst value is 0)

Example: #include <machine.h> /* Must include <machine.h> */
int dst;
void f(void)
{
 if(ovfshlluw(dst,0)) /* Determines the result of */
 /* dst<<1 by BCC */
 dst=0;
}

387

int ovfnegc(char dst,char *rst)
int ovfnegw(int dst,int *rst)
int ovfnegl(long dst,long *rst)

Description: The functions ovfnegc, ovfnegw, and ovfnegl calculate 2's complements of
1-byte, 2-byte, and 4-byte data dst, respectively, store the results to the area
specified by rst only when rst is not 0, and return 0 when the results do not
overflow or a value other than 0 when they do overflow.
These functions can be used only in the conditional statements such as if, do,
while, and for statements.
The ovfnegw and ovfnegl functions are valid when the CPU is other than
H8/300.

Header: <machine.h>

Return value: When the result overflows A value other than 0
When the results does not overflow 0

Parameters: dst Operand of 2's complement calculation
rst Result storage area (The result is not stored if rst value is 0)

Example: #include <machine.h> /* Must include <machine.h> */
int dst,rst;
void f(void)
{
 if(ovfnegw(dst,&rst)) /* Sets the result of dst in */
 /* rst and branches depending */
 /* on the borrow of the */
 dst=0; /* result of -dst */
}

388

void dadd(unsigned char size,char *ptr1,char *ptr2,char *rst)

Description: Adds size-byte data stored in the area starting from ptr1 to size-byte data
stored in the area starting from ptr2 in decimal and stores the result to the
size-byte area starting from rst. The size must be a constant from 1 to 255.

Header: <machine.h>

Parameters: size Data size
ptr1, prt2 Operands of addition in decimal
rst Result storage area

Example: #include <machine.h> /* Must include <machine.h> */
char ptr1[5]={0x01,0x23,0x45,0x67,0x89}; /* 12345678910 */
char ptr2[5]={0x01,0x23,0x45,0x67,0x89}; /* 12345678910 */
char rst[5];
void main(void)
{
dadd((char)5,ptr1,ptr2,rst);
 /* Adds ptr1 and ptr2 for a */
 /* 10-digit decimal */
} /* rst=0x02,0x46,0x91,0x35,0x78 */

389

void dsub(unsigned char size,char *ptr1,char *ptr2,char *rst)

Description: Subtracts size-byte data stored in the area starting from ptr2 from size-byte
data stored in the area starting from ptr1 in decimal and stores the result to
the size-byte area starting from rst. The size must be a constant from 1 to
255.

Header: <machine.h>

Parameters: size Data size
ptr1, prt2 Operands of subtraction in decimal
rst Result storage area

Example: #include <machine.h> /* Must include <machine.h> */
char ptr1[5]={0x10,0x00,0x00,0x00,0x00};/* 100000000010 */
char ptr2[5]={0x01,0x23,0x45,0x67,0x89};/* 012345678910 */
char rst[5];
void main(void)
{
dsub((char)5,ptr1,ptr2,rst);
 /* Subtracts ptr2 from ptr1 */
 /* for a 10-digit decimal */
 } /* rst=0x08,0x76,0x54,0x32,0x11 */

390

10.3 C/C++ Libraries

10.3.1 Standard C Libraries

Overview of Libraries

This section describes the specifications of the C library functions, which can be used generally in
C/C++ programs.. This section gives an overview of the library configuration, and describes the
layout and the terms used in this library function description. Then, the specifications of each
library is described according to the configuration of the library.

(1) Library Types

A library implements standard processing such as input/output and string manipulation in the
form of C/C++ language functions. Libraries can be used by including standard include files
for each unit of processing.

Standard include files contain declarations for the corresponding libraries and definitions of the
macro names necessary to use them.

Table 10.29 shows the various library types and the corresponding standard include files.

Table 10.29 Library Types and Corresponding Standard Include Files

Library Type

Description

Standard Include
Files

Program diagnostics Outputs program diagnostic information. <assert.h>

Character handling Handles and checks characters. <ctype.h>

Mathematics Performs numerical calculations such as trigonometric
functions.

<math.h>
<mathf.h>

Non-local jumps Supports transfer of control between functions. <setjmp.h>

Variable arguments Supports access to variable arguments for functions
with such arguments.

<stdarg.h>

Input/output Performs input/output handling.
By using <no_float.h>, I/O functions that do not support
floating-point numbers can be provided.

<stdio.h>
<no_float.h>

General utilities Performs C program standard processing such
as storage area management.

<stdlib.h>

String handling Performs string comparison, copying, etc. <string.h>

391

In addition to the above standard include files, standard include files consisting solely of macro
name definitions, shown in table 10.30, are provided to improve programming efficiency.

Table 10.30 Standard Include Files Comprising Macro Name Definitions

Standard Include File Description

<stddef.h> Defines macro names used by the standard include files.

<float.h> Defines various limit values relating to the internal representation of
floating-point numbers.

<limits.h> Defines various limit values relating to compiler internal processing.

<errno.h> Defines the value to set in errno when an error is generated in a library
function.

(2) Organization of Library Part

The organization of the library part of this manual is described below.

Library functions are categorized for each standard include file, and descriptions are given for
each standard include file. For each category, there is first a description relating to the macro
names and function declarations defined in the standard include file (figure 10.3), followed by
a description of each function (figure 10.4).

Figure 10.3 shows the standard include file description layout, and figure 10.4, the function
description layout.

<standard include file name>

• Summarizes the overall function of this standard include file.

• Describes names defined or declared in this standard include file according to the name

 categories such as [Type], [Constant], [Variable], and [Function]. For macro names, (macro) is

 always attached beside the name category or name description.

• Adds description if implementation-defined specifications are included or notes common to

 the functions declared in this standard include file are given.

Figure 10.3 Layout of Standard Include File Description

392

Function name (return value and parameter names)

Description: Describes the library function.

Header file: Shows the name of standard include file to be declared.

Return value: Normal: Shows the return value when the library function ends normally.

 Abnormal: Shows the return value when the library function ends abnormally.

Parameters: Indicates the meanings of the parameters.

Example: Describes the calling procedure.

Error conditions:

 Conditions for the occurrence of errors that cannot be
 determined from the return value in library function processing.
 If such an error occurs, the value defined in each compiler for the error type is set
 in errno*.

Remarks: Details the library function specifications or notes on use.

Implementation define:

 The compiler processing method.

Figure 10.4 Layout of Function Description

Note: * errno is a variable that stores the error type if an error occurs during execution of a
library function. See section 10.3.1, descriptions for <stddef.h>, for details.

(3) Terms Used in Library Function Descriptions

(a) Stream input/output

In data input/output, it would lead to poor efficiency if each call of an input/output function
handling a single character drove the input/output device and OS functions. To solve this
problem, a storage area called a buffer is normally provided, and the data in the buffer is
input or output at one time.

From the viewpoint of the program, on the other hand, it is more convenient to call
input/output functions for each character.

Using the library functions, character-by-character input/output can be performed
efficiently without awareness of the buffer status within the program by automatically
performing buffer management.

Those library functions enable a programmer to write a program considering the
input/output as a single data stream, making the programmer be able to implement data
input/output efficiently without being aware of the detailed procedure. Such capability is
called stream input/output.

393

(b) FILE structure and file pointer

The buffer, and other information, required for the stream input/output described above are
stored in a single structure, defined by the name FILE in the <stdio.h> standard include
file.

In stream input/output, all files are handled as having a FILE structure data structure. Files
of this kind are called stream files. A pointer to this file structure is called a file pointer,
and is used to specify an input/output file.

The file pointer is defined as

 FILE *fp;

When a file is opened by the fopen function, etc., the file pointer is returned. If the open
processing fails, NULL is returned. Note that if a NULL pointer is specified in another
stream input/output function, that function will end abnormally. When a file is opened, the
file pointer value must be checked to see whether the open processing has been successful.

(c) Functions and macros

There are two library function implementation methods: functions and macros.

A function has the same interface as an ordinary user-written function, and is incorporated
during linkage. A macro is defined using a #define statement in the standard include file
relating to the function.

The following points must be noted concerning macros:

(i) Macros are expanded automatically by the preprocessor, and therefore a macro cannot
be invalidated even if the user declares a function with the same name.

(ii) If an expression with a side effect is specified as a macro parameter (assignment
expression, increment, decrement), the result is not guaranteed.

Example: Macro definition of MACRO that calculates the absolute value of a
parameter, is as follows

If the following definition is made:

#define MACRO(a) ((a) >= 0 ? (a) : -(a))

and if

X=MACRO(a++)

is in the program, the macro will be expanded as follows:

X = ((a++) >= 0 ? (a++) : -(a++))

a will be incremented twice, and the resultant value will be different from the absolute
value of the initial value of a.

(d) EOF

In functions such as getc, getchar, and fgetc, which input data from a file, EOF is the
value returned at end-of-file. The name EOF is defined in the <stdio.h> standard include
file.

394

(e) NULL

This is the value when a pointer is not pointing at anything. The name NULL is defined in
the <stddef.h> standard include file.

(f) Null characters

The end of a string literal in C/C++ is indicated by the characters \0. String parameters in
library functions must also conform to this convention. The characters \0 indicating the
end of a string are called null characters.

(g) Return code

With some library functions, a return value is used to determine the result (such as whether
the specified processing succeeded or failed). In this case, the return value is called as the
return code.

(h) Text files and binary files

Many systems have special file formats to store data. To support this facility, library
functions have two file formats: text files and binary files.

(i) Text files

A text file is used to store ordinary text, and consists of a collection of lines. In text file
input, the new-line designator (\n) is input as a line separator. In output, output of the
current line is terminated by outputting the new-line designator (\n). Text files are used
to input/output files that store standard text for each implementation. With text files,
characters input or output by a library function do not necessarily correspond to a
physical arrangement of data in the file.

(ii) Binary files

A binary file is configured as a row of byte data. Data input or output by a library
function correspond to a physical list of data in the file.

(i) Standard input/output files

Files that can be used as standard by input/output library functions without preparations
such as file opening are called standard input/output files. Standard input/output files
comprise the standard input file (stdin), standard output file (stdout), and standard error
output file (stderr).

(i) Standard input file (stdin)

Standard file comprising input to a program.

(ii) Standard output file (stdout)

Standard file comprising output from a program.

(iii) Standard error output file (stderr)

Standard file for performing output of error messages, etc., from a program.

395

(j) Floating-point numbers

Floating-point numbers are numbers represented by approximation of real-numbers. In a
C/C++ source program, floating-point numbers are represented by decimal numbers, but
inside the computer they are normally represented by binary numbers.

In the case of binary numbers, the floating-point representation is as follows:

2n × m (n: integer, m: binary fraction)

Here, n is called the exponent of the floating-point number, and m is called the mantissa.
The number of bits to represent n and m is normally fixed so that a floating-point number
can be represented using a specific data size.

Some terms relating to floating-point numbers are explained below.

(i) Radix

An integer value indicating the number of distinct digits in the number system used by
a floating-point number (10 for decimal, 2 for binary, etc.). The radix is normally 2.

(ii) Rounding

Rounding is performed when an intermediate result of an operation of higher precision
than a floating-point number is stored as a floating-point number. There is rounding
up, rounding down, and half-adjust rounding (rounding up fractions over 1/2 and
rounding down fractions under 1/2; or, in binary representation, rounding down 0 and
rounding up 1).

(iii) Normalization

When a floating-point number is represented in the form 2n x m, the same number can
be represented in different ways.

Example: The following two expressions represent the same value.

25 × 1.0 (2) ((2) indicates a binary number)

26 × 0.1 (2)

Usually, a representation in which the leading digit is not 0 like the former expression
is used, in order to secure the number of valid digits. This is called a normalized
floating-point number, and the operation that converts a floating-point number to this
kind of representation is called normalization.

(iv) Guard bit

When saving an intermediate result of a floating-point operation, data one bit longer
than the actual floating-point number is normally provided in order to carry out
rounding. However, this alone does not permit an accurate result to be achieved in the
event of cancellation of significant digits, etc. For this reason, the intermediate result
is saved with an extra bit, called a guard bit.

(k) File access mode

This is a string that indicates the kind of processing to be carried out on a file when it is
opened. There are 12 different strings, as shown in table 10.31.

396

Table 10.31 File Access Modes

Access Mode Meaning

'r' Open text file for reading

'w' Open text file for writing

'a' Open text file for addition

'rb' Open binary file for reading

'wb' Open binary file for writing

'ab' Open binary file for addition

'r+' Open text file for reading and updating

'w+' Open text file for writing and updating

'a+' Open text file for addition and updating

'r+b' Open binary file for reading and updating

'w+b' Open binary file for writing and updating

'a+b' Open binary file for addition and updating

(l) Implementation definition

Definitions differ depending on compilers.

(m) Error indicator and end-of-file indicator

The following two data items are held for each stream file:

(1) an error indicator that indicates whether or not an error has occurred during file
input/output, and

(2) an end-of-file indicator that indicates whether or not the input file has ended.

These data items can be referenced by the ferror function and the feof function,
respectively.

With some functions that handle stream files, error occurrence and end-of-file information
cannot be obtained from the return value alone. The error indicator and end-of-file
indicator are useful for checking the file status after execution of such functions.

(n) File position indicator

Stream files that can be read or written at any position within the file, such as disk files,
have an associated data item called a file position indicator that indicates the current
read/write position within the file.

File position indicators are not used with stream files that do not permit the read/write
position within the file to be changed, such as terminals.

397

(4) Notes on use of libraries

(a) The contents of macros defined in a library differ in each compiler.When a library is used,
the behavior is not guaranteed if the contents of these macros are redefined.

(b) With libraries, errors are not detected in all cases. The behavior is not guaranteed if library
functions are called in a form other than those shown in the descriptions in the following
sections.

<stddef.h>

Defines macro names used in common in the standard include file.

The following macro names are all implementation-defined.

Type Definition Name Description

ptrdiff_t Indicates the type of the result of subtracting two pointers. Type (macro)

size_t Indicates the type of the result of the sizeof operator.

Constant (macro) NULL Indicates the value when a pointer is not pointing at anything.
This value is such that the result of a comparison with 0
using the equality operator (==) is true.

Variable (macro) errno If an error occurs during library function processing, the error
code defined in the respective library is set in errno. By
setting 0 in errno before calling a library function and
checking the error code set in errno after the library function
processing has ended, it is possible to check whether an
error occurred during the library function processing.

Function(macro) offsetof (type,
member)

Obtains the offset in bytes from the beginning of a structure
to a structure member.

398

Implementation Define

Definition Name Description

Value of macro NULL The pointer type value 0 is set to void.

int type H8SX normal mode,

H8SX middle mode,
H8SX advanced mode with ptr16 option,
H8SX maximum mode with ptr16 option,

H8S/2600 normal mode,
H8S/2000 normal mode,
H8S/2600 advanced mode with ptr16 option,

H8S/2000 advanced mode with ptr16 option,
H8/300H normal mode, H8/300

Contents of macro ptrdiff_t

long type H8SX advanced mode without ptr16 option,
H8SX maximum mode without ptr16 option,

H8S/2600 advanced mode without ptr16 option,
H8S/2000 advanced mode without ptr16 option,
H8/300H advanced mode

399

<assert.h>

Adds diagnostics into programs.

Type Definition Name Description

Function (macro) assert Adds diagnostics into programs.

To invalidate the diagnostics defined by <assert.h>, define macro name NDEBUG with a #define
statement (#define NDEBUG) before including <assert.h>.

Note: If an #undef statement is used for macro name assert, the result of subsequent assert calls
is not guaranteed.

void assert(int expression)

Description: Adds diagnostics into programs.

Header file: <assert.h>

Parameters: expression Expression to be evaluated.

Example: #include <assert.h>

 int expression;

 assert (expression);

Remarks: When expression is true, the assert macro terminates processing without
returning a value. If expression is false, it outputs diagnostic information to the
standard error file in the form defined by the compiler, and then calls the abort
function.

 The diagnostic information includes the parameter program text, source file
name, and source line numbers.

Implementation define:
The following message is output when the expression is false for assert
(expression):
ASSERTION FAILED:∆expression∆FILE∆<file name>,line∆<line number>

400

<ctype.h>

Performs type determination and conversion for characters.

Type Definition Name Description

isalnum Tests for an alphabetic character or a decimal digit.

isalpha Tests for an alphabetic character.

iscntrl Tests for a control character.

isdigit Tests for a decimal digit.

isgraph Tests for a printing character except space.

islower Tests for a lowercase letter.

isprint Tests for a printing character, including space.

ispunct Tests for a special character.

isspace Tests for a white-space character.

isupper Tests for an uppercase letter.

isxdigit Tests for a hexadecimal digit.

tolower Converts an uppercase letter to lowercase.

Function

toupper Converts a lowercase letter to uppercase.

In the above functions, if the input parameter value is not within the range that can be represented
by the unsigned char type and is not EOF, the operation of the function is not guaranteed.
Character types are listed in table 10.32.

401

Table 10.32 Character Types

Character Type Description

Uppercase letter Any of the following 26 characters
‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’,
‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’

Lowercase letter Any of the following 26 characters
‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’, ‘l’, ‘m’, ‘n’, ‘o’, ‘p’, ‘q’, ‘r’, ‘s’, ‘t’, ‘u’,
‘v’, ‘w’, ‘x’, ‘y’, ‘z’

Alphabetic character Any uppercase or lowercase letter

Decimal digit Any of the following 10 characters
‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’

Printing character A character, including space (‘ ’) that is displayed on the screen
(corresponding to ASCII codes 0x20 to 0x7E)

Control character Any character except a printing character

White-space character Any of the following 6 characters
Space (‘ ’), form feed (‘\f’), new-line (‘\n’), carriage return (‘\r’), horizontal
tab (‘\t’), vertical tab (‘\v’)

Hexadecimal digit Any of the following 22 characters
‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’,
‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’,
‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’

Special character Any printing character except space (‘ ’), an alphabetic character, or a
decimal digit

Implementation Define

Item Compiler Specifications

Character set inspected by the isalnum,
isalpha, iscntrl, islower, isprint, and isupper
functions

Character set represented by the unsigned char type.
Table 10.33 shows the character set that results in a
true return value.

402

Table 10.33 True Characters

Function Name True Characters

isalnum '0' to '9', 'A' to 'Z', 'a' to 'z'

isalpha 'A' to 'Z', 'a' to 'z'

iscntrl '\x00' to '\x1f', '\x7f'

islower 'a' to 'z'

isprint '\x20' to '\x7E'

isupper 'A' to 'Z'

int isalnum(int c)

Description: Tests for an alphabetic character or decimal digit.

Header file: <ctype.h>

Return values: If character c is an alphabetic character or a decimal digit: Nonzero
 If character c is not an alphabetic character or a decimal digit: 0

Parameters: c Character to be tested

Example: #include <ctype.h>

 int c, ret;

 ret=isalnum(c);

403

int isalpha(int c)

Description: Tests for an alphabetic character.

Header file: <ctype.h>

Return values: If character c is an alphabetic character : Nonzero
 If character c is not an alphabetic character : 0

Parameters: c Character to be tested

Example: #include <ctype.h>

 int c, ret;

 ret=isalpha(c);

int iscntrl(int c)

Description: Tests for a control character.

Header file: <ctype.h>

Return values: If character c is a control character: Nonzero
 If character c is not a control character: 0

Parameters: c Character to be tested

Example: #include <ctype.h>

 int c, ret;

 ret=iscntrl (c);

404

int isdigit(int c)

Description: Tests for a decimal digit.

Header file: <ctype.h>

Return values: If character c is a decimal digit: Nonzero
 If character c is not a decimal digit: 0

Parameters: c Character to be tested

Example: #include <ctype.h>

 int c, ret;

 ret=isdigit(c);

int isgraph(int c)

Description: Tests for any printing character except space (‘ ’).

Header file: <ctype.h>

Return values: If character c is a printing character except space: Nonzero
 If character c is not a printing character except space: 0

Parameters: c Character to be tested

Example: #include <ctype.h>

 int c, ret;

 ret=isgraph(c);

405

int islower(int c)

Description: Tests for a lowercase letter.

Header file: <ctype.h>

Return values: If character c is a lowercase letter: Nonzero
 If character c is not a lowercase letter: 0

Parameters: c Character to be tested

Example: #include <ctype.h>

 int c, ret;

 ret=islower(c);

int isprint(int c)

Description: Tests for a printing character, including space (‘ ’).

Header file: <ctype.h>

Return values: If character c is a printing character, including space: Nonzero
 If character c is not a printing character, including space: 0

Parameters: c Character to be tested

Example: #include <ctype.h>

 int c, ret;

 ret=isprint(c);

406

int ispunct(int c)

Description: Tests for a special character.

Header file: <ctype.h>

Return values: If character c is a special character: Nonzero
 If character c is not a special character: 0

Parameters: c Character to be tested

Example: #include <ctype.h>

 int c, ret;

 ret=ispunct(c);

int isspace(int c)

Description: Tests for a white-space character.

Header file: <ctype.h>

Return values: If character c is a white-space character: Nonzero
 If character c is not a white-space character: 0

Parameters: c Character to be tested

Example: #include <ctype.h>

 int c, ret;

 ret=isspace(c);

407

int isupper(int c)

Description: Tests for an uppercase letter.

Header file: <ctype.h>

Return values: If character c is an uppercase letter: Nonzero
 If character c is not an uppercase letter: 0

Parameters: c Character to be tested

Example: #include <ctype.h>

 int c, ret;

 ret=isupper(c);

int isxdigit(int c)

Description: Tests for a hexadecimal digit.

Header file: <ctype.h>

Return values: If character c is a hexadecimal digit: Nonzero
 If character c is not a hexadecimal digit: 0

Parameters: c Character to be tested

Example: #include <ctype.h>

 int c, ret;

 ret=isxdigit(c);

408

int tolower(int c)

Description: Converts an uppercase letter to the corresponding lowercase letter.

Header file: <ctype.h>

Return values: If character c is an uppercase letter: Lowercase letter
 corresponding to character c
 If character c is not an uppercase letter: Character c

Parameters: c Character to be converted

Example: #include <ctype.h>

 int c, ret;

 ret=tolower(c);

int toupper(int c)

Description: Converts a lowercase letter to the corresponding uppercase letter.

Header file: <ctype.h>

Return values: If character c is a lowercase letter: Uppercase letter corresponding to
 character c
 If character c is not a lowercase letter: Character c

Parameters: c Character to be converted

Example: #include <ctype.h>

 int c, ret;

 ret=toupper(c);

409

<float.h>

Defines various limits relating to the internal representation of floating-point numbers.

The following macro names are all implementation-defined.

Type Definition Name Definition Value Description

FLT_RADIX 2 Indicates the radix in exponent
representation.

FLT_ROUNDS 1 Indicates whether or not the result of an
add operation is rounded off.
The meaning of this macro definition is as
follows:

(1) When result of add operation is
rounded off: Positive value

(2) When result of add operation is
rounded down: 0

(3) When nothing is specified: –1

The rounding-off and rounding-down
methods are implementation-defined.

FLT_GUARD 1 Indicates whether or not a guard bit is
used in multiply operations.
The meaning of this macro definition is as
follows:

(1) When guard bit is used: 1

(2) When guard bit is not used: 0

FLT_NORMALIZE 1 Indicates whether or not floating-point
values are normalized.
The meaning of this macro definition is as
follows:

(1) When normalized: 1

(2) When not normalized: 0

FLT_MAX 3.4028235677973364e
+38F

Indicates the maximum value that can be
represented as a float type floating-point
value.

DBL_MAX 1.7976931348623158e
+308

Indicates the maximum value that can be
represented as a double type floating-
point value.

Constant
(macro)

LDBL_MAX 1.7976931348623158e
+308

Indicates the maximum value that can be
represented as a long double type
floating-point value.

410

Type Definition Name Definition Value Description

Constant
(macro)

FLT_MAX_EXP 127 Indicates the power-of-radix maximum
value that can be represented as a float
type floating-point value.

 DBL_MAX_EXP 1023 Indicates the power-of-radix maximum
value that can be represented as a double
type floating-point value.

 LDBL_MAX_EXP 1023 Indicates the power-of-radix maximum
value that can be represented as a long
double type floating-point value.

 FLT_MAX_10_EXP 38 Indicates the power-of-10 maximum value
that can be represented as a float type
floating-point value.

 DBL_MAX_10_EXP 308 Indicates the power-of-10 maximum value
that can be represented as a double type
floating-point value.

 LDBL_MAX_10_
EXP

308 Indicates the power-of-10 maximum value
that can be represented as a long
double type floating-point value.

 FLT_MIN 1.175494351e−38F Indicates the minimum positive value that
can be represented as a float type
floating-point value.

 DBL_MIN 2.2250738585072014e
−308

Indicates the minimum positive value that
can be represented as a double type
floating-point value.

 LDBL_MIN 2.2250738585072014e
−308

Indicates the minimum positive value that
can be represented as a long double type
floating-point value.

 FLT_MIN_EXP −149 Indicates the power-of-radix minimum
value of a floating-point value that can be
represented as a float type positive value.

 DBL_MIN_EXP −1074 Indicates the power-of-radix minimum
value of a floating-point value that can be
represented as a double type positive
value.

 LDBL_MIN_EXP −1074 Indicates the power-of-radix minimum
value of a floating-point value that can be
represented as a long double type positive
value.

411

Type Definition Name Definition Value Description

FLT_MIN_10_EXP −44 Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a float type positive value.

DBL_MIN_10_EXP −323 Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a double type positive
value.

LDBL_MIN_10_EXP −323 Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a long double type positive
value.

FLT_DIG 6 Indicates the maximum number of digits in
float type floating-point value decimal-
precision.

DBL_DIG 15 Indicates the maximum number of digits in
double type floating-point value decimal-
precision.

LDBL_DIG 15 Indicates the maximum number of digits in
long double type floating-point value
decimal-precision.

FLT_MANT_DIG 24 Indicates the maximum number of
mantissa digits when a float type floating-
point value is represented in the radix.

DBL_MANT_DIG 53 Indicates the maximum number of
mantissa digits when a double type
floating-point value is represented in the
radix.

LDBL_MANT_DIG 53 Indicates the maximum number of
mantissa digits when a long double type
floating-point value is represented in the
radix.

FLT_EXP_DIG 8 Indicates the maximum number of
exponent digits when a float type floating-
point value is represented in the radix.

DBL_EXP_DIG 11 Indicates the maximum number of
exponent digits when a double type
floating-point value is represented in the
radix.

Constant

(macro)

LDBL_EXP_DIG 11 Indicates the maximum number of
exponent digits when a long double type
floating-point value is represented in the
radix.

412

Type Definition Name Definition Value Description

FLT_POS_EPS 5.9604648328104311e
−8F

Indicates the minimum floating-point
value x for which 1.0 + x ≠ 1.0 in float
type.

DBL_POS_EPS 1.1102230246251567e
−16

Indicates the minimum floating-point
value x for which 1.0 + x ≠ 1.0 in
double type.

LDBL_POS_EPS 1.1102230246251567e
−16

Indicates the minimum floating-point
value x for which 1.0 + x ≠ 1.0 in long
double type.

FLT_NEG_EPS 2.9802324164052156e
−8F

Indicates the minimum floating-point
value x for which 1.0 – x ≠ 1.0 in float
type.

DBL_NEG_EPS 5.5511151231257834e
−17

Indicates the minimum floating-point
value x for which 1.0 – x ≠ 1.0 in
double type

LDBL_NEG_EPS 5.5511151231257834e
−17

Indicates the minimum floating-point
value x for which 1.0 – x ≠ 1.0 in long
double type.

FLT_POS_EPS_EXP −23 Indicates the minimum integer n for
which 1.0 + (radix)n ≠ 1.0 in float type.

DBL_POS_EPS_EXP −52 Indicates the minimum integer n for
which 1.0 +(radix)n ≠ 1.0 in double
type.

LDBL_POS_EPS_EXP −52 Indicates the minimum integer n for
which 1.0 + (radix)n ≠ 1.0 in long
double type.

FLT_NEG_EPS_EXP −24 Indicates the minimum integer n for
which 1.0 – (radix)n ≠ 1.0 in float type.

DBL_NEG_EPS_EXP −53 Indicates the minimum integer n for
which 1.0 – (radix)n ≠ 1.0 in double
type.

Constant

(macro)

LDBL_NEG_EPS_EXP −53 Indicates the minimum integer n
for which 1.0 – (radix)n ≠ 1.0 in long
double type.

413

<limits.h>

Defines various limits relating to the internal representation of integer type data.
The following macro names are all implementation-defined.

Type Definition Name Definition Value Description

CHAR_BIT 8 Indicates the number of bits of which char type is
composed.

CHAR_MAX 127 Indicates the maximum value that a char type
variable can have as a value.

CHAR_MIN −128 Indicates the minimum value that a char type
variable can have as a value.

SCHAR_MAX 127 Indicates the maximum value that a signed char
type variable can have as a value.

SCHAR_MIN −128 Indicates the minimum value that a signed char
type variable can have as a value.

UCHAR_MAX 255u Indicates the maximum value that an unsigned
char type variable can have as a value.

SHRT_MAX 32767 Indicates the maximum value that a short type
variable can have as a value.

SHRT_MIN −32768 Indicates the minimum value that a short type
variable can have as a value.

USHRT_MAX 65535u Indicates the maximum value that an unsigned
short type variable can have as a value.

INT_MAX 32767 Indicates the maximum value that an int type
variable can have as a value.

INT_MIN −32768 Indicates the minimum value that an int type
variable can have as a value.

UINT_MAX 65535u Indicates the maximum value that an unsigned int
type variable can have as a value.

LONG_MAX 2147483647 Indicates the maximum value that a long type
variable can have as a value.

LONG_MIN −2147483647L−1L Indicates the minimum value that a long type
variable can have as a value.

Constant
(macro)

ULONG_MAX 4294967295u Indicates the maximum value that an unsigned
long type variable can have as a value.

414

<errno.h>

Defines the value to set in errno when an error is generated in a library function.
The following macro names are all implementation-defined.

Type Definition Name Description

Variable
(macro)

errno int type variable. An error number is set when an error is
generated in a library function.

ERANGE Refer to section 12.3, C Library Error Messages.

EDOM Same as above

EDIV Same as above

ESTRN Same as above

PTRERR Same as above

ECBASE Same as above

ETLN Same as above

EEXP Same as above

EEXPN Same as above

EFLOATO Same as above

EFLOATU Same as above

EDBLO Same as above

EDBLU Same as above

ELDBLO Same as above

ELDBLU Same as above

NOTOPN Same as above

EBADF Same as above

Constant

(macro)

ECSPEC Same as above

415

<math.h>

Performs various mathematical operations.
The following macro names are all implementation-defined.

Type Definition Name Description

EDOM Indicates the value to be set in errno if the value of an parameter input
to a function is outside the range of values defined in the function.

ERANGE Indicates the value to be set in errno if the result of a function cannot
be represented as a double type value, or if overflow or underflow
occurs.

Constant
(macro)

HUGE_VAL Indicates the value for the function return value if the result of a
function overflows.

acos Computes the arc cosine of a floating-point number.

asin Computes the arc sine of a floating-point number.

atan Computes the arc tangent of a floating-point number.

atan2 Computes the arc tangent of the result of a division of two floating-
point numbers.

cos Computes the cosine of a floating-point radian value.

sin Computes the sine of a floating-point radian value.

tan Computes the tangent of a floating-point radian value.

cosh Computes the hyperbolic cosine of a floating-point number.

sinh Computes the hyperbolic sine of a floating-point number.

tanh Computes the hyperbolic tangent of a floating-point number.

exp Computes the exponential function of a floating-point number.

frexp Breaks a floating-point number into a [0.5, 1.0] value and a power of 2.

ldexp Multiplies a floating-point number by a power of 2.

log Computes the natural logarithm of a floating-point number.

log10 Computes the base-ten logarithm of a floating-point number.

modf Breaks a floating-point number into integral and fractional parts.

pow Computes a power of a floating-point number.

sqrt Computes the positive square root of a floating-point number.

ceil Returns the smallest integral value not less than the given floating-
point number.

fabs Computes the absolute value of a floating-point number.

floor Returns the largest integral value not greater than the given floating-
point number.

Function

fmod Computes the remainder of division of two floating-point numbers.

416

Operation in the event of an error is described below.

(1) Domain error

A domain error occurs if the value of a parameter input to a function is outside the domain
over which the mathematical function is defined. In this case, the value of EDOM is set in
errno. The function return value depends on the implementation.

(2) Range error

A range error occurs if the result of a function cannot be represented as a double type value.
In this case, the value of ERANGE is set in errno. If the result overflows, the function returns
the value of HUGE_VAL, with the same sign as the correct value of the function. If the result
underflows, 0 is returned as the return value.

Notes

(1) If there is a possibility of a domain error resulting from a <math.h> function call, it is
dangerous to use the resultant value directly. The value of errno should always be checked
before using the result in such cases.

Example:

 .
 .
 .
 1 x=asin(a);
 2 if (errno==EDOM)
 3 printf ("error\n");
 4 else
 5 printf ("result is : %lf\n", x);

 .
 .
 .

In line 1, the arc sine value is computed using the asin function. If the value of parameter a is
outside the domain of the asin function [–1.0, 1.0], the EDOM value is set in errno. Line 2
determines whether a domain error has occurred. If a domain error has occurred, error is output
in line 3. If there is no domain error, the arc sine value is output in line 5.

417

(2) Whether or not a range error occurs depends on the internal representation format of floating-
point number determined by the compiler. For example, if an internal representation format
that allows infinity to be represented as a value is used, <math.h> library functions can be
implemented without causing range errors.

Implementation Define

Item Compiler Specifications

Value returned by a mathematical function if an
input parameter is out of the range

A not-a-number is returned. For details on the
format of not-a-number, refer to section 10.1.3,
Floating-Point Number Specifications.

Is errno set to the value of macro ERANGE if an
underflow error occurs in a mathematical function?

Not specified.

Does a range error occur if the second argument in
the fmod function is 0?

A range error occurs.

double acos(double d)

Description: Computes the arc cosine of a floating-point number.

Header file: <math.h>

Return values: Normal: Arc cosine of d
Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which arc cosine is to be computed

Example: #include <math.h>

 double d, ret;

 ret=acos(d);

Error conditions:
 A domain error occurs for a value of d not in the range [–1.0, 1.0].

Remarks: The acos function returns the arc cosine in the range [0, π] by the radian.

418

double asin (double d)

Description: Computes the arc sine of a floating-point number.

Header file: <math.h>

Return values: Normal: Arc sine of d
Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which arc sine is to be computed

Example: #include <math.h>

 double d, ret;

 ret=asin(d);

Error conditions:
 A domain error occurs for a value of d not in the range [–1.0, 1.0].

Remarks: The asin function returns the arc sine in the range [–π/2, π/2] by the radian.

double atan(double d)

Description: Computes the arc tangent of a floating-point number.

Header file: <math.h>

Return values: Arc tangent of d

Parameters: d Floating-point number for which arc tangent is to be computed

Example: #include <math.h>

 double d, ret;

 ret=atan(d);

Remarks: The atan function returns the arc tangent in the range (–π/2, π/2) by the radian.

419

double atan2(double y, double x)

Description: Computes the arc tangent of division of two floating-point numbers.

Header file: <math.h>

Return values: Normal: Arc tangent value when y is divided by x.
Abnormal: In case of domain error: Returns not-a-number.

Parameters: x Divisor
y Dividend

Example: #include <math.h>

 double x, y, ret;

 ret=atan2(y, x);

Error conditions:
A domain error occurs if the values of both x and y are 0.0.

Remarks: The atan2 function returns the arc tangent in the range (–π, π] by the radian.
The meaning of the atan2 function is illustrated in figure 10.5. As shown in the
figure, the result of the atan2 function is the angle between the X-axis and a
straight line passing through the origin and point (x, y).

If y = 0.0 and x is negative, the result is π. If x = 0.0, the result is ±π/2,
depending on whether y is positive or negative.

Xx

atan2 (y, x)

(x, y)
y

Y

Figure 10.5 Meaning of atan2 Function

420

double cos(double d)

Description: Computes the cosine of a floating-point radian value.

Header file: <math.h>

Return values: Cosine of d

Parameters: d Radian value for which cosine is to be computed

Example: #include <math.h>

 double d, ret;

 ret=cos(d);

double sin(double d)

Description: Computes the sine of a floating-point radian value.

Header file: <math.h>

Return values: Sine of d

Parameters: d Radian value for which sine is to be computed

Example: #include <math.h>

 double d, ret;

 ret=sin(d);

421

double tan(double d)

Description: Computes the tangent of a floating-point radian value.

Header file: <math.h>

Return values: Tangent of d

Parameters: d Radian value for which tangent is to be computed

Example: #include <math.h>

 double d, ret;

 ret=tan(d);

double cosh(double d)

Description: Computes the hyperbolic cosine of a floating-point number.

Header file: <math.h>

Return values: Hyperbolic cosine of d

Parameters: d Floating-point number for which hyperbolic cosine is to be
 computed

Example: #include <math.h>

 double d, ret;

 ret=cosh(d);

422

double sinh(double d)

Description: Computes the hyperbolic sine of a floating-point number.

Header file: <math.h>

Return values: Hyperbolic sine of d

Parameters: d Floating-point number for which hyperbolic sine is to be
 computed

Example: #include <math.h>

 double d, ret;

 ret=sinh(d);

double tanh(double d)

Description: Computes the hyperbolic tangent of a floating-point number.

Header file: <math.h>

Return values: Hyperbolic tangent of d

Parameters: d Floating-point number for which hyperbolic tangent is to be
 computed

Example: #include <math.h>

 double d, ret;

 ret=tanh(d);

423

double exp(double d)

Description: Computes the exponential function of a floating-point number.

Header file: <math.h>

Return values: Exponential value of d

Parameters: d Floating-point number for which exponential function is to be
 computed

Example: #include <math.h>

 double d, ret;

 ret=exp(d);

double frexp(double value, double ret)

Description: Breaks a floating-point number into a [0.5, 1.0] value and a power of 2.

Header file: <math.h>

Return values: If value is 0.0: 0.0
 If value is not 0.0: Value of ret defined by ret * 2(*e)= value

Parameters: value Floating-point number to be broken into a [0.5, 1.0] value
 and a power of 2
 e Pointer to storage area that holds power-of-2 value

Example: #include <math.h>

 double ret, value;
 int *e;
 ret=frexp(value, e);

Remarks: The frexp function breaks a value into a [0.5, 1.0] value and a power of 2. It
stores the resultant power-of-2 value in the area pointed to by e.

The frexp function returns the return value ret in the range [0.5, 1.0] or as 0.0.

If value is 0.0, the contents of the int storage area pointed to by e and the value
of ret are both 0.0.

424

double ldexp(double ret, int f)

Description: Multiplies a floating-point number by a power of 2.

Header file: <math.h>

Return values: Result of e * 2f operation

Parameters: e Floating-point number to be multiplied by a power of 2
 f Power-of-2 value

Example: #include <math.h>

 double ret, e;

 int f;
 ret=ldexp(e, f);

double log(double d)

Description: Computes the natural logarithm of a floating-point number.

Header file: <math.h>

Return values: Normal: Natural logarithm of d
Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which natural logarithm
 is to be computed

Example: #include <math.h>

 double d, ret;

 ret=log(d);

Error conditions:
 A domain error occurs if d is negative.
 A range error occurs if d is 0.0.

425

double log10(double d)

Description: Computes the base-ten logarithm of a floating-point number.

Header file: <math.h>

Return values: Normal: Base-ten logarithm of d
Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which base-ten logarithm is
 to be computed

Example: #include <math.h>

 double d, ret;

 ret=log10(d);

Error conditions:
 A domain error occurs if d is negative.
 A range error occurs if d is 0.0.

double modf(double a, double*b)

Description: Breaks a floating-point number into integral and fractional parts.

Header file: <math.h>

Return values: Fractional part of a

Parameters: a Floating-point number to be broken into integral and fractional
 parts
 b Pointer indicating storage area that stores integral part

Example: #include <math.h>

 double a, *b, ret;

 ret=modf(a, b);

426

double pow(double x, double y)

Description: Computes a power of floating-point number.

Header file: <math.h>

Return values: Normal: Value of x raised to the power y
Abnormal: In case of domain error: Returns not-a-number.

Parameters: x Value to be raised to a power
 y Power value

Example: #include <math.h>

 double x, y, ret;

 ret=pow(x, y);

Error conditions:
 A domain error occurs if x is 0.0 and y is 0.0 or less, or if x is negative and y
 is not an integer.

double sqrt(double d)

Description: Computes the positive square root of a floating-point number.

Header file: <math.h>

Return values: Normal: Positive square root of d
Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which positive square root is to
 be computed

Example: #include <math.h>

 double d, ret;

 ret=sqrt(d);

Error conditions:
 A domain error occurs if d is negative.

427

double ceil(double d)

Description: Returns the smallest integral value not less than the given floating-point number.

Header file: <math.h>

Return values: Smallest integral value not less than d

Parameters: d Floating-point number for which smallest integral value not less
 than that number is to be computed

Example: #include <math.h>

 double d, ret;

 ret=ceil(d);

Remarks: The ceil function returns the smallest integral value not less than d, expressed as
a double. Therefore, if d is negative, the value after truncation of the fractional
part is returned.

double fabs(double d)

Description: Computes the absolute value of a floating-point number.

Header file: <math.h>

Return values: Absolute value of d

Parameters: d Floating-point number for which absolute value is to be computed

Example: #include <math.h>

 double d, ret;

 ret=fabs(d);

428

double floor(double d)

Description: Returns the largest integral value not greater than the given floating-point
number.

Header file: <math.h>

Return values: Largest integral value not greater than d

Parameters: d Floating-point number for which largest integral value not greater
 than that number is to be computed

Example: #include <math.h>

 double d, ret;

 ret=floor(d);

Remarks: The floor function returns the largest integral value not greater than d, expressed
as a double. Therefore, if d is negative, the value after rounding-up of the
fractional part is returned.

double fmod(double x, double y)

Description: Computes the remainder of division of two floating-point numbers.

Header file: <math.h>

Return values: When y is 0.0: x
 When y is not 0.0: Remainder of division of x by y

Parameters: x Dividend
y Divisor

Example: #include <math.h>

double x, y, ret;

 ret=fmod(x, y);

Remarks: In the fmod function, the relationship between parameters x and y and return
value ret is as follows:

x = y * i + ret (where i is an integer)

The sign of return value ret is the same as the sign of x.
If the quotient of x/y cannot be expressed, the value of the result is undefined.

429

<mathf.h>

Performs various mathematical operations.

<mathf.h> declares mathematical functions and defines macros in single-precision format. The
mathematical functions and macros used here do not follow the ANSI specifications. Each
function receives a float-type parameter and returns a float-type value.

The following constants (macros) are all implementation-defined.

Type Definition Name Description

EDOM Indicates the value to be set in errno if the value of an parameter input
to a function is outside the range of values defined in the function.

ERANGE Indicates the value to be set in errno if the result of a function cannot
be represented as a float value, or if overflow or underflow occurs.

Constant
(macro)

HUGE_VAL Indicates the value for the function return value if the result of a
function overflows.

acosf Computes the arc cosine of a floating-point number.

asinf Computes the arc sine of a floating-point number.

atanf Computes the arc tangent of a floating-point number.

atan2f Computes the arc tangent of the result of a division of two floating-
point numbers.

cosf Computes the cosine of a floating-point radian value.

sinf Computes the sine of a floating-point radian value.

tanf Computes the tangent of a floating-point radian value.

coshf Computes the hyperbolic cosine of a floating-point number.

sinhf Computes the hyperbolic sine of a floating-point number.

tanhf Computes the hyperbolic tangent of a floating-point number.

expf Computes the exponential function of a floating-point number.

frexpf Breaks a floating-point number into a [0.5, 1.0] value and a power of 2.

ldexpf Multiplies a floating-point number by a power of 2.

logf Computes the natural logarithm of a floating-point number.

log10f Computes the base-ten logarithm of a floating-point number.

modff Breaks a floating-point number into integral and fractional parts.

powf Computes a power of floating-point number.

sqrtf Computes the positive square root of a floating-point number.

Function

ceilf Returns the smallest integral value not less than the given floating-
point number.

430

Type Definition Name Description

fabsf Computes the absolute value of a floating-point number.

floorf Returns the largest integral value not greater than the given floating-
point number.

Function

fmodf Computes the remainder of division of two floating-point
 numbers.

Operation in the event of an error is described below.

1. Domain error

A domain error occurs if the value of a parameter input to a function is outside the domain
over which the mathematical function is defined. In this case, the value of EDOM is set in
errno. The function return value depends on the implementation.

2. Range error

A range error occurs if the result of a function cannot be represented as a float value. In this
case, the value of ERANGE is set in errno. If the result overflows, the function returns the
value of HUGE_VAL, with the same sign as the correct value of the function. If the result
underflows, 0 is returned as the return value.

Notes

(1) If there is a possibility of a domain error resulting from a <mathf.h> function call, it is
dangerous to use the resultant value directly. The value of errno should always be checked
before using the result in such cases.

Example:

 .
 .
 .
1 x=asinf(a);
2 if (errno==EDOM)
3 printf ("error\n");
4 else
5 printf ("result is : %f\n", x);

 .
 .
 .

431

In line 1, the arc sine value is computed using the asinf function. If the value of parameter a is
outside the domain of the asinf function [–1.0, 1.0], the EDOM value is set in errno. Line 2
determines whether a domain error has occurred. If a domain error has occurred, error is
output in line 3. If there is no domain error, the arc sine value is output in line 5.

(2) Whether or not a range error occurs depends on the internal representation format of floating-
point number determined by the compiler. For example, if an internal representation format
that allows infinity to be represented as a value is used, <mathf.h> library functions can be
implemented without causing range errors.

Implementation Define

Item Compiler Specifications

Value returned by a mathematical
function if an input parameter is out of
the range

A not-a-number is returned. For details on the format of
not-a-number, refer to section 10.1.3, Floating-Point
Number Specifications.

Is errno set to the value of macro
ERANGE if an underflow error occurs in a
mathematical function?

Not specified

Does a range error occur if the second
argument in the fmod function is 0?

An range error occurs.

432

float acosf(float f)

Description: Computes the arc cosine of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Arc cosine of f
Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which arc cosine is to be computed

Example: #include <mathf.h>

 float f, ret;

 ret=acosf(f);

Error conditions:
 A domain error occurs for a value of f not in the range [–1.0, 1.0].

Remarks: The acosf function returns the arc cosine in the range [0, π] by the radian.

float asinf (float f)

Description: Computes the arc sine of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Arc sine of f
Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which arc sine is to be computed

Example: #include <mathf.h>

 float f, ret;

 ret=asinf(f);

Error conditions:
 A domain error occurs for a value of f not in the range [–1.0, 1.0].

Remarks: The asinf function returns the arc sine in the range [–π/2, π/2] by the radian.

433

float atanf(float f)

Description: Computes the arc tangent of a floating-point number.

Header file: <mathf.h>

Return values: Arc tangent of f

Parameters: f Floating-point number for which arc tangent is to be computed

Example: #include <mathf.h>

 float f, ret;

 ret=atanf(f);

Remarks: The atanf function returns the arc tangent in the range (–π/2, π/2) by the radian.

434

float atan2f(float y, float x)

Description: Computes the arc tangent of the division of two floating-point numbers.

Header file: <mathf.h>

Return values: Normal: Arc tangent value when y is divided by x
Abnormal: In case of domain error: Returns not-a-number.

Parameters: x Divisor
y Dividend

Example: #include <mathf.h>

 float x, y, ret;

 ret=atan2f(y, x);

Error conditions:
A domain error occurs if the values of both x and y are 0.0.

Remarks: The atan2f function returns the arc tangent in the range (–π, π] by the radian.
The meaning of the atan2f function is illustrated in figure 10.6. As shown in the
figure, the result of the atan2f function is the angle between the X-axis and a
straight line passing through the origin and point (x, y).

If y = 0.0 and x is negative, the result is π. If x = 0.0, the result is ±π/2,
depending on whether y is positive or negative.

atan2f (y, x)

(x, y)
y

x X

Y

Figure 10.6 Meaning of atan2f Function

435

float cosf(float f)

Description: Computes the cosine of a floating-point radian value.

Header file: <mathf.h>

Return values: Cosine of f

Parameters: f Radian value for which cosine is to be computed

Example: #include <mathf.h>

 float f, ret;

 ret=cosf(f);

float sinf(float f)

Description: Computes the sine of a floating-point radian value.

Header file: <mathf.h>

Return values: Sine of f

Parameters: f Radian value for which sine is to be computed

Example: #include <mathf.h>

 float f, ret;

 ret=sinf(f);

436

float tanf(float f)

Description: Computes the tangent of a floating-point radian value.

Header file: <mathf.h>

Return values: Tangent of f

Parameters: f Radian value for which tangent is to be computed

Example: #include <mathf.h>

 float f, ret;

 ret=tanf(f);

float coshf(float f)

Description: Computes the hyperbolic cosine of a floating-point number.

Header file: <mathf.h>

Return values: Hyperbolic cosine of f

Parameters: f Floating-point number for which hyperbolic cosine is to be
 computed

Example: #include <mathf.h>

 float f, ret;

 ret=coshf(f);

437

float sinhf(float f)

Description: Computes the hyperbolic sine of a floating-point number.

Header file: <mathf.h>

Return values: Hyperbolic sine of f

Parameters: f Floating-point number for which hyperbolic sine is to be
 computed

Example: #include <mathf.h>

 float f, ret;

 ret=sinhf(f);

float tanhf(float f)

Description: Computes the hyperbolic tangent of a floating-point number.

Header file: <mathf.h>

Return values: Hyperbolic tangent of f

Parameters: f Floating-point number for which hyperbolic tangent is to be
 computed

Example: #include <mathf.h>

 float f, ret;

 ret=tanhf(f);

438

float expf(float f)

Description: Computes the exponential function of a floating-point number.

Header file: <mathf.h>

Return values: Exponential value of f

Parameters: f Floating-point number for which exponential function is to be
 computed

Example: #include <mathf.h>

 float f, ret;

 ret=expf(f);

float frexpf(float value, float ret)

Description: Breaks a floating-point number into a [0.5, 1.0)value and a power of 2.

Header file: <mathf.h>

Return values: If value is 0.0: 0.0
 If value is not 0.0: Value of ret defined by ret * 2(*e)= value

Parameters: value Floating-point number to be broken into a [0.5, 1.0) value
 and a power of 2
e Pointer to storage area that holds power-of-2 value

Example: #include <mathf.h>

 float ret, value;
int *e

 ret=frexpf(value, e);

Remarks: The frexpf function breaks a value into a [0.5, 1.0) value and a power of 2. It
stores the resultant power-of-2 value in the area pointed to by e.

The frexpf function returns the return value ret in the range [0.5, 1.0) or as 0.0.

If value is 0.0, the contents of the int storage area pointed to by e and the value
of ret are both 0.0.

439

float ldexpf (float ret, int f)

Description: Multiplies a floating-point number by a power of 2.

Header file: <mathf.h>

Return values: Result of e * 2f operation

Parameters: e Floating-point number to be multiplied by a power of 2
f Power-of-2 value

Example: #include <mathf.h>

 float ret, e;
int f;

 ret=ldexpf(e, f);

float logf(float f)

Description: Computes the natural logarithm of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Natural logarithm of f
Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which natural logarithm is to be
 computed

Example: #include <mathf.h>

 float f, ret;
 ret=logf(f);

Error conditions:
 A domain error occurs if f is negative.

A range error occurs if f is 0.0.

440

float log10f(float f)

Description: Computes the base-ten logarithm of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Base-ten logarithm of f
Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which base-ten logarithm is to be
 computed

Example: #include <mathf.h>

 float f, ret;
 ret=log10f(f);

Error conditions:
 A domain error occurs if f is negative.

A range error occurs if f is 0.0.

float modff(float a, float *b)

Description: Breaks a floating-point number into integral and fractional parts.

Header file: <mathf.h>

Return values: Fractional part of a

Parameters: a Floating-point number to be broken into integral and fractional
 parts
b Pointer indicating storage area that stores integral part

Example: #include <mathf.h>

 float a, *b, ret;
 ret=modff(a, b);

441

float powf(float x, float y)

Description: Computes a power of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Value of x raised to the power y
Abnormal: In case of domain error: Returns not-a-number.

Parameters: x Value to be raised to a power
y Power value

Example: #include <mathf.h>

 float x, y, ret;
 ret=powf(x, y);

Error conditions:
 A domain error occurs if x is 0.0 and y is 0.0 or less, or if x is negative and y
 is not an integer.

float sqrtf(float f)

Description: Computes the positive square root of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Positive square root of f
Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which positive square root is to
 be computed

Example: #include <mathf.h>

 float f, ret;
 ret=sqrtf(x, y);

Error conditions:
 A domain error occurs if f is negative.

442

float ceilf(float f)

Description: Returns the smallest integral value not less than the given floating-point number.

Header file: <mathf.h>

Return values: Smallest integral value not less than f

Parameters: f Floating-point number for which smallest integral value not less
 than that number is to be computed

Example: #include <mathf.h>

 float f, ret;
 ret=ceilf(f);

Remarks: The ceilf function returns the smallest integral value not less than f, expressed as
a float. Therefore, if f is negative, the value after truncation of the fractional
part is returned.

float fabsf(float f)

Description: Computes the absolute value of a floating-point number.

Header file: <mathf.h>

Return values: Absolute value of f

Parameters: f Floating-point number for which absolute value is to be computed

Example: #include <mathf.h>

 float f, ret;
 ret=fabsf(f);

443

float floorf(float f)

Description: Returns the largest integral value not greater than the given floating-point
number.

Header file: <mathf.h>

Return values: Largest integral value not greater than f

Parameters: f Floating-point number for which largest integral value not greater
 than that number is to be computed

Example: #include <mathf.h>

 float f, ret;
 ret=floorf(f);

Remarks: The floorf function returns the largest integral value not greater than f,
expressed as a float. Therefore, if f is negative, the value after rounding-up of
the fractional part is returned.

float fmodf(float x, float y)

Description: Computes the remainder of division of two floating-point numbers.

Header file: <mathf.h>

Return values: When y is 0.0: x
 When y is not 0.0: Remainder of division of x by y

Parameters: x Dividend
y Divisor

Example: #include <mathf.h>

 float x, y, ret;
 ret=fmodf(x, y);

Remarks: In the fmodf function, the relationship between parameters x and y and return
 value ret is as follows:

x = y * i + ret (where i is an integer)

The sign of return value ret is the same as the sign of x.
 If the quotient of x/y cannot be expressed, the value of the result is undefined.

444

<setjmp.h>

Supports transfer of control between functions.

The following macros are implementation-defined.

Type Definition Name Description

Type
(macro)

jmp_buf Indicates the type name corresponding to a storage area for storing
information that enables transfer of control between functions.

setjmp Saves the calling environment defined by jmp_buf of the currently
executing function in the specified storage area.

Function

longjmp Restores the function calling environment saved by the setjmp
function, and transfers control to the program location at which the
setjmp function was called.

The setjmp function saves the calling environment of the current function. The location in the
program that called the setjmp function can subsequently be returned to by calling the longjmp
function. An example of how transfer of control between functions is supported using the setjmp
and longjmp functions is shown below.

445

Example:

 1 #include <stdio.h>
 2 #include <setjmp.h>
 3 jmp_buf env;
 4 void main()
 5 {
 6
 7
 8 if (setjmp(env)!=0){
 9 printf("return from longjmp\n");
 10 exit(0);
 11 }
 12 sub();
 13 }
 14
 15 void sub()
 16 {
 17 printf("subroutine is running \n");
 18 longjmp(env, 1);
 19 }

Explanation

The setjmp function is called in line 8. At this time, the environment in which the setjmp
function was called is saved in jmp_buf type variable env. The return value in this case is 0, and
therefore function sub is called next.

The environment saved in variable env is restored by the longjmp function called within function
sub. As a result, the program behaves just as if a return had been made from the setjmp function
in line 8. However, the return value at this time is the value (1) specified by the second parameter
of the longjmp function. As a result, execution proceeds from line 9.

446

int setjmp(jmp_buf env)

Description: Saves the calling environment of the currently executing function in the
specified storage area.

Header file: <setjmp.h>

Return values: When setjmp function is called : 0
 On return from longjmp function: Nonzero

Parameters: env Pointer to storage area in which calling environment is saved

Example: #include <setjmp.h>

 int ret;
jmp_buf env;
 ret=setjmp(env);

Remarks: The calling environment saved by the setjmp function is used by the longjmp
function. The return value is 0 when the function is called as the setjmp
function, but the return value on return from the longjmp function is the value
of the second parameter specified by the longjmp function.

If the setjmp function is called from a complex expression, part of the current
calling environment, such as the intermediate result of expression evaluation,
may be lost. The setjmp function should only be used in the form of a
comparison between the result of the setjmp function and a constant expression,
and should not be called within a complex expression.

447

void longjmp(jmp_buf env, int ret)

Description: Restores the function calling environment saved by the setjmp function, and
transfers control to the program location at which the setjmp function was
called.

Header file: <setjmp.h>

Parameters: env Pointer to storage area in which calling environment was saved

 ret Return code to setjmp function

Example: #include <setjmp.h>

 int ret;
jmp_buf env;
 longjmp(env, ret);

Remarks: The longjmp function restores from the storage area specified by env the
function calling environment saved by the most recent invocation of the setjmp
function in the same program, and transfers control to the program location at
which that setjmp function was called. The value of longjmp function
parameter ret is returned as the setjmp function return value. However, if ret is
0, the value 1 is returned to the setjmp function as a return value.

If the setjmp function has not been called, or if the function that called the
setjmp function has already executed a return statement, the operation of the
longjmp function is not guaranteed.

448

<stdarg.h>

Enables referencing of variable arguments for functions with such arguments.

The following macros are implementation-defined.

Type Definition Name Description

Type
(macro)

va_list Indicates the type of variables used in common by the va_start,
va_arg, and va_end macros in order to reference variable arguments.

va_start Executes initialization processing for performing variable argument
referencing.

va_arg Enables referencing of the argument following the argument currently
being referenced for a function with variable arguments.

Function
(macro)

va_end Terminates referencing of the arguments of a function with variable
arguments.

An example of a program using the macros defined by this standard include file is shown below.

449

Example:

 1 #include <stdio.h>
 2 #include <stdarg.h>
 3
 4 extern void prlist(int count, ...);
 5
 6 void main()
 7 {
 8 prlist(1, 1);
 9 prlist(3, 4, 5, 6);
 10 prlist(5, 1, 2, 3, 4, 5);
 11 }
 12
 13 void prlist(int count, ...)
 14 {
 15 va_list ap;
 16 int i;
 17
 18 va_start(ap, count);
 19 for(i=0; i<count; i++)
 20 printf("%d", va_arg(ap, int));
 21 putchar('\n');
 22 va_end(ap);
 23 }

Explanation

In this example, the number of data items to be output is specified in the first argument, and
function prlist is implemented, outputting that number of subsequent arguments.

In line 18, the variable argument reference is initialized by va_start. Each time an argument is
output, the next argument is referenced by the va_arg macro (line 20). In the va_arg macro, the
type name of the argument (in this case, int type) is specified in the second argument.

When argument referencing ends, the va_end macro is called (line 22).

450

void va_start(va_list ap, parmN)

Description: Executes initialization processing for referencing variable parameters.

Header file: <stdarg.h>

Parameters: ap Variable for accessing variable parameters

 parmN Identifier of rightmost argument

Example: #include <stdarg.h>

 void func(int count,...){
 va_list ap;
 va_start(ap, count);
}

Remarks: The va_start macro initializes ap for subsequent use by the va_arg and va_end
macros.

The parameter parmN is the identifier of the rightmost parameter in the
parameter list in the external function definition (the one just before the , ...).

To reference variable nameless arguments, the va_start macro call must be
executed first of all.

451

type va_arg(va_list ap, type)

Description: Enables referencing of the argument following the argument currently being
referenced for a function with variable arguments.

Header file: <stdarg.h>

Return values: Parameter value

Parameters: ap Variable for accessing variable parameters

 type Type of parameter to be accessed

Example: #include <stdarg.h>

 va_list ap;
int ret;
 ret=va_arg(ap, int);

Remarks: A variable of the va_list type initialized by the va_start macro is specified in
the first parameter. The value of ap is updated each time va_arg is used, and as
a result variable parameters are returned sequentially as return values of this
 macro.

 Specify the type of the argument to be referenced at the type location in the
 calling procedure.

 The ap parameter must be the same as the ap initialized by va_start.

It will not be possible to reference the parameters correctly if a type for which
the size is changed by type conversion is specified when char type, unsigned
char type, short type, unsigned short type, or float type in the function
argument is specified as the type of type. If this kind of type is specified,
correct operation is not guaranteed.

452

void va_end(va_list ap)

Description: Terminates referencing of the arguments of a function with variable arguments.

Header file: <stdarg.h>

Parameters: ap Variable for accessing variable arguments

Example: #include <stdarg.h>

 va_list ap;
 va_end(ap);

Remarks: The ap parameter must be the same as the ap initialized by va_start. If the
 va_end macro is not called before the return from a function, the operation of
 that function is not guaranteed.

453

<stdio.h>

Performs processing relating to input/output of stream input/output file.

The following macros are all implementation-defined.

Type Definition Name Description

FILE Indicates a structure type that stores various control information
including a pointer to the buffer (required for stream input/output
processing), an error indicator, and an end-of-file indicator.

_IOFBF Indicates full buffering of input/output as the buffer area usage method.

_IOLBF Indicates line buffering of input/output as the buffer area usage
method.

_IONBF Indicates non-buffering of input/output as the buffer area usage
method.

BUFSIZ Indicates the buffer size required for input/output processing.

EOF Indicates end-of-file, that is, no more input from a file.

L_tmpnam *1 Indicates the size of an array large enough to store a string literal of a
temporary file name generated by the tmpnam function.

SEEK_CUR Indicates a shift of the current file read/write position to an offset from
the current position.

SEEK_END Indicates a shift of the current file read/write position to an offset from
the end-of-file position.

SEEK_SET Indicates a shift of the current file read/write position to an offset from
the beginning of the file.

SYS_OPEN *1 Indicates the number of files for which simultaneous opening is
guaranteed by the implementation.

TMP_MAX *1 Indicates the minimum number of unique file names that shall be
generated by the tmpnam function.

stderr Indicates the file pointer for the standard error file.

stdin Indicates the file pointer for the standard input file.

Constant
(macro)

stdout Indicates the file pointer for the standard output file.

fclose Closes a stream input/output file.

fflush Outputs stream input/output file buffer contents to the file.

fopen Opens a stream input/output file under the specified file name.

Function

freopen Closes a currently open stream input/output file and reopens a new file
under the specified file name.

Note: 1. Undefined in this implementation.

454

Type Definition Name Description

setbuf Defines and sets a stream input/output buffer area on the user
program side.

setvbuf Defines and sets a stream input/output buffer area on the user
program side.

fprintf Outputs data to a stream input/output file according to a format.

fscanf Inputs data from a stream input/output file and converts it according to
a format.

printf Converts data according to a format and outputs it to the standard
output file (stdout).

scanf Inputs data from the standard input file (stdin) and converts it
according to a format.

sprintf Converts data according to a format and outputs it to the specified
area.

sscanf Inputs data from the specified storage area and converts it according
to a format.

vfprintf Outputs a variable parameter list to the specified stream input/output
file according to a format.

vprintf Outputs a variable parameter list to the standard output file according
to a format.

vsprintf Outputs a variable parameter list to the specified storage area
according to a format.

fgetc Inputs one character from a stream input/output file.

fgets Inputs a string from a stream input/output file.

fputc Outputs one character to a stream input/output file.

fputs Outputs a string to a stream input/output file.

getc (macro) Inputs one character from a stream input/output file.

getchar (macro) Inputs one character from the standard input file.

gets Inputs a string from the standard input file.

putc (macro) Outputs one character to a stream input/output file.

putchar (macro) Outputs one character to the standard output file.

puts Outputs a string to the standard output file.

ungetc Returns one character to a stream input/output file.

fread Inputs data from a stream input/output file to the specified storage
area.

fwrite Outputs data from a storage area to a stream input/output file.

Function

fseek Shifts the current read/write position in a stream input/output file.

455

Type Definition Name Description

ftell Obtains the current read/write position in a stream input/output file.

rewind Shifts the current read/write position in a stream input/output file to the
beginning of the file.

clearerr Clears the error state of a stream input/output file.

feof Tests for the end of a stream input/output file.

ferror Tests for stream input/output file error state.

Function

perror Outputs an error message corresponding to the error number to the
standard error file (stderr).

456

Implementation Define

Item Compiler Specifications

Does the last line of the input text require a line
feed character indicating end?

Are the space characters immediately before
the carriage return character read?

Number of null characters added to data written
in the binary file

Initial value of file position specifier in the
addition mode

Is a file data lost following text file input?

File buffering specifications

Does a file with file length 0 exist?

File name configuration rule

Can the same files be opened simultaneously?

Not specified. Depends on the low-level
interface routine specifications.

Output format of the %p format conversion in
the fprintf function

Hexadecimal representation.

Input data representation of the %p format
conversion in the fscanf function. The meaning
of conversion character ‘−’ in the fscanf function

Hexadecimal representation.
If ‘−’ is not the first or last character or ‘−’ does
not follow ‘^’, the compiler indicates the range
from the previous character to the following
character.

Value of errno specified by the fgetpos or ftell
function

The fgetpos function is not supported.
The errono value in the ftell function is not
specified here. It depends on the low-level
interface routine.

Output format of messages generated by the
perror function

See (a) below for the output message format.

calloc, malloc, or realloc function operation
when the size is 0.

The 0-byte area is allocated.

(a) The output format of perror function is
<character string>:<error message for the error number specified in error>

(b) Table 10.34 shows the format when displaying the floating-point infinity and not-a-number in
printf and fprintf functions.

457

Table 10.34 Display Format of Infinity and Not-a-Number

Value Display Format

Positive infinity ++++++

Negative infinity − − − − − −

Not-a-number * * * * * *

An example of a program that performs a series of input/output processing operations for a stream
input/output file is shown in the following.

458

Example

 1 #include <stdio.h>
 2
 3 void main()
 4 {
 5 int c;
 6 FILE *ifp, *ofp;
 7
 8 if ((ifp=fopen("INPUT.DAT","r"))==NULL){
 9 fprintf(stderr,"cannot open input file\n");
 10 exit(1);
 11 }
 12 if ((ofp=fopen("OUTPUT.DAT","w"))==NULL){
 13 fprintf(stderr,"cannot open output file\n");
 14 exit(1);
 15 }
 16 while ((c=getc(ifp))!=EOF)
 17 putc(c, ofp);
 18 fclose(ifp);
 19 fclose(ofp);
 20 }

Explanation

This program copies the contents of file INPUT.DAT to file OUTPUT.DAT.

Input file INPUT.DAT is opened by the fopen function in line 8, and output file OUTPUT.DAT is
opened by the fopen function in line 12. If opening fails, NULL is returned as the return value of
the fopen function, an error message is output, and the program is terminated.

If the fopen function ends normally, pointers to the data (FILE type) that stores information on
the opened files are returned; these are set in variables ifp and ofp.

After successful opening, input/output is performed using these FILE type data items.

When file processing ends, the files are closed with the fclose function.

459

int fclose(FILE *fp)

Description: Closes a stream input/output file.

Header file: <stdio.h>

Return values: Normal: 0
Abnormal: Nonzero

Parameters: fp File pointer

Example: #include <stdio.h>

 FILE *fp;
int ret;
 ret=fclose(fp);

Remarks: The fclose function closes the stream input/output file indicated by file pointer
fp.

If the output file of the stream input/output file is open and data that is not
output remains in the buffer, that data is output to the file before it is closed.

If the input/output buffer was automatically allocated by the system, it is
cancelled.

460

int fflush(FILE *fp)

Description: Outputs stream input/output file buffer contents to the file.

Header file: <stdio.h>

Return values: Normal: 0
Abnormal: Nonzero

Parameters: fp File pointer

Example: #include <stdio.h>

 FILE *fp;
int ret;
 ret=fflush(fp);

Remarks: When an output file of the stream input/output file is open, the fflush function
outputs the contents of the buffer that is not output for the stream input/output
file specified by file pointer fp to the file. When an input file is open, the
ungetc function specification is invalid.

461

FILE *fopen(const char *fname, const char *mode)

Description: Opens a stream input/output file under the specified file name.

Header file: <stdio.h>

Return values: Normal: File pointer indicating file information on opened file
Abnormal: NULL

Parameters: fname Pointer to string indicating file name
mode Pointer to string indicating file access mode

Example: #include <stdio.h>

 FILE *ret;
const char *fname, *mode;
 ret=fopen(fname, mode);

Remarks: The fopen function opens the stream input/output file whose file name is the
string pointed to by fname. If a file that does not exist is opened in write mode
or addition mode, a new file is created wherever possible. When an existing file
is opened in write mode, writing processing is performed from the beginning of
the file, and previously written file contents are erased.

When a file is opened in addition mode, write processing is performed from the
end-of-file position. When a file is opened in update mode, both input and
output processing can be performed on the file. However, input cannot directly
follow output without intervening execution of the fflush, fseek, or rewind
function. Similarly, output cannot directly follow input without intervening
execution of the fflush, fseek, or rewind function.

A string indicating the opening method may be added after the string indicating
the file access mode.

462

FILE *freopen(const char *fname, const char *mode, FILE *fp)

Description: Closes a currently open stream input/output file and reopens a new file under
the specified file name.

Header file: <stdio.h>

Return values: Normal: fp
Abnormal: NULL

Parameters: fname Pointer to string indicating new file name
mode Pointer to string indicating file access mode
fp File pointer of currently open stream input/output file

Example: #include <stdio.h>
 const char *fname, *mode;
FILE *ret, *fp;
 ret=freopen(fname, mode, fp);

Remarks: The freopen function first closes the stream input/output file indicated by file
pointer fp (the following processing is carried out even if this close processing is
unsuccessful). Next, the freopen function opens the file indicated by file name
fname for stream input/output, reusing the FILE structure pointed to by fp.

The freopen function is useful when there is a limit on the number of files being
opened at one time.

The freopen function normally returns the same value as fp, but returns NULL
if an error occurs.

463

void setbuf (FILE *fp, char buf[BUFSIZ])

Description: Defines and sets a stream input/output buffer area by the user program.

Header file: <stdio.h>

Parameters: fp File pointer
buf Pointer to buffer area

Example: #include <stdio.h>
 FILE *fp;
char buf[BUFSIZ];
 setbuf(fp, buf);

Remarks: The setbuf function defines the storage area pointed to by buf so that it can be
used as an input/output buffer area for the stream input/output file indicated by
file pointer fp. As a result, input/output processing is performed using a buffer
area of size BUFSIZ.

464

int setvbuf(FILE *fp, char *buf, int type, size_t size)

Description: Defines and sets a stream input/output buffer area by the user program.

Header file: <stdio.h>

Return values: Normal: 0
Abnormal: Nonzero

Parameters: fp File pointer
buf Pointer to buffer area
type Buffer management method
size Size of buffer area

Example: #include <stdio.h>

 FILE *fp;
char *buf;
int type, ret;
size_t size;
 ret=setvbuf(fp, buf, type, size);

Remarks: The setvbuf function defines the storage area pointed to by buf so that it can be
used as an input/output buffer area for the stream input/output file indicated by
file pointer fp.

There are three ways of using this buffer area, as follows:

(1) When _IOFBF is specified for type
Input/output is fully buffered.

(2) When _IOLBF is specified for type
Input/output is line buffered. That is, input/output data is fetched from the
buffer area when a new-line character is written, when the buffer area is
full, or when input is requested.

(3) When _IONBF is specified for type
Input/output is unbuffered.
The setvbuf function usually returns 0. However, when an illegal value is
specified for type or size, or when the request on how to use the buffer
could not be accepted, a value other than 0 is returned.

The buffer area must not be released before the opened stream input/output file
is closed. Also, the setvbuf function must be used between opening of the
stream input/output file and execution of input/output processing,

465

int fprintf(FILE *fp, const char *control[, arg…])

Description: Outputs data to a stream input/output file according to the format.

Header file: <stdio.h>

Return values: Normal: Number of characters converted and output
Abnormal: Negative value

Parameters: fp File pointer
control Pointer to string indicating format
arg,… List of data to be output according to format

Example: #include <stdio.h>
 FILE *fp;
const char *control=”%s”;
int ret;
char buffer[]=”Hellow World\n”;
 ret=fprintf(fp, control, buffer);

Remarks: The fprintf function converts and edits argument arg according to the string that
indicates the format pointed to by control, and outputs the result to the stream
input/output file indicated by file pointer fp.

The fprintf function returns the number of data items converted and output, or a
negative value if an error occurs.

The format specifications are shown below.

(1) Overview of formats

The character string that represents the format is made up of two kinds of string.

(a) Ordinary characters

A character other than a conversion specification shown in (b) is output
unchanged.

(b) Conversion specifications

A conversion specification is a string beginning with % that specifies the
conversion method for the following argument. The conversion
specifications format conforms to the following rules:

466

% [Flag …] [Parameter size specifications] Conversion string·
[*]

[Field width]

[*]

[Precision]

When there is no parameter to be actually output for this conversion
specifications, the behavior is not guaranteed. Also, when the number of
parameters to be actually output is greater than the conversion
specifications, the excess parameters are ignored.

(2) Description of conversion specifications

(a) Flags

Flags specify modifications to the data to be output, such as addition of a
sign. The types of flagsthat can be specified, and their meanings, are
shown in table 10.35.

Table 10.35 Flag Types and Their Meanings

Type Meaning

– If the number of converted data characters is less than the field width, the data will be
output left-justified within the field.

+ A plus or minus sign will be prefixed to the result of a signed conversion.

space If the first character of a signed conversion result is not a sign, a space will be prefixed to
the result. If the space and + flags are both specified, the space flag will be ignored.

The converted data is to be modified according to the conversion types described in
table 10.37.

(1) For c, d, i, s, and u conversions

This flag is ignored.

(2) For o conversion

The converted data is prefixed with 0.

(3) For x or X conversion

The converted data is prefixed with 0x (or 0X)

(4) For e, E, f, g, and G conversions

A decimal point is output even if the converted data has no fractional part. With g
and G conversions, the 0 suffixed to the converted data cannot be removed.

467

 (b) Field width

The number of characters in the converted data to be output is
specified as a decimal number.

If the number of converted data characters is less than the field width,
the data is prefixed with spaces up to the field width. (However, if '-'
is specified as a flag, spaces are appended to the data.)

If the number of converted data characters exceeds the field width, the
field width is extended to allow the converted result to be output.

If the field width specification begins with “0”, the “ 0” characters,
not spaces, are prefixed to the output data.

 (c) Precision

The precision of the converted data is specified according to the type
of conversion, as described in table 10.37.

The precision is specified in the form of a period (.) followed by a
decimal integer. If the decimal integer is omitted, 0 is assumed to be
specified.

If the specified precision is incompatible with the field width
specification, the field width specification is ignored.

The precision specification has the following meanings according to
the conversion type.

 (i) For d, i, o, u, x, and X conversions
 The minimum number of digits in the converted data is specified.

 (ii) For e, E, and f conversions
The number of digits after the decimal point in the converted data is
specified.

 (iii) For g and G conversions
 The maximum number of significant digits in the converted data is
 specified.

 (iv) For s conversion
 The maximum number of printed digits is specified.

468

(d) Parameter size specification

For d, i, o, u, x, X, e, E, f, g, and G conversions (see table 10.37),
specifies the size (short type, long type, or long double type) of the
data to be converted. In other conversions, this specification is
ignored. Table 10.36 shows the types of size specification and their
meanings.

Table 10.36 Parameter Size Specification Types and Meanings

Type Meaning

h In d, i, o, u, x, and X conversions, specifies that the data to be converted is of short type
or unsigned short type.

l In d, i, o, u, x, and X conversions, specifies that the data to be converted is of long type,
unsigned long type, or double type.

L In e, E, f, g, and G conversions, specifies that the data to be converted is of long double
type.

(e) Conversion specifier

 Specifies the format into which data is to be converted.

If the data to be converted is structure or array type, or is a pointer
pointing to those types, the behavior is not guaranteed except when a
character array is converted by s conversion or when a pointer is
converted by p conversion. Table 10.37 shows the conversion
specifiers and conversion methods. If a letter which is not shown in
this table is specified as the conversion specifier, the behavior is not
guaranteed. The behavior, if another character is specified, depends
on the compiler.

469

Table 10.37 Conversion Specifiers and Conversion Methods

Conversion
Specifier

Conversion
Type

Conversion Method

Data Type
Subject to
Conversion

Notes on Precision

d d conversion int type

i i conversion

int type data is converted to a signed
decimal string. d conversion and i
conversion have the same
specification.

int type

o o conversion int type data is converted to an
unsigned octal string.

int type

u u conversion int type data is converted to an
unsigned decimal string.

int type

x x conversion int type data is converted to unsigned
hexadecimal. a, b, c, d, e, and f are
used as hexadecimal characters.

int type

X X conversion int type data is converted to unsigned
hexadecimal. A, B, C, D, E, and F are
used as hexadecimal characters.

int type

The precision specification indicates the
minimum number of characters output. If
the number of converted data characters
is less than the field width, the string is
prefixed with zeros. If the precision is
omitted, 1 is assumed. If conversion and
output of data with a value of 0 is
attempted with 0 specified as the
precision, nothing will be output.

f f conversion double type data is converted to a
decimal string with the format [–]
ddd.ddd.

double type The precision specification indicates the
number of digits after the decimal point.
When there are characters after the
decimal point, at least one digit is output
before the decimal point. When the
precision is omitted, 6 is assumed. When
0 is specified as the precision, the decimal
point and subsequent characters are not
output. The output data is rounded.

e e conversion double type data is converted to a
decimal string with the format [–]
d.ddde±dd. At least two digits are
output as the exponent.

double type

E E conversion double type data is converted to a
decimal string with the format [–]
d.dddE±dd. At least two digits are
output as the exponent.

double type

The precision specification indicates the
number of digits after the decimal point.
The format is such that at least one digit is
output before the decimal point in the
converted characters, and a number of
digits equal to the precision are output
after the decimal point. When the
precision is omitted, 6 is assumed. When
0 is specified as the precision, characters
after the decimal point are not output.
The output data is rounded.

470

Table 10.37 Conversion Specifiers and Conversion Methods (cont)

Conversion
Specifier

Conversion
Type

Conversion Method

Data Type
Subject to
Conversion

Notes on Precision

g double type

G

g conversion
(or G
conversion)

Whether f conversion format output
or e conversion (or E conversion)
format output is performed is
determined by the value to be
converted and the precision value that
specifies the number of significant
digits, and double type data is output.
If the exponent of the converted data is
less than –4, or larger than the
precision that indicates the number of
significant digits, conversion to e (or E)
format is performed.

double type

The precision specification indicates the
maximum number of significant digits in
the converted data.

c c conversion int type data is converted to unsigned
char data, with conversion to the
character corresponding to that data.

int type The precision specification is invalid.

s s conversion The string pointed to by pointer to char
type are output up to the null character
or up to the number of characters
specified by the precision. (Null
characters are not output. Space,
horizontal tab, and new line characters
are not included in the converted
characters.)

Pointer to
char type

The precision specification indicates the
number of characters to be output. If the
precision is omitted, characters are output
up to, but not including, the null character
in the string pointed to by the data. (Null
characters are not output. Space,
horizontal tab, and new line characters are
not included in the converted characters.)

p p conversion Using data as a pointer, conversion is
performed to a string of compiler-
defined printable characters.

Pointer to
void type

n No conversion
is performed.

Data is regarded as pointer to int type,
and the number of characters output so
far is set in the storage area pointed to
by that data.

Pointer to int
type

% No conversion
is performed.

% is output. None

The precision specification is invalid.

 (f) * specification for field width or precision

 * can be specified as the field width or precision specification value.
 In this case, the value of the parameter corresponding to the
 conversion specification is used as the field width or precision
 specification value. When this parameter has a negative field width,
 flag '–' is interpreted as being specified for the positive field width.
 When the parameter has a negative precision, the precision is
 interpreted as being omitted.

471

int fscanf(FILE *fp, const char *control[, ptr]…)

Description: Inputs data from a stream input/output file and converts it according to a format.

Header file: <stdio.h>

Return values: Normal: Number of data items successfully input and converted
Abnormal: If input data ends before input data conversion is performed: EOF

Parameters: fp File pointer
control Pointer to string indicating format
ptr Pointer to storage area that holds input data

Example: #include <stdio.h>
 FILE *fp;
const char *control="%d";
int ret,buffer[10];
 ret=fscanf(fp, control, buffer);

Remarks: The fscanf function inputs data from the stream input/output file indicated by
file pointer fp, converts and edits it according to the string indicating the format
pointed to by control, and stores the result in the storage area pointed to by ptr.

 The format specifications for inputting data are shown below.

 (1) Overview of formats
 The string that represents the format is made up of the following three
 kinds of string.
(a) White-space characters
 If a space (' '), horizontal tab ('\t'), or new-line character ('\n') is
 specified, processing is performed to skip to the next non-white-space
 character in the input data.
(b) Ordinary characters
 If a character that is neither one of the white-space characters listed in (a)
 nor % is specified, one input data character is input. The input character
 must match a character specified in the string that represents the format.

472

 (c) Conversion specification
A conversion specification is a string beginning with % that specifies
the method of converting the input data and storing it in the area
pointed to by the following argument. The conversion specification
format conforms to the following rules:

% [*] [Field width] [Converted data size] Conversion string

If there is no pointer to the storage area that holds input data for the
conversion specification in the format, the behavior is not guaranteed.
Also, if a pointer to a storage area that holds input data remains though the
format is exhausted, that pointer is ignored.

 (2) Description of conversion specifications
 (a) * specification
 Suppresses storage of the input data in the storage area pointed to by the
 parameter.
 (b) Field width
 The maximum number of characters in the data to be input is
 specified as a decimal number.
 (c) Converted data size
 For d, i, o, u, x, X, e, E, and f conversions (see table 10.39), specifies the
 size (short type, long type, or long double type) of the converted data.
 In other conversions, this specification is ignored. Table 10.38 shows the
 types of size specification and their meanings.

Table 10.38 Converted Data Size Specification Types and Meanings

Type Meaning

h For d, i, o, u, x, and X conversions, specifies that the converted data is of short type.

l For d, i, o, u, x, and X conversions, specifies that the converted data is of long type.
For e, E, and f conversions, specifies that the converted data is of double type.

L For e, E, and f conversions, specifies that the converted data is of long double type.

 (d) Conversion specifier
 The input data is converted according to the type of conversion
 specified by the conversion specifier. However, processing is
 terminated if a white-space character is read, if a character for which
 conversion is not permitted is read, or if the specified field width is
 exceeded.

473

Table 10.39 Conversion Specifiers and Conversion Methods

Conversion
Specifier

Conversion
Type

Conversion Method

Data Type Subject
to Conversion

d d conversion A decimal string is converted to integer type data. Integer type

i i conversion A decimal string with a sign prefixed, or a decimal string with u (U)
or l (L) appended is converted to integer type data. A string beginning
with 0x (or 0X) is interpreted as hexadecimal, and the string is converted
to int type data. A string beginning with 0 is interpreted as octal, and the
string is converted to int type data.

Integer type

o o conversion An octal string is converted to integer type data. Integer type

u u conversion An unsigned decimal string is converted to integer type data. Integer type

x x conversion

X X conversion

A hexadecimal string is converted to integer type data.
There is no difference in meaning between x conversion and X conversion.

Integer type

s s conversion Characters are converted as a single string until a space, horizontal tab,
or new-line character is read. A null character is appended at the end of
the string. (The string in which the converted data is set must be large
enough to include the null character.)

Character type

c c conversion One character is input. The input character is not skipped even if it is a
white-space character. To read only non-white-space characters, specify
%1S. If the field width is specified, the number of characters equivalent
to that specification are read. In this case, therefore, the storage area that
holds the converted data must be of the specified size.

char type

e e conversion

E E conversion

f f conversion

g g conversion

G G conversion

A string indicating a floating-point number is converted to floating-point
type data. There is no difference in meaning between the e conversion
and E conversion, or between the g conversion and G conversion.
The input format is a floating-point number that can be represented by
the strtod function.

Floating-point type

p p conversion A string converted by p conversion in the fprintf function is
converted to pointer type data.

Pointer to void type

n No conversion
is performed.

Data input is not performed; the number of data characters input so far is
set.

Integer type

 [[conversion A sequence of characters is specified after [, followed by]. This character
sequence defines a sequence of characters comprising a string. If the
first character of the character sequence is not a circumflex (^), the input
data is input as a single string until a character not in this character
sequence is first read. If the first character is ^, the input data is input as a
single string until a character which is in the character sequence following
the ^ is first read. A null character is automatically appended at the end of
the input string (so the string in which the converted data is set must be
large enough to include the null character).

Character type

% No conversion
is performed.

% is read. None

If the conversion specifier is a letter not shown in table 10.39, the behavior is not
guaranteed. For other characters, the behavior is implementation-defined.

474

int printf(const char *control[, arg…])

Description: Converts data according to a format and outputs it to the standard output file
(stdout).

Header file: <stdio.h>

Return values: Normal: Number of characters converted and output
Abnormal: Negative value

Parameters: control Pointer to string indicating format
arg... Data to be output according to format

Example: #include <stdio.h>
char *s;
const char *control=”%s”;
int ret;
char buffer[]="Hellow World\n";
 ret=sprintf(fp,control, buffer);

Remarks: The printf function converts and edits parameter arg according to the string that
indicates the format pointed to by control, and outputs the result to the standard
output file (stdout).

For details of the format specifications, see the description of the fprintf()
 function.

475

int scanf(const char *control[, ptr…])

Description: Inputs data from the standard input file (stdin) and converts it according to a
format.

Header file: <stdio.h>

Return values: Normal: Number of data items successfully input and converted
Abnormal: EOF

Parameters: control Pointer to string indicating format
ptr... Pointer to storage area that holds input and converted data

Example: #include <stdio.h>
const char *control="%d";
int ret,buffer[10];
 ret=scanf(control,buffer);

Remarks: The scanf function inputs data from the standard input file (stdin), converts and
 edits it according to the string indicating the format pointed to by control, and
 stores
 the result in the storage area pointed to by ptr.

 The scanf function returns the number of data items successfully input and
 converted as the return value. EOF is returned if the standard input file ends
 before the first conversion.

 For details of the format specifications, see the description of the fscanf ()
 function.

For %e conversion, specify l for double type, and specify L for long double
type. The default type is float.

476

int sprintf(char* s, const char *control[, arg…])

Description: Converts data according to a format and outputs it to the specified area.

Header file: <stdio.h>

Return values: Number of characters converted

Parameters: s Pointer to storage area to which data is to be output
control Pointer to string indicating format
arg... Data to be output according to format

Example: #include <stdio.h>
char *s;
const char *control=”%s”;
int ret;
char buffer[]="Hellow World\n";
 ret=sprintf(fp, control, buffer);

Remarks: The sprintf function converts and edits parameter arg according to the string
that indicates the format pointed to by control, and outputs the result to the
storage area pointed to by s.

A null character is appended at the end of the converted and output string. This
null character is not included in the return value (number of characters output).

For details of the format specifications, see the description of the fprintf()
function.

477

int sscanf(const char*s, const char *control[, ptr…])

Description: Inputs data from the specified storage area and converts it according to a
format.

Header file: <stdio.h>

Return values: Normal: Number of data items successfully input and converted
Abnormal: EOF

Parameters: s Storage area containing data to be input
control Pointer to string indicating format
ptr... Pointer to storage area that holds input and converted data

Example: #include <stdio.h>
const char *s, *control="%d";
int ret,buffer[10];
 ret=sscanf(s, control, buffer);

Remarks: The sscanf function inputs data from the storage area pointed to by s, converts
 and edits it according to the string indicating the format pointed to by control,
 and stores the result in the storage area pointed to by ptr.

The sscanf function returns the number of data items successfully input and
converted. EOF is returned if the input data ends before the first conversion.

For details of the format specifications, see the description of the fscanf()
function.

478

int vfprintf(FILE *fp, const char *control, va_list arg)

Description: Outputs a variable parameter list to the specified stream input/output file
according to a format.

Header file: <stdio.h>

Return values: Normal: Number of characters converted and output
Abnormal: Negative value

Parameters: fp File pointer
control Pointer to string indicating format
arg Argument list

Example: #include <stdarg.h>
#include <stdio.h>
FILE *fp;
const char *control=”%d”;
int ret;

void prlist(int count ,...)
{
 va_list ap;
 int i;
 va_start(ap, count);
 for(i=0;i<count;i++)
 ret=vfprintf(fp, control, ap);
 va_end(ap)
}

Remarks: The vfprintf function sequentially converts and edits a variable parameter list
according to the string that indicates the format pointed to by control, and
outputs the result to the stream input/output file indicated by fp.

The vfprintf function returns the number of data items converted and output, or
a negative value if an error occurs.

With the vfprintf function, the va_end macro is not invoked.

For details of the format specifications, see the description of the fprintf()
 function.

Parameter arg, indicating the argument list, must be initialized beforehand by
the va_start and va_arg macros.

479

int vprintf(const char *control, va_list arg)

Description: Outputs a variable parameter list to the standard output file (stdout) according
to a format.

Header file: <stdio.h>

Return values: Normal: Number of characters converted and output
Abnormal: Negative value

Parameters: control Pointer to string indicating format
arg Argument list

Example: #include <stdarg.h>
#include <stdio.h>
FILE *fp;
const char *control=”%d”;
int ret;

void prlist(int count ,...)
{

 va_list ap;
 int i;
 va_start(ap, count);
 for(i=0;i<count;i++)
 ret=vprintf(control, ap);
 va_end(ap);
}

Remarks: The vprintf function sequentially converts and edits a variable parameter list
 according to the string that indicates the format pointed to by control, and
 outputs the result to the standard output file.

The vprintf function returns the number of data items converted and output, or a
negative value if an error occurs.

With the vprintf function, the va_end macro is not invoked.

For details of the format specifications, see the description of the fprintf()
 function.

Parameter arg, indicating the argument list, must be initialized beforehand by
 the va_start and va_arg macros.

480

int vsprintf(char *s, const char *control, va_list arg)

Description: Outputs a variable parameter list to the specified storage area according to a
format.

Header file: <stdio.h>

Return values: Normal: Number of characters converted
Abnormal: Negative value

Parameters: s Pointer to storage area to which data is to be output
control Pointer to string indicating format
arg Argument list

Example: #include <stdarg.h>
#include <stdio.h>
#define NUM 128
char str[NUM];
int ret;

void prlist(int count,...){
 va_list ap;
 int i;
 char *s=str;
 va_start(ap, count);
 for (i=0;i<count;i++){
 ret=vsprintf(s,"%d",ap);
 va_arg(ap,int);
 s+=ret;
 }
}

Remarks: The vsprintf function sequentially converts and edits a variable parameter list
according to the string that indicates the format pointed to by control, and
outputs the result to the storage area pointed to by s.

A null character is appended at the end of the converted and output string. This
null character is not included in the return value (number of characters output).

For details of the format specifications, see the description of the fprintf()
 function.

Parameter arg, indicating the argument list, must be initialized beforehand by
the va_start and va_arg macros.

481

int fgetc(FILE *fp)

Description: Inputs one character from a stream input/output file.

Header file: <stdio.h>

Return values: Normal: End-of-file: EOF
 Otherwise: Input character
Abnormal: EOF

Parameters: fp File pointer

Example: #include <stdio.h>
FILE *fp;
int ret;
 ret=fgetc(fp);

Error conditions:
 If a read error occurs, the error indicator for that file is set.

Remarks: The fgetc function inputs one character from the stream input/output file
indicated by file pointer fp.

The fgetc function normally returns the input character, but returns EOF at end-
of-file or if an error occurs. At end-of-file, the end-of-file indicator for that file
is set.

482

char *fgets(char *s, int n, FILE *fp)

Description: Inputs a string from a stream input/output file.

Header file: <stdio.h>

Return values: Normal: End-of-file: NULL
 Otherwise: s
 Abnormal: NULL

Parameters: s Pointer to storage area to which string is input
n Number of bytes of storage area to which string is input
fp File pointer

Example: #include <stdio.h>
char *s, *ret;
int n;
 FILE *fp;
 ret=fgets(s, n, fp);

Remarks: The fgets function inputs a string from the stream input/output file indicated by
file pointer fp to the storage area pointed to by s.

The fgets function performs input up to the (n–1)th character or a new-line
character, or until end-of-file, and appends a null character at the end of the
input string.

The fgets function normally returns s, the pointer to the storage area to which
the string is input, but returns NULL at end-of-file or if an error occurs.

The contents of the storage area pointed to by s do not change at end-of-file, but
are undefined if an error occurs.

483

int fputc (int c, FILE *fp)

Description: Outputs one character to a stream input/output file.

Header file: <stdio.h>

Return values: Normal: Output character
Abnormal: EOF

Parameters: c Character to be output
fp File pointer

Example: #include <stdio.h>
 FILE *fp;
int c, ret;
 ret=fputc(c, fp);

Error conditions:
 If a write error occurs, the error indicator for that file is set.

Remarks: The fputc function outputs character c to the stream input/output file indicated
by file pointer fp.

The fputc function normally returns c, the output character, but returns EOF if
an error occurs.

484

int fputs (const char *s, FILE *fp)

Description: Outputs a string to a stream input/output file.

Header file: <stdio.h>

Return values: Normal: 0
Abnormal: Nonzero

Parameters: s Pointer to string to be output
fp File pointer

Example: #include <stdio.h>
 const char *s;
int ret;
 FILE *fp;
 ret=fputs(s, fp);

Remarks: The fputs function outputs the string up to the character preceding the null
character pointed to by s to the stream input/output file indicated by file pointer
fp. The null character indicating the end of the string is not output.

The fputs function normally returns zero, but returns nonzero if an error occurs.

485

int getc (FILE *fp)

Description: Inputs one character from a stream input/output file.

Header file: <stdio.h>

Return values: Normal: End-of-file: EOF
 Otherwise: Input character
 Abnormal: EOF

Parameters: fp File pointer

Example: #include <stdio.h>
 FILE *fp;
int ret;
 ret=getc(fp);

Error conditions:
If a read error occurs, the error indicator for that file is set.

Remarks: The getc function inputs one character from the stream input/output file
indicated by file pointer fp.

The getc function normally returns the input character, but returns EOF at end-
of-file or if an error occurs. At end-of-file, the end-of-file indicator for that file
is set.

486

int getchar (void)

Description: Inputs one character from the standard input file (stdin).

Header file: <stdio.h>

Return values: Normal: End-of-file: EOF
 Otherwise: Input character
 Abnormal: EOF

Example: #include <stdio.h>
int ret;
 ret=getchar();

Error conditions:
 If a read error occurs, the error indicator for that file is set.

Remarks: The getchar function inputs one character from the standard input file (stdin).

The getchar function normally returns the input character, but returns EOF at
end-of-file or if an error occurs. At end-of-file, the end-of-file indicator for that
file is set.

487

char *gets (char *s)

Description: Inputs a string from the standard input file (stdin).

Header file: <stdio.h>

Return values: Normal: End-of-file: NULL
 Otherwise: s
 Abnormal: NULL

Parameters: s Pointer to storage area to which string is input

Example: #include <stdio.h>
char *ret, *s;
 ret=gets(s);

Remarks: The gets function inputs a string from the standard input file (stdin) to the
storage area starting at s.

The gets function inputs characters up to end-of-file or until a new-line character
is input, and appends a null character instead of a new-line character.

The gets function normally returns s, the pointer to the storage area to which the
string is input, but returns NULL at the end of the standard input file or if an
error occurs.

The contents of the storage area pointed to by s do not change at the end of the
standard input file, but are undefined if an error occurs.

488

int putc (int c, FILE *fp)

Description: Outputs one character to a stream input/output file.

Header file: <stdio.h>

Return values: Normal: Output character
 Abnormal: EOF

Parameters: c Character to be output
 fp File pointer

Example: #include <stdio.h>
FILE *fp;
int c, ret;
 ret=putc(c, fp);

Error conditions:
If a write error occurs, the error indicator for that file is set.

Remarks: The putc function outputs character c to the stream input/output file indicated by
file pointer fp.

The putc function normally returns c, the output character, but returns EOF if an
error occurs.

489

int putchar(int c)

Description: Outputs one character to the standard output file (stdout).

Header file: <stdio.h>

Return values: Normal: Output character
 Abnormal: EOF

Parameters: c Character to be output

Example: #include <stdio.h>
int c, ret;
 ret=putchar(c);

Error conditions:
 If a write error occurs, the error indicator for that file is set.

Remarks: The putchar function outputs character c to the standard output file (stdout).

The putchar function normally returns c, the output character, but returns EOF
if an error occurs.

int puts(const char *s)

Description: Outputs a string to the standard output file (stdout).

Header file: <stdio.h>

Return values: Normal: 0
 Abnormal: Nonzero

Parameters: s Pointer to string to be output

Example: #include <stdio.h>
const char *s;
int ret;
 ret=puts(s);

Remarks: The puts function outputs the string pointed to by s to the standard output file
(stdout). The null character indicating the end of the string is not output, but a
new-line character is output instead.

The puts function normally returns zero, but returns nonzero if an error occurs.

490

int ungetc (int c, FILE *fp)

Description: Returns one character to a stream input/output file.

Header file: <stdio.h>

Return values: Normal: Returned character
 Abnormal: EOF

Parameters: c Character to be returned
 fp File pointer

Example: #include <stdio.h>
int c, ret;
FILE *fp;
 ret=ungetc(c, fp);

Remarks: The ungetc function returns character c to the stream input/output file indicated
by file pointer fp. Unless the fflush, fseek, or rewind function is called, this
returned character will be the next input data.

The ungetc function normally returns character c, but returns EOF if an error
occurs.

The behavior is not guaranteed if the ungetc function is called more than once
without intervening fflush, fseek, or rewind function execution. When the
ungetc function is executed, the current file position indicator for that file is
moved back one position; however, if this file position indicator is already
positioned at the beginning of the file, its value will be undefined.

491

size_ t fread(void *ptr, size_t size, size_t n, FILE *fp)

Description: Inputs data from a stream input/output file to the specified storage area.

Header file: <stdio.h>

Return values: If size or n is 0: 0
 If size and n are both nonzero: Number of successfully input members

Parameters: ptr Pointer to storage area to which data is input
 size Number of bytes in one member
 n Number of members to be input
 fp File pointer

Example: #include <stdio.h>
void *ptr;
size_t size;
size_t n, ret;
FILE *fp;
 ret=fread(ptr, size, n, fp);

Remarks: The fread function inputs n members whose size is specified by size, from the
stream input/output file indicated by file pointer fp, into the storage area pointed
to by ptr. The file position indicator for the file is advanced by the number of
bytes input.

The fread function returns the number of members successfully input, which is
normally the same as the value of n. However, at end-of-file or if an error
occurs, the number of members successfully input so far is returned, and so the
return value will be less than n. The ferror and feof functions should be used to
distinguish between end-of-file and error occurrence.

If the value of size or n is zero, zero is returned and the contents of the storage
area pointed to by ptr are unchanged. If an error occurs, or if only some of the
members can be input, the file position indicator will be undefined.

492

size_t fwrite(const void *ptr, size_t size, size_t n, FILE *fp)

Description: Outputs data from a memory area to a stream input/output file.

Header file: <stdio.h>

Return values: Number of successfully output members

Parameters: ptr Pointer to storage area holding data to be output
 size Number of bytes in one member
 n Number of members to be output
 fp File pointer

Example: #include <stdio.h>
const void *ptr;
size_t size;
size_t n, ret;
FILE *fp;
 ret=fwrite(ptr, size, n, fp);

Remarks: The fwrite function outputs n members whose size is specified by size, from the
storage area pointed to by ptr, to the stream input/output file indicated by file
pointer fp. The file position indicator for the file is advanced by the number of
bytes output.

The fwrite function returns the number of members successfully output, which
is normally the same as the value of n. However, if an error occurs, the number
of members successfully output so far is returned, and so the return value will be
less than n.

If an error occurs, the file position indicator will be undefined.

493

int fseek(FILE *fp, long offset, int type)

Description: Shifts the current read/write position in a stream input/output file.

Header file: <stdio.h>

Return values: Normal: 0
 Abnormal: Nonzero

Parameters: fp File pointer
 offset Offset from position specified by type of offset
 type Type of offset

Example: #include <stdio.h>
FILE *fp;
long offset;
int type, ret;
 ret=fseek(fp, offset, type);

Remarks: The fseek function shifts the current read/write position in the stream
input/output file indicated by file pointer fp, offset bytes from the position
specified by the type of offset (type).
The types of offset are shown in table 10.40.
The fseek function normally returns zero, but returns nonzero in response to an
invalid request.

Table 10.40 Types of Offset

Offset Type Meaning

SEEK_SET Shifts to a position offset bytes from the beginning of the file. The value specified
by offset must be zero or positive.

SEEK_CUR Shifts to a position offset bytes from the current position in the file. The shift is
toward the end of the file if the value specified by offset is positive, and toward
the beginning of the file if negative.

SEEK_END Shifts to a position offset bytes forward from end-of-file. The value specified by
offset must be zero or negative.

In the case of a text file, the type of offset must be SEEK_SET and offset must
be zero or the value returned by the ftell function for that file. Note also that
calling the fseek function cancels the effect of the ungetc function.

494

long ftell(FILE *fp)

Description: Obtains the current read/write position in a stream input/output file.

Header file: <stdio.h>

Return values: Current file position indicator position (text file)
Number of bytes from beginning of file to current position (binary file)

Parameters: fp File pointer

Example: #include <stdio.h>
FILE *fp;
long ret;
 ret=ftell(fp);

Remarks: The ftell function obtains the current read/write position in the stream
input/output file indicated by file pointer fp.

For a binary file, the ftell function returns the number of bytes from the
beginning of the file to the current position. For a text file, it returns, as the
position of the file position indicator, an implementation-defined value that can
be used by the fseek function.

If the ftell function is used twice for a text file, the difference in the return
values will not necessarily represent the actual distance in the file.

495

void rewind(FILE *fp)

Description: Shifts the current read/write position in a stream input/output file to the
beginning of the file.

Header file: <stdio.h>

Parameters: fp File pointer

Example: #include <stdio.h>
FILE *fp;
 rewind(fp);

Remarks: The rewind function shifts the current read/write position in the stream
input/output file indicated by file pointer fp, to the beginning of the file.

The rewind function clears the end-of-file indicator and error indicator for the
file.

Note that calling the rewind function cancels the effect of the ungetc function.

void clearerr(FILE *fp)

Description: Clears the error state of a stream input/output file.

Header file: <stdio.h>

Parameters: fp File pointer

Example: #include <stdio.h>
FILE *fp;
 clearerr(fp);

Remarks: The clearerr function clears the error indicator and end-of-file indicator for the
stream input/output file indicated by file pointer fp.

496

int feof(FILE *fp)

Description: Tests for the end of a stream input/output file.

Header file: <stdio.h>

Return values: End-of-file: Nonzero
Otherwise: 0

Parameters: fp File pointer

Example: #include <stdio.h>
FILE *fp;
int ret;
 ret=feof(fp);

Remarks: The feof function tests for the end of the stream input/output file indicated by
file pointer fp.

The feof function tests the end-of-file indicator for the specified stream
input/output file, and if the indicator is set, returns nonzero to indicate that the
file is at its end. If the end-of-file indicator is not set, the feof function returns
zero to indicate that the file is not yet at its end.

497

int ferror(FILE *fp)

Description: Tests for stream input/output file error state.

Header file: <stdio.h>

Return values: If file is in error state: Nonzero
Otherwise: 0

Parameters: fp File pointer

Example: #include <stdio.h>
FILE *fp;
int ret;
 ret=ferror(fp);

Remarks: The ferror function tests whether the stream input/output file indicated by file
pointer fp is in the error state.

The ferror function tests the error indicator for the specified stream input/output
file, and if the indicator is set, returns nonzero to indicate that the file is in the
error state. If the error indicator is not set, the ferror function returns zero to
indicate that the file is not in the error state.

void perror(const char *s)

Description: Outputs an error message corresponding to the error number to the standard error
file (stderr).

Header file: <stdio.h>

Parameters: s Pointer to error message

Example: #include <stdio.h>
const char *s;
 perror(s);

Remarks: The perror function maps errno to the error message indicated by s, and
outputs the message to the standard error file (stderr).

If s is not NULL and the string pointed to by s is not the null character, the
output format is as follows: the string pointed to by s followed by a colon and
space, then the implementation-defined error message, and finally a new-line
character.

498

<no_float.h>

Provides simplified I/O functions that does not support the conversion of floating-point numbers
(%f, %e, %E, %g, and %G). The ROM size can be minimized when inputting/outputting files that
do not require floating-point number conversion.

Type Definition Name Description

fprintf Outputs data to the stream input/output file in the specified format.

fscanf Inputs data from the stream input/output file and converts data
according to the specified format.

printf Converts data according to the specified format, and outputs converted
data to the standard output file (stdout).

scanf Inputs data from the standard input file (stdin), and converts the input
data according to the specified format.

sprintf Converts data according to the specified format, and outputs the
converted data to the specified area.

sscanf Inputs data from the specified memory area, and converts the input
data according to the specified format.

vfprintf Outputs variable number of parameter lists to the specified stream
input/output file according to the specified format.

vprintf Outputs variable number of parameter lists to the specified standard
output file according to the specified format.

Function

vsprintf Outputs variable number of parameter lists to the specified memory
area according to the specified format.

Declare #include <no_float.h> before specifying #include <stdio.h>.

The following shows an example.

#include <no_float.h>
#include <stdio.h>
void main(void)
{
 printf(“Hello\n”);
}

Note

If a floating-point number is specified for a function when #include <no_float.h> is specified,
correct operation at function execution is not guaranteed.

499

<stdlib.h>

Defines functions for standard processing of C programs.

The following macros are implementation-defined.

Type Definition Name Description

onexit_t Indicates the type returned by the function registered by the onexit
function and the type of the onexit function return value.

div_t Indicates the type of structure of the value returned by the div function.

Type
(macro)

ldiv_t Indicates the type of structure of the value returned by the ldiv function.

Constant
(macro)

RAND_MAX Indicates the maximum of pseudo-random integers generated by the
rand function.

atof Converts a number-representing string to a double type floating-point
number.

atoi Converts a decimal-representing string to an int type integer.

atol Converts a decimal-representing string to a long type integer.

strtod Converts a number-representing string to a double type floating-point
number.

strtol Converts a number-representing string to a long type integer.

rand Generates pseudo-random integers from 0 to RAND_MAX.

srand Sets an initial value of the pseudo-random number series generated by
the rand function.

calloc Allocates storage areas and clears all bits in the allocated storage
areas to 0.

free Releases specified storage area.

malloc Allocates a storage area.

realloc Changes the size of storage area to a specified value.

bsearch Performs binary search.

qsort Performs sorting.

abs Calculates the absolute value of an int type integer.

div Carries out division of int type integers and obtains the quotient and
remainder.

labs Calculates the absolute value of a long type integer.

Function

ldiv Carries out division of long type integers and obtains the quotient and
remainder.

500

double atof(const char *nptr)

Description: Converts a number-representing string to a double type floating-point number.

Header file: <stdlib.h>

Return values: Converted data as a double type floating-point number

Parameters: nptr Pointer to a number-representing string to be converted

Example: #include <stdlib.h>
const char *nptr;
double ret;
 ret=atof(nptr);

Remarks: Data is converted up to the first character that does not fit the floating-point data
 type.

The atof function sets no errno even if an error such as an overflow occurs. If
an error occurs, the result will be undefined. When there are possibilities of a
conversion error, use the strtod function.

501

int atoi(const char *nptr)

Description: Converts a decimal-representing string to an int type integer.

Header file: <stdlib.h>

Return values: Converted data as an int type integer

Parameters: nptr Pointer to a number-representing string to be converted

Example: #include <stdlib.h>
const char *nptr;
int ret;
 ret=atoi(nptr);

Remarks: Data is converted up to the first character that does not fit the decimal data type.

The atoi function sets no errno even if an error such as an overflow occurs. If
an error occurs, the result will be undefined. When there are possibilities of a
conversion error, use the strtol function.

long atol(const char *nptr)

Description: Converts a decimal-representing string to a long type integer.

Header file: <stdlib.h>

Return values: Converted data as a long type integer

Parameters: nptr Pointer to a number-representing string to be converted

Example: #include <stdlib.h>
const char *nptr;
long ret;
 ret=atol(nptr);

Remarks: Data is converted up to the first character that does not fit the decimal data type.

The atol function sets no errno even if an error such as an overflow occurs. If
an error occurs, the result will be undefined. When there are possibilities of a
conversion error, use the strtol function.

502

double strtod(const char *nptr, char **endptr)

Description: Converts a number-representing string to a double type floating-point number.

Header file: <stdlib.h>

Return values: Normal: If the string pointed by nptr is beginning with a character that
 does not represent a floating-point number: 0
 If the string pointed by nptr is beginning with a character that
 represents a floating-point number: Converted data as a double
 type floating-point number
Abnormal: If the converted data overflows: HUGE_VAL with the same sign
 as that of the string to be converted
 If the converted data underflows: 0

Parameters: nptr Pointer to a number-representing string to be converted
 endptr Pointer to the storage area containing a pointer to the first
 character that does not represent a floating-point number

Example: #include <stdlib.h>
const char *nptr;
char **endptr;
double ret;
 ret=strtod(nptr, endptr);

Error conditions:
If the converted result overflows or underflows, ERANGE is set for errno.

Remarks: According to section 10.1.3 (4), Floating-Point Specifications, the strtod
function converts data, from the first numeral or the decimal point up to the
character immediately before the character that does not represent a floating-
point number, into a double type floating-point number. However, if neither the
exponent nor decimal point is found in the data to be converted, it is assumed
that the decimal point comes next to the last numeral in the string. In the
address pointed by endptr, this function sets up a pointer to the first character
that does not compose a floating-point number. If some characters that do not
compose a floating-point number come before the first numeral, the value of
nptr is set in this address. If endptr is NULL, nothing is set in this address.

503

long strtol(const char *nptr, char **endptr, int base)

Description: Converts a number-representing string to a long type integer.

Header file: <stdlib.h>

Return values: Normal: If the string pointed by nptr is beginning with a character that
 does not represent an integer: 0
 If the string pointed by nptr is beginning with a character that
 represents an integer: Converted data as a long type integer
Abnormal: If the converted data overflows: LONG_MAX or LONG_MIN
 depending on the sign of the string to be converted

Parameters: nptr Pointer to a number-representing string to be converted
 endptr Pointer to the storage area containing a pointer to the first
 character that does not represent an integer
 base Radix of conversion (0 or 2 to 36)

Example: #include <stdlib.h>
long ret;
const char *nptr;
char **endptr;
int base;
 ret=strtol(nptr, endptr, base);

Error conditions:
 If the converted result overflows, ERANGE is set for errno.

Remarks: The strtol function converts data, from the first numeral to the character
 immediately before the first character that does not represent an integer,
 into a long type integer.

In the address pointed by endptr, this function sets up a pointer to the first
character that does not represent an integer. If some characters that do not
represent an integer come before the first numeral, the value of nptr is set in this
address. If endptr is NULL, nothing is set in this address.

If the value of base is 0, data is converted according to section 10.1.1 (4),
Integers. If the value of base is 2 to 36, it indicates the radix of conversion,
where a (or A) to z (or Z) in the string to be converted are corresponded to
numbers 10 to 35. If a character that is not smaller than the base value is found
in the string to be converted, conversion stops immediately. A 0 after a sign is
ignored at conversion. Similarly, 0x (or 0X) at base 16 is ignored.

504

int rand (void)

Description: Generates pseudo-random integers from 0 to RAND_MAX.

Header file: <stdlib.h>

Return values: Pseudo-random integers

Example: #include <stdlib.h>
int ret;
 ret=rand();

void srand(unsigned int seed)

Description: Sets an initial value of the pseudo-random number series generated by the rand
function.

Header file: <stdlib.h>

Parameters: seed Initial value for pseudo-random number series generation

Example: #include <stdlib.h>
unsigned int seed;
 srand(seed);

Remarks: The srand function sets up an initial value for pseudo-random number series
generated by the rand function. While pseudo-random number series
generation by the rand function is ongoing, if the same initial value is set up
again by the srand function, the same pseudo-random number series is repeated.

If the rand function is called before the srand function, 1 is set as the initial
value for the pseudo-random number generation.

505

void *calloc(size_t nelem, size_t elsize)

Description: Allocates storage areas and clears all bits in the allocated storage areas to 0.

Header file: <stdlib.h>

Return values: Normal: Starting address of allocated storage area
Abnormal: If storage allocation failed, or if either of the parameter is 0:
 NULL

Parameters: nelem Number of elements
 elsize Number of bytes occupied by a single element

Example: #include <stdlib.h>
size_t nelem, elsize;
void *ret;
 ret=calloc(nelem, elsize);

Remarks: The calloc function allocates as many storage areas as specified by nelem, in as
many units of bytes as specified by elsize. The function also clears all the bits in
the allocated storage areas to 0.

void free(void *ptr)

Description: Releases specified storage area.

Header file: <stdlib.h>

Parameters: ptr Address of storage area to release

Example: #include <stdlib.h>
void *ptr;
 free(ptr);

Remarks: The free function releases the storage area pointed by ptr, to enable reallocation
 for use. If ptr is NULL, the function carries out nothing.

 If the storage area attempted to release was not allocated by the calloc, malloc,
or realloc function, or if the area has already been released by the free or
realloc function, correct operation is not guaranteed. Operation result of
referencing an already released storage area is also undefined.

506

void *malloc(size_t size)

Description: Allocates a storage area.

Header file: <stdlib.h>

Return values: Normal: Starting address of allocated storage area
Abnormal: If storage allocation failed, or if size is 0: NULL

Parameters: size Size in number of bytes of storage area to allocate

Example: #include <stdlib.h>
size_t size;
void *ret;
 ret=malloc(size);

Remarks: The malloc function allocates a storage area of a specified number of bytes by
size.

void *realloc(void *ptr, size_t size)

Description: Changes the size of a storage area to a specified value.

Header file: <stdlib.h>

Return values: Normal: Starting address of storage area whose size has been changed
Abnormal: If storage area allocation failed, or if size is 0: NULL

Parameters: ptr Starting address of storage area to be changed
 size Size of storage area in number of bytes after the change

Example: #include <stdlib.h>
size_t size;
void *ptr, *ret;
 ret=realloc(ptr, size);

Remarks: The realloc function changes the size of the storage area specified by ptr to the
number of bytes specified by size. If the newly allocated storage area is smaller
than the old one, the contents are left unchanged up to the size of the newly
allocated area.

 If the storage area pointed by ptr was not allocated by the calloc, malloc, or
realloc function, or if the area has already been released by the free or realloc
function, correct operation is not guaranteed.

507

void *bsearch(const void *key, const void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *))

Description: Performs binary search.

Header file: <stdlib.h>

Return values: If a matching member is found: Pointer to the matching member
If no matching member is found: NULL

Parameters: key Pointer to data to find
 base Pointer to a table to be searched
 nmemb Number of members to be searched
 size Number of bytes of a member to be searched
 compar Pointer to a function that performs comparison

Example: #include <stdlib.h>
const void *key, *base;
size_t nmemb, size;
int (*compar)(const void *, const void *);
void *ret;
 ret=bsearch(key, base, nmemb, size, compar);

Remarks: The bsearch function searches the table specified by base for a member that
matches the data specified by key, by binary search method. The function that
performs comparison should receive pointers p1 (first parameter) and p2
(second parameter) to two data items to compare, and return the result
complying with the specification below.

If *p1<*p2, return a negative value.

If *p1= =*p2, return 0.

If *p1>*p2, return a positive value.

Members to be searched must be placed in the ascending order.

508

void qsort(const void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void*))

Description: Performs sorting.

Header file: <stdlib.h>

Parameters: base Pointer to a table to sort
 nmemb Number of members to sort
 size Number of bytes of a member to sort
 compar Pointer to a function to perform comparison

Example: #include <stdlib.h>
const void *base;
size_t nmemb, size;
int (*compar)(const void *, const void *)
 qsort(base, nmemb, size, compar);

Remarks: The qsort function sorts out data on the table specified by base. The data
arrangement order is specified by the pointer to a function to perform
comparison. This comparison function should receive pointers p1 (first
parameter) and p2 (second parameter) as two data items to compare, and return
the result complying with the specification below.

If *p1<*p2, return a negative value.

If *p1= =*p2, return 0.

If *p1>*p2, return a positive value.

509

int abs(int i)

Description: Calculates the absolute value of an int type integer.

Header file: <stdlib.h>

Return values: Absolute value of i

Parameters: i Integer to calculate the absolute value of

Example: #include <stdlib.h>
int i, ret;
 ret=abs(i);

Remarks: If the result cannot be expressed as an int type integer, correct operation is
 not guaranteed.

div_t div(int numer, int denom)

Description: Carries out division of int type integers and obtains the quotient and remainder.

Header file: <stdlib.h>

Return values: Quotient and remainder of division of numer by denom

Parameters: numer Dividend
 denom Divisor

Example: #include <stdlib.h>
int numer, denom;
div_t ret;
 ret=div(numer, denom);

510

long labs(long j)

Description: Calculates the absolute value of a long type integer.

Header file: <stdlib.h>

Return values: Absolute value of j

Parameters: j Integer to calculate the absolute value of

Example: #include <stdlib.h>
long j;
long ret;
 ret=labs(j);

Remarks: If the result cannot be expressed as a long type integer, correct operation is
 not guaranteed.

ldiv_t ldiv(long numer, long denom)

Description: Carries out division of long type integers and obtains the quotient and
remainder.

Header file: <stdlib.h>

Return values: Quotient and remainder of division of numer by denom

Parameters: numer Dividend
 denom Divisor

Example: #include <stdlib.h>
long numer, denom;
ldiv_t ret;
 ret=ldiv(numer, denom);

511

<string.h>

Defines functions for manipulating character arrays.

Type Definition Name Description

memcpy Copies contents of a source storage area of a specified length to a
destination storage area.

strcpy Copies contents of a source string including the null character to a
destination storage area.

strncpy Copies a source string of a specified length to a destination storage
area.

strcat Concatenates a string after another string.

strncat Concatenates a string of a specified length after another string.

memcmp Compares two storage areas specified.

strcmp Compares two strings specified.

strncmp Compares two strings specified for a specified length.

memchr Searches a specified storage area for the first occurrence of a
specified character.

strchr Searches a specified string for the first occurrence of a specified
character.

strcspn Checks a specified string from the beginning and counts the number of
consecutive characters at the beginning that are not included in
another string specified.

strpbrk Searches a specified string for the first occurrence of any character
that is included in another string specified.

strrchr Searches a specified string for the last occurrence of a specified
character.

strspn Checks a specified string from the beginning and counts the number of
consecutive characters at the beginning that are included in another
string specified.

strstr Searches a specified string for the first occurrence of another string
specified.

strtok Divides a specified string into some tokens.

memset Sets a specified character for a specified number of times at the
beginning of a specified storage area.

strerror Sets error messages.

strlen Calculates the length of a string.

Function

memmove Copies the specified size of the contents of a source area to the
destination storage area. If part of the source storage area and the
destination storage area overlaps, correct copy is performed.

512

When using functions defined in this standard include file, note the following.

(1) When a string is to be copied, if the destination area is smaller than the source area, correct
operation is not guaranteed.

Implementation Define

Item Compiler Specifications

Error message returned by the strerror function Refer to section 12.3, C Library Error
Messages.

Example

 char a[]="abc";
 char b[3];
 .
 .
 .
 strcpy (b, a);

In the above example, size of array a (including the null character) is 4 bytes. Copying by
strcpy overwrites data beyond the boundary of array b.

a a b c \0 a a b

Before copy After copy

Lost data

c \0

b Other data b a b c \0

513

(2) When a string is to be copied, if the source area overlaps the destination area, correct operation
is not guaranteed.

Example

 int a[]="a";
 .
 .
 .
 strcpy(&a[1], a);
 .
 .
 .

In the above example, before the null character of the source is read, 'a' is written over the null
character, then the subsequent data after the source string is overwritten in succession.

a &a[1]

Before copy After copy

Other dataa \0

&a[1]

Subsequent data is copied in succession.

&a[2]

Other dataa a

514

void *memcpy(void *sl, const void *s2, size_t n)

Description: Copies contents of a copy source storage area of a specified length to a
destination storage area.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to destination storage area
 s2 Pointer to source storage area
 n Number of characters to copy

Example: #include <string.h>
void *ret, *s1;
const void *s2;
size_t n;
 ret=memcpy(s1, s2, n);

char *strcpy(char *sl, const char *s2)

Description: Copies contents of a source string including the null character to a destination
storage area.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to destination storage area
 s2 Pointer to source string

Example: #include <string.h>
char *s1, *ret;
const char *s2;
 ret=strcpy(s1, s2);

515

char *strncpy(char *s1, const char *s2, size_t n)

Description: Copies a source string of a specified length to a destination storage area.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to destination storage area
 s2 Pointer to source string
 n Number of characters to copy

Example: #include <string.h>
char *s1, *ret;
const char *s2;
size_t n;
 ret=strncpy(s1, s2, n);

Remarks: The strncpy function copies up to n characters in string pointed by s2 to a
storage area pointed by s1. If the length of the string specified by s2 is shorter
than n characters, the function elongates the string to the length by padding with
null characters.

If the length of the string specified by s2 is longer than n characters, the copied
string in s1 storage area ends with a character other than the null character.

516

char *strcat(char *s1, const char *s2)

Description: Concatenates a string after another string.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to the string after which another string is added
 s2 Pointer to the string to add after the other string

Example: #include <string.h>
char *s1, *ret;
const char *s2;
 ret=strcat(s1, s2);

Remarks: The strcat function concatenates the string specified by s2 at the end of another
string specified by s1. The null character indicating the end of the s2 string is
also copied. The null character at the end of the s1 string is deleted.

517

char *strncat(char *s1, const char *s2, size_t n)

Description: Concatenates a string of a specified length after another string.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to the string after which another string is added
 s2 Pointer to the string to add after the other string
 n Number of characters to concatenate

Example: #include <string.h>
char *s1, *ret;
const char *s2;
size_t n;
 ret=strncat(s1, s2, n);

Remarks: The strncat function concatenates up to n characters from the beginning of the
string specified by s2 at the end of another string specified by s1. The null
character at the end of the s1 string is replaced by the first character of the s2
string. A null character is added to the end of the concatenated string.

518

int memcmp(const void *s1, const void *s2, size_t n)

Description: Compares two storage areas specified.

Header file: <string.h>

Return values: If storage area pointed by s1 > storage area pointed by s2: Positive value
If storage area pointed by s1 = = storage area pointed by s2: 0
If storage area pointed by s1 < storage area pointed by s2: Negative value

Parameters: s1 Pointer to the reference storage area to compare with
 s2 Pointer to the storage area to compare with the reference area
 n Number of characters to compare

Example: #include <string.h>
const void *s1, *s2;
size_t n;
int ret;
 ret=memcmp(s1, s2, n);

Remarks: The memcmp function compares the contents of the first n characters in the
storage areas pointed by s1 and s2. The rule of comparison are implementation-
defined.

519

int strcmp(const char *s1, const char *s2)

Description: Compares two strings specified.

Header file: <string.h>

Return values: If string pointed by s1 > string pointed by s2: Positive value
If string pointed by s1 = = string pointed by s2: 0
If string pointed by s1 < string pointed by s2: Negative value

Parameters: s1 Pointer to the reference string to compare with
 s2 Pointer to the string to compare with the reference string

Example: #include <string.h>
const char *s1, *s2;
int ret;
 ret=strcmp(s1, s2);

Remarks: The strcmp function compares the contents of the strings pointed by s1 and s2,
and sets up the comparison result as a return value. The rule of comparison are
implementation-defined.

520

int strncmp(const char *s1, const char *s2, size_t n)

Description: Compares two strings specified for a specified length.

Header file: <string.h>

Return values: If string pointed by s1 > string pointed by s2: Positive value
If string pointed by s1 = = string pointed by s2: 0
If string pointed by s1 < string pointed by s2: Negative value

Parameters: s1 Pointer to the reference string to compare with
 s2 Pointer to the string to compare with the reference string
 n Maximum number of characters to compare

Example: #include <string.h>
const char *s1, *s2;
size_t n;
int ret;
 ret=strncmp(s1, s2, n);

Remarks: The strncmp function compares the contents of the strings pointed by s1 and s2,
for up to n characters. The rule of comparison are implementation-defined.

521

void *memchr(const void *s, int c, size_t n)

Description: Searches a specified storage area for the first occurrence of a specified character.

Header file: <string.h>

Return values: If the objective character is found: Pointer to the found character
If the objective character is not found: NULL

Parameters: s Pointer to the storage area to search
 c Character to search for
 n Number of characters to search

Example: #include <string.h>
const void *s;
int c;
size_t n;
void *ret;
 ret=memchr(s, c, n);

Remarks: The memchr function searches the storage area specified by s from the
beginning up to n characters, looking for the first occurrence of the character
specified as c. If the c character is found, the function returns the pointer to the
found character.

522

void *strchr(const char *s, int c)

Description: Searches a specified string for the first occurrence of a specified character.

Header file: <string.h>

Return values: If the objective character is found: Pointer to the found character
If the objective character is not found: NULL

Parameters: s Pointer to the string to search
 c Character to search for

Example: #include <string.h>
const char *s;
int c;
char *ret;
 ret=strchr(s, c);

Remarks: The strchr function searches the string specified by s looking for the first
 occurrence of the character specified as c. If the c character is found, the
 function returns the found character.

The null character at the end of the s string is included in the search objective.

523

size_t strcspn(const char *s1, const char *s2)

Description: Checks a specified string from the beginning and counts the number of
consecutive characters at the beginning that are not included in another string
specified.

Header file: <string.h>

Return values: Number of consecutive characters at the beginning of the s1 string that are not
included in the s2 string

Parameters: s1 Pointer to the string to check
 s2 Pointer to the string used to check s1

Example: #include <string.h>
const char *s1, *s2;
size_t ret;
 ret=strcspn(s1, s2);

Remarks: The strcspn function checks from the beginning of the string specified by s1,
and counts the number of consecutive characters that are not included in another
string specified by s2, and returns that length.

The null character at the end of the s2 string is not taken as a part of the s2
string.

524

char *strpbrk(const char *s1, const char *s2)

Description: Searches a specified string for the first occurrence of any character that is
included in another string specified.

Header file: <string.h>

Return values: If the objective character is found: Pointer to the found character
If the objective character is not found: NULL

Parameters: s1 Pointer to the string to search
 s2 Pointer to the string that indicates the characters to search s1 for

Example: #include <string.h>
const char *s1, *s2;
char *ret;
 ret=strpbrk(s1, s2);

Remarks: The strpbrk function searches the string specified by s1 looking for the first
occurrence of any character included in the string specified by s2. If the
searched character is found, the function returns the pointer to the first
occurrence.

525

char *strrchr(const char *s, int c)

Description: Searches a specified string for the last occurrence of a specified character.

Header file: <string.h>

Return values: If the objective character is found: Pointer to the found character
If the objective character is not found: NULL

Parameters: s Pointer to the string to search
 c Character to search for

Example: #include <string.h>
const char *s;
int c;
char *ret;
 ret=strrchr(s, c);

Remarks: The strrchr function searches the string specified by s looking for the last
occurrence of the character specified as c. If the c character is found, the
function returns the pointer to the last occurrence of that character.

The null character at the end of the s string is included in the search objective.

526

size_t strspn(const char *s1, const char *s2)

Description: Checks a specified string from the beginning and counts the number of
consecutive characters at the beginning that are included in another string
specified.

Header file: <string.h>

Return values: Number of consecutive characters that are included in the s2 string at the
beginning of the s1 string

Parameters: s1 Pointer to the string to check
 s2 Pointer to the string used to check s1

Example: #include <string.h>
const char *s1, *s2;
size_t ret;
 ret=strspn(s1, s2);

Remarks: The strspn function checks from the beginning of the string specified by s1, and
counts the number of consecutive characters that are included in another string
specified by s2, and returns that length.

527

char *strstr(const char *s1, const char *s2)

Description: Searches a specified string for the first occurrence of another string specified.

Header file: <string.h>

Return values: If the objective string is found: Pointer to the found string
If the objective string is not found: NULL

Parameters: s1 Pointer to the string to search
 s2 Pointer to the string to search for

Example: #include <string.h>
const char *s1, *s2;
char *ret;
 ret=strstr(s1, s2);

Remarks: The strstr function searches the string specified by s1 looking for the first
occurrence of another string specified by s2, and returns the pointer to the first
occurrence.

528

char *strtok(char *s1, const char *s2)

Description: Divides a specified string into some tokens.

Header file: <string.h>

Return values: If division into tokens is successful: Pointer to the first token divided
If division into tokens is unsuccessful: NULL

Parameters: s1 Pointer to the string to divide into some tokens
 s2 Pointer to the string consisting of string dividing characters

Example: #include <string.h>
char *s1, *ret;
const char *s2;
 ret=strtok(s1, s2);

Remarks: The strtok function should be repeatedly called to divide a string.

 (1) First call

 The string pointed by s1 is divided at a character included in the string
 pointed by s2. If a token has been separated, the function returns the
 pointer to the beginning of that token. Otherwise, the function returns
 NULL.

 (2) Second and subsequent calls

 Starting from the next character to the token separated before, the function
 repeats division at a character included in the string pointed by s2. If a
 token has been separated, the function returns the pointer to the beginning
 of that token. Otherwise, the function returns NULL.

 At the second and subsequent calls, specify NULL for the first parameter.

 The string pointed by s2 can be changed at each call. The null character is
 added to the end of a separated token.

 An example of use of the strtok function is shown below.

529

 Example

 1 #include <string.h>
 2 static char s1[]="a@b, @c/@d";
 3 char *ret;
 4
 5 ret = strtok(s1, "@");
 6 ret = strtok(NULL, ",@");
 7 ret = strtok(NULL, "/@");
 8 ret = strtok(NULL, "@");

 Explanation:

The above example program uses the strtok function to divide string “a@b,
@c/@d” into tokens a, b, c, and d.

 The second line specifies string “a@b, @c/@d” as an initial value for string s1.

The fifth line calls the strtok function to divide tokens using '@' as the delimiter.
As a result, the pointer to character 'a' is returned, and the null character is
embedded at '@,' the first delimiter after character 'a.' Thus string 'a' has been
separated.

Specify NULL for the first argument to consecutively separate tokens from the
same string, and repeat calling the strtok function.

 Consequently, the function separates strings 'b,' 'c,' and 'd.'

530

void *memset(void *s, int c, size_t n)

Description: Sets a specified character for a specified number of times at the beginning of a
specified storage area.

Header file: <string.h>

Return values: Value of s

Parameters: s Pointer to storage area to set characters in
 c Character to be set
 n Number of characters to be set

Example: #include <string.h>
void *s, *ret;
int c;
size_t n;
 ret=memset(s, c, n);

Remarks: The memset function sets the character specified by c for a number of times
specified by n to the storage area specified by s.

531

char *strerror(int s)

Description: Returns an error message corresponding to a specified error number.

Header file: <string.h>

Return values: Pointer to the error message (string) corresponding to the specified error number

Parameters: s Error number

Example: #include <string.h>
char *ret;
int s;
 ret=strerror(s);

Remarks: The strerror function receives an error number specified by s and returns an
error message corresponding to the number. Contents of error messages are
implementation-defined.

If the returned error message is modified, correct operation is not guaranteed.

size_t strlen(const char *s)

Description: Calculates the length of a string.

Header file: <string.h>

Return values: Number of characters of the string

Parameters: s Pointer to the string to check the length of

Example: #include <string.h>
const char *s;
size_t ret;
 ret=strlen(s);

Remarks: The null character at the end of the s string is excluded from the string length.

532

void *memmove (void *s1, const void *s2, size_t n)

Description: Copies the specified size of the contents of a source storage area to the
destination storage area. If part of the source storage area and the destination
storage area overlaps, data is copied to the destination storage area before the
overlapped source storage area is overwritten. Therefore, correct copy is
enabled.

Header file: <string.h>

Return values: Value of s1

Parameters: s1 Pointer to the destination storage area
 s2 Pointer to the source storage area
 n Number of characters to copy

Example: #include <string.h>
void *ret, *s1
const void *s2;
size_t n;
 ret=memmove(s1, s2, n);

533

10.3.2 Embedded C++ Class Libraries

(1) Overview of Libraries

This section describes the specifications of the embedded C++ class libraries, which can be used
as standard libraries in C++ programs. This section gives an overview of the library configuration,
and describes the layout and the terms used in this library function description.

(a) Library Types

Table 10.41 shows the various library types and the corresponding standard include files.

Table 10.41 Library Types and Corresponding Standard Include Files

Library Type Description Standard Include Files

Stream input/output
class

Performs input/output processing. <ios>, <streambuf>,
<istream>,<ostream>,
<iostream>,<iomanip>

Memory management Performs memory allocation and deallocation <new>

Complex number
calculation class

Performs complex number calculation <complex>

String manipulation Performs string manipulation <string>

(2) Stream Input/Output Class Library

The header files for stream input/output class libraries are as follows.

1. <ios>

Defines data members and function members that specify input/output formats and manage the
input/output states. The <ios> header file also defines the Init and ios_base classes.

2. <streambuf>

Defines functions for the stream buffer.

3. <istream>

Defines input functions from the input stream.

4. <ostream>

Defines output functions to the output stream.

5. <iostream>

Defines input/output functions.

6. <iomanip>

Defines manipulators with parameters.

The following shows the hierarchy of these classes. Arrows (->) indicate that a derived class
refers to a base class. The streambuf class has no hierarchical relation.

534

The following types are used by stream input/output class libraries.

Type Definition Name Description

streamoff Defined as long type.

streamsize Defined as size_t type.

int_type Defined as int type.

pos_type Defined as long type.

Type

off_type Defined as long type.

Ios_base::Init

ios_base

ostream

ostream::sentry

istream

istream::sentry

ios

streambuf

535

(a) ios_base::Init Class

Type Definition Name Description

Variable init_cnt Static data member that counts the number of stream
input/output objects. The data must be initialized to 0 by a low-
level interface.

Init () Constructor Function

~ Init () Destructor

1. ios_base:: Init::Init()
Constructor of class Init.
Increments init_cnt.

2. ios_base:: Init::~ Init ()

Destructor of class Init.
Decrements init_cnt.

536

(b) ios_base Class

Type Definition Name Description

fmtflags Type that indicates the format control
information

iostate Type that indicates the stream buffer
input/output state

openmode Type that indicates the open mode of the file

Type

seekdir Type that indicates the seek state of the
stream buffer

fmtfl Format flag

wide Field width

prec Precision (number of decimal point digits) at
output

Variable

fillch Fill character

void _ec2p_init_base() Initializes the base class

void _ec2p_copy_base(
ios_base& ios_base_dt)

Copies ios_base_dt

ios_base() Constructor

~ios_base() Destructor

fmtflags flags() const References the format flag (fmtfl)

fmtflags flags(fmtflags fmtflg) Sets the result of logical AND of format flag
(fmtfl) and fmtflg to the format flag (fmtfl)

fmtflags setf(fmtflags fmtflg) Sets fmtflg to format flag (fmtfl)

fmtflags setf(
 fmtflags fmtflg,
 fmtflags mask)

Sets mask&fmtflg to format flag (fmtfl)

void unsetf(fmtflags mask) Sets ~mask&format flag (fmtfl) to the format
flag (fmtfl)

char fill() const References the fill character (fillch)

char fill(char ch) Sets ch as the fill character (fillch)

int precision() const References the precision (prec)

streamsize precision(
 streamsize preci)

Sets preci as precision (prec)

streamsize width() const References the width (wide)

Function

streamsize width(streamsize wd) Sets wd as width (wide)

537

 1. ios_base::fmtflags

Defines the format control information relating to input/output processing.
The definition for each bit mask of fmtflags is as follows.

const ios_base::fmtflags ios_base::boolalpha = 0x0000;

const ios_base::fmtflags ios_base::skipws = 0x0001;

const ios_base::fmtflags ios_base::unitbuf = 0x0002;

const ios_base::fmtflags ios_base::uppercase = 0x0004;

const ios_base::fmtflags ios_base::showbase = 0x0008;

const ios_base::fmtflags ios_base::showpoint = 0x0010;

const ios_base::fmtflags ios_base::showpos = 0x0020;

const ios_base::fmtflags ios_base::left = 0x0040;

const ios_base::fmtflags ios_base::right = 0x0080;

const ios_base::fmtflags ios_base::internal = 0x0100;

const ios_base::fmtflags ios_base::adjustfield = 0x01c0;

const ios_base::fmtflags ios_base::dec = 0x0200;

const ios_base::fmtflags ios_base::oct = 0x0400;

const ios_base::fmtflags ios_base::hex = 0x0800;

const ios_base::fmtflags ios_base::basefield = 0x0e00;

const ios_base::fmtflags ios_base::scientific = 0x1000;

const ios_base::fmtflags ios_base::fixed = 0x2000;

const ios_base::fmtflags ios_base::floatfield = 0x3000;

const ios_base::fmtflags ios_base::_fmtmask = 0x3fff;

538

2. ios_base::iostate

Defines the input/output state of the stream buffer.
The definition for each bit mask of iostate is as follows.

const ios_base::iostate ios_base::goodbit = 0x0;

const ios_base::iostate ios_base::eofbit = 0x1;

const ios_base::iostate ios_base::failbit = 0x2;

const ios_base::iostate ios_base::badbit = 0x4;

const ios_base::iostate ios_base::_statemask = 0x7;

3. ios_base::openmode

Defines open mode of the file.
The definition for each bit mask of openmode is as follows.

const ios_base::openmode ios_base::in = 0x1; Opens the input file.

const ios_base::openmode ios_base::out = 0x2; Opens the output file.

const ios_base::openmode ios_base::ate = 0x4; Seeks for eof only once after the file
has been opened.

const ios_base::openmode ios_base::app = 0x8; Seeks for eof each time the file is
written to.

const ios_base::openmode ios_base::trunc = 0x10; Opens the file in overwrite mode.

const ios_base::openmode ios_base::binary = 0x20; Opens the file in binary mode.

539

4. ios_base::seekdir

Defines the seek state of the stream buffer.
Determines the position to continue the input/output of data in a stream.
The definition for each bit mask of seekdir is as follows.

const ios_base::seekdir ios_base::beg = 0x0;

const ios_base::seekdir ios_base::cur = 0x1;

const ios_base::seekdir ios_base::end = 0x2;

5. void ios_base::_ec2p_init_base ()
The initial settings are as follows.
 fmtfl = skipws | dec;
 wide = 0;
 prec = 6;
 fillch = ‘ ‘;

6. void ios_base::_ec2p_copy_base (ios_base & ios_base_dt)

Copies ios_base_dt.

7. ios_base::ios_base()

Constructor of class ios_base.
Calls Init::Init().

8. ios_base::~ios_base()

Destructor of class ios_base.

9. ios_base::fmtflags ios_base::flags () const

References format flag (fmtfl).
Return value: Format flag (fmtfl)

10. ios_base::fmtflags ios_base::flags(fmtflags fmtflg)
Sets fmtflg&format flag (fmtfl) to format flag (fmtfl).
Return value: Format flag (fmtfl) before setting

11. ios_base::fmtflags ios_base::setf (fmtflags fmtflg)

Sets fmtflg to format flag (fmtfl).
Return value: Format flag (fmtfl) before setting

12. ios_base::fmtflags ios_base::setf(fmtflags fmtflg, fmtflags mask)

Sets mask&fmtflg to format flag (fmtfl).
Return value: Format flag (fmtfl) before setting.

13. void ios_base::unsetf (fmtflags mask)

Sets ~mask&format flag (fmtfl) to format flag (fmtfl).

540

14. char ios_base::fill () const

References fill character (fillch).
Return value: Fill character (fillch)

15. char ios_base::fill(char ch)

Sets ch as fill character (fillch).
Return value: Fill character (fillch) before setting

16. int ios_base::precision () const

References precision (prec).
Return value: Precision (prec)

17. streamsize ios_base::precision(streamsize preci)

Sets preci as precision (prec).
Return value: Precision (prec) before setting

18. streamsize ios_base::width () const

References width (wide).
Return value: Width (wide)

19. streamsize ios_base::width(streamsize wd)

Sets wd as width (wide).
Return value: Width (wide) before setting

541

(c) ios Class

Type Definition Name Description

sb Pointer to streambuf object

tiestr Pointer to ostream object

Variable

state State flag of streambuf

ios()

ios(streambuf *sbptr)

Constructor

void init(streambuf *sbptr) Performs initial setting

virtual ~ios() Destructor

operator void*() const Tests whether an error has been generated
(!state&(badbit|failbit))

bool operator! () const Tests whether an error has been generated
(state&(badbit|failbit))

iostate rdstate() const References the state flag (state)

void clear(iostate st=goodbit) Clears the state flag (state) except for the
specified state (st)

void setstate(iostate st) Specifies st as the state flag (state)

bool good() const Tests whether an error has been generated
(state==goodbit)

bool eof() const Tests for the end of an input stream
(state&eofbit)

bool bad() const Tests whether an error has been generated
(state&badbit)

bool fail() const Tests whether input text matches the
requested pattern (state&(badbit|failbit))

ostream* tie() const References the pointer to the ostream object
(tiestr)

ostream* tie(ostream* tstrptr) Specifies tstrptr as the pointer to the
ostream object (tiestr)

streambuf* rdbuf() const References the pointer (sb) to the streambuf
object

streambuf* rdbuf(streambuf* sbptr) Specifies sbptr as the pointer (sb) to the
streambuf object

Function

ios & copyfmt(const ios& rhs) Copies the state flag (state) of rhs

542

1. ios::ios ()
Constructor of class ios.
Calls init(0) and specifies the initial value in the member object.

2. ios::ios(streambuf *sbptr)

Constructor of class ios.
Calls init(sbptr) and specifies the initial value in the member object.

3. void ios::init (streambuf *sbptr)

Specifies sb in sbptr.
Specifies state and tiestr as 0.

4. virtual ios::~ios()

Destructor of class ios.

5. ios::operator void* () const

Tests whether an error has been generated (!state&(badbit|failbit)).
Return value: An error has been generated: false
 No error has been generated: true

6. bool ios::operator! () const

Tests whether an error has been generated (state&(badbit|failbit)).
Return value: An error has been generated: true
 No error has been generated: false

7. iostate ios::rdstate () const

References the state flag (state).
Return value: State flag (state)

8. void ios::clear (iostate st=goodbit)

Clears the state flag (state) except for the specified state (st).
If the pointer to the streambuf object (sb) is 0, badbit is set to the state flag (state).

9. void ios::setstate (iostate st)

Specifies the contents of st in the state flag (state).

10. bool ios::good () const

Tests whether an error has been generated (state= =goodbit).
Return value: An error has been generated: false
 No error has been generated: true

543

11. bool ios::eof () const
Tests for the end of the input stream (state&eofbit).
Return value: End of the input stream has been reached: true
 End of the input stream has not been reached: false

12. bool ios::bad () const

Tests whether an error has been generated (state&badbit).
Return value: An error has been generated: true
 No error has been generated: false

13. bool ios::fail () const

Tests whether the input text matches the requested pattern (state&(badbit|failbit)).
Return value: Does not match the requested pattern: true
 Matches the requested pattern: false

14. ostream* ios::tie () const

References the pointer to the ostream object (tiestr).
Return value: Object pointer (tiestr)

15. ostream* ios::tie(ostream* tstrptr)

Specifies tstrptr as the pointer to the ostream object (tiestr).
Return value: ostream object pointer (tiestr) before setting

16. streambuf* ios::rdbuf () const

References the pointer to the streambuf object (sb).
Return value: Pointer (sb) to streambuf object

17. streambuf* ios::rdbuf(streambuf* sbptr)

Specifies sbptr as the pointer to the streambuf object (sb).
Return value: Pointer to the streambuf object (sb) before setting

18. ios & ios::copyfmt (const ios & rhs)

Copies the state flag (state) of rhs.
Return value: *this

544

(d) ios Class Manipulators

Type Definition Name Description

ios_base& boolalpha(ios_base& str) Specifies bool type format

ios_base& noboolalpha(
 ios_base& str)

Clears bool type format

ios_base& showbase(ios_base& str) Specifies the radix display prefix mode

ios_base& noshowbase(ios_base& str) Clears the radix display prefix mode

ios_base& showpoint(ios_base& str) Specifies the decimal-point generation
mode

ios_base& noshowpoint(ios_base& str) Clears the decimal-point generation mode

ios_base& showpos(ios_base& str) Specifies the + sign generation mode

ios_base& noshowpos(ios_base& str) Clears the + sign generation mode

ios_base& skipws(ios_base& str) Specifies the space skipping mode

ios_base& noskipws(ios_base& str) Clears the space skipping mode

ios_base& uppercase(ios_base& str) Specifies the uppercase letter conversion
mode

ios_base& nouppercase(
 ios_base& str)

Clears the uppercase letter conversion
mode

ios_base& internal(ios_base& str) Specifies the internal fill mode

ios_base& left(ios_base& str) Clears the left side fill mode

ios_base& right(ios_base& str) Clears the right side fill mode

ios_base& dec(ios_base& str) Specifies the decimal mode

ios_base& hex(ios_base& str) Specifies the hexadecimal mode

ios_base& oct(ios_base& str) Specifies the octal mode

ios_base& fixed(ios_base& str) Specifies the fixed-point output mode

Function

ios_base& scientific(ios_base& str) Specifies the scientific description mode

1. ios_base& boolalpha(ios_base& str)
Specifies bool type format.
Return value: str

2. ios_base& noboolalpha(ios_base& str)

Clears bool type format.
Return value: str

545

3. ios_base& showbase(ios_base& str)
Specifies a mode to prefix a radix at the beginning of data.
For a hexadecimal, 0x is prefixed.
For a decimal, nothing is prefixed. For an octal, 0 is prefixed.
Return value: str

4. ios_base& noshowbase(ios_base &str)

Clears the mode to prefix a radix.
Return value: str

5. ios_base& showpoint(ios_base & str)

Specifies the mode to output decimal point.
If no precision is specified, six decimal-point (fraction) digits are displayed.
Return value: str

6. ios_base& noshowpoint(ios_base& str)

Clears the mode to output decimal point.
Return value: str

7. ios_base& showpos(ios_base& str)

Specifies the + sign generation mode (adds a + sign to a positive number).
Return value: str

8. ios_base& noshowpos(ios_base & str)

Clears the + sign generation mode.
Return value: str

9. ios_base& skipws(ios_base& str)

Specifies the space skipping mode (skips consecutive spaces).
Return value: str

10. ios_base& noskipws(ios_base& str)

Clears the space skipping mode.
Return value: str

11. ios_base& uppercase(ios_base& str)

Specifies the uppercase letter conversion output mode.
For a hexadecimal, the radix will be the uppercase letters 0X, and the numeric value letters will
be uppercase letters. The exponential representation of a floating-point value will use
uppercase letter E.
Return value: str

546

12. ios_base nouppercase(ios_base & str)
Clears the uppercase letter conversion output mode.
Return value: str

13. ios_base& internal(ios_base & str)

When data is output in the field width (wide) range, it is output in the order of
1. Sign and radix
2. Fill character (fill)
3. Numeric value
Return value: str

14. ios_base& left(ios_base & str)

When data is output in the field width (wide) range, it is aligned to the left.
Return value: str

15. ios_base& right(ios_base & str)

When data is output in the field width (wide) range, it is aligned to the right.
Return value: str

16. ios_base& dec(ios_base & str)

Specifies the conversion radix as the decimal mode.
Return value: str

17. ios_base& hex(ios_base & str)

Specifies the conversion radix as the hexadecimal mode.
Return value: str

18. ios_base& oct(ios_base & str)

Specifies the conversion radix as the octal mode.
Return value: str

19. ios_base& fixed(ios_base & str)

Specifies the fixed-point output mode.
Return value: str

20. ios_base& scientific(ios_base & str)
Specifies the scientific description mode (exponential description).
Return value: str

547

(e) streambuf Class

Type Definition Name Description

Constant eof Indicates the end of file.

_B_cnt_ptr Pointer to the length of valid data in the
buffer.

B_beg_ptr Pointer to the base pointer of the buffer.

_B_len_ptr Pointer to the length of the buffer.

B_next_ptr Pointer to the next position of the buffer from
which to read data.

B_end_ptr Pointer to the end position of the buffer.

B_beg_pptr Pointer to the start position of the control
buffer.

B_next_pptr Pointer to the next position of the buffer from
which to read data.

Variable

C_flg_ptr Pointer to the input/output control flag of the
file.

char* _ec2p_getflag() const References a pointer for file input/output
control flag.

char* & _ec2p_gnptr() References a pointer to the next position of
the buffer from which to read data.

char* & _ec2p_pnptr() References a pointer to the next position of
the buffer where data is to be written.

void _ec2p_bcntplus() Increments the length of valid data in the
buffer.

void _ec2p_bcntminus() Decrements the length of valid data in the
buffer.

void _ec2p_setbPtr(
 char** begptr,
 char** curptr,
 long* cntptr,
 long* lenptr,
 char* flgptr)

Sets the pointers of streambuf.

streambuf() Constructor.

virtual ~streambuf() Destructor.

Function

streambuf* pubsetbuf(char* s,
 streamsize n)

Defines buffer for stream input/output.
This function calls setbug (s,n)*1.

548

Type Definition Name Description

pos_type pubseekoff(
 off_type off,
 ios_base::seekdir way,
 ios_base::openmode
 which=ios_base::in|ios_base::out)

Moves the position to read or write data for
the input/output stream by using the method
specified by way.
This function calls seekoff(off,way,which)*1.

pos_type pubseekpos(
 pos_type sp,
 ios_base::openmode
 which=ios_base::in | ios_base::out)

Calculates the offset from the beginning of
the stream to the current position.
This function calls seekpos(sp,which)*1.

int pubsync() Flushes the output stream.
This function calls sync()*1.

streamsize in_avail() Calculates the offset from the end of the
input stream to the current position.

int_type snextc() Reads the next character.

int_type sbumpc() Reads one character and sets the pointer to
the next.

int_type sgetc() Reads one character.

int sgetn(char* s, streamsize n) Sets n number of characters in the memory
area specified by s.

int_type sputbackc(char c) Puts back the read position.

int sungetc() Puts back the read position.

int sputc(char c) Inserts characters c.

int_type sputn(const char* s,
 streamsize n)

Inserts n number of characters specified by
s.

char* eback() const Calculates the start pointer of the input
stream.

char* gptr() const Calculates the next pointer of the input
stream.

char* egptr() const Calculates the end pointer of the input
stream.

void gbump(int n) Moves the next pointer of the input stream
for n.

Function

void setg(
 char* gbeg,
 char* gnext,
 char* gend)

Assigns each pointer of the input stream.

549

Type Definition Name Description

char* pbase() const Calculates the start pointer of the
output stream.

char* pptr() const Calculates the next pointer of the
output stream.

char* epptr() const Calculates the end pointer of the
output stream.

void pbump(int n) Moves the next pointer of the output
stream for n.

void setp(char* pbeg, char* pend) Specifies each pointer of the output
stream.

virtual streambuf *setbuf(char* s, streamsize n)

*1
For each derived class, a defined
operation is executed.

virtual pos_type seekoff(
 off_type off,
 ios_base::seekdir way,
 ios_base::openmode=(ios_base::openmode)
 (ios_base::in | ios_base::out)) *1

Changes the stream position.

virtual pos_type seekpos(
 pos_type sp,
 ios_base::openmode=(ios_base::openmode)
 (ios_base::in | ios_base::out)) *1

Changes the stream position.

virtual int sync() *1 Flushes the output stream.

virtual int showmanyc() *1 Calculates the number of valid
characters in the input stream.

virtual streamsize xsgetn(char* s, streamsize n) Sets n number of characters in the
memory area specified by s.

virtual int_type underflow() *1 Reads one character without moving
the stream position.

virtual int_type uflow() *1 Reads one character of the next
pointer.

virtual int_type pbackfail(int type c = eof) *1 Puts back the character specified by
c.

virtual streamsize xsputn(const char* s,
 streamsize n)

Inserts n number of characters
specified by s.

Function

virtual int_type overflow(int type c = eof) *1 Inserts c in the output stream.

Note*1: This class does not define the processing.

550

1. streambuf::streambuf ()
Constructor.
The initial settings are as follows:
_B_cnt_ptr = B_beg_ptr = B_next_ptr = B_end_ptr = C_flg_ptr = B_len_ptr = 0
B_beg_pptr = &B_beg_ptr
B_next_pptr = &B_next_ptr

2. virtual streambuf::~streambuf ()

Destructor.

3. streambuf* streambuf::pubsetbuf (char* s, streamsize n)

Defines the buffer for stream input/output.
This function calls setbuf (s,n).
Return value: *this

4. pos_type streambuf::pubseekoff (off_type off,ios_base::seekdir way, ios_base::openmode

 which=(ios_base::openmode)(ios_base::in|ios_base::out))
Moves the position to read or write data for the input/output stream by using the method
specified by way.
This function calls seekoff(off,way,which).
Return value: Newly specified stream position

5. pos_type streambuf::pubseekpos (pos_type sp, ios_base::openmode

 which=(ios_base::openmode) (ios_base::in | ios_base::out))
Calculates the offset from the beginning of the stream to the current position.
Moves the current stream pointer for sp.
This function calls seekpos(sp,which).
Return value: The offset from the beginning of the stream

6. int streambuf::pubsync ()

Flushes the output stream.
This function calls sync().
Return value: 0

7. streamsize streambuf::in_avail ()

Calculates the offset from the end of the input stream to the current position.
Return value: If the position where data is read is valid: The offset from the end of the stream
 to the current position.
 If the position where data is read is invalid: 0 (showmanyc() is called)

551

8. int_type streambuf::snextc ()
Reads one character. If the character read is not eof, the next character is read.
Return value: If the characters read is not eof: The character read
 If the characters read is eof: eof

9. int_type streambuf::sbumpc ()
Reads one character and moves the pointer to the next.
Return value: If the position where data is read is valid: The character read
 If the position where data is read is invalid: eof

10. int_type streambuf::sgetc ()
Reads one character.
Return value: If the position where data is read is valid: The character read
 If the position where data is read is invalid: eof

11. int streambuf::sgetn (char* s, streamsize n)

Sets n number of characters in the memory area specified by s. If an eof is found in the string
literal, this setting is terminated.
Return value: The specified number of characters.

12. int_type streambuf::sputbackc (char c) ;
If the data read position is correct and the put back data of the position is the same as c, the
read position is put back.
Return value: If the read position was put back: The value of c
 If the read position was not put back: eof

13. int streambuf::sungetc ()
If the data read position is correct, the read position is put back.
Return value: If the read position was put back: The value that was put back
 If the read position was not put back: eof

14. int streambuf::sputc (char c)
Inserts characters c.
Return value: If the write position is correct: The value of c
 If the write position is incorrect: eof

552

15. int_type streambuf::sputn (const char* s, streamsize n)
Inserts n number of characters specified by s.
If the buffer is smaller than n, the number of characters for the buffer size is inserted.
Return value: The number of characters inserted

16. char* streambuf::eback () const

Calculates the start pointer of the input stream.
Return value: Start pointer

17. char* streambuf::gptr () const
Calculates the next pointer of the input stream.
Return value: Next pointer

18. char* streambuf::egptr () const
Calculates the end pointer of the input stream.
Return value: End pointer

19. void streambuf::gbump (int n)
Moves the next pointer of the input stream for n.

20. void streambuf::setg (char* gbeg, char* gnext, char* gend)
The settings for each pointer of the input stream are as follows:
 *B_beg_pptr = gbeg;
 *B_next_pptr = gnext;
 B_end_ptr = gend;
 *_B_cnt_ptr = gend-gnext;
 *_B_len_ptr = gend-gbeg;

21. char* streambuf::pbase () const

Calculates the start pointer of the output stream.
Return value: Start pointer

22. char* streambuf::pptr () const
Calculates the next pointer of the output stream.
Return value: Next pointer

553

23. char* streambuf::epptr () const
Calculates the end pointer of the output stream.
Return value: End pointer

24. void streambuf::pbump (int n)
Moves the next pointer of the output stream for n.

25. void streambuf::setp (char* pbeg, char* pend)
The settings for each pointer of the output stream are as follows:
*B_beg_pptr = pbeg;
*B_next_pptr = pbeg;
B_end_ptr = pend;
*_B_cnt_ptr=pend-pbeg;
*_B_len_ptr=pend-pbeg;

26. virtual streambuf* streambuf::setbuf (char* s, streamsize n)

For each derived class of streambuf, a defined operation is executed.
Return value: *this (This class does not define the processing)

27. virtual pos_type streambuf::seekoff (off_type off, ios_base::seekdir way,
 ios_base::openmode=(ios_base::openmode)(ios_base::in | ios_base::out))
Changes the stream position.
Return value: (-1) (This class does not define the processing)

28. virtual pos_type streambuf::seekpos (pos_type off,
 ios_base::openmode=(ios_base::openmode)(ios_base::in | ios_base::out))
Changes the stream position.
Return value: (-1) (This class does not define the processing)

29. virtual int streambuf::sync ()
Flushes the output stream.
Return value: 0 (This class does not define the processing)

30. virtual int streambuf::showmanyc ()
Calculates the number of valid characters in the input stream.
Return value: 0 (This class does not define the processing)

554

31. virtual streamsize streambuf::xsgetn (char* s, streamsize n)
Sets n number of characters in the memory area specified by s.
If the buffer is smaller than n, the numbers of characters for the buffer size is inserted.
Return value: The number of characters input

32. virtual int_type streambuf::underflow ()
Reads one character without moving the stream position.
Return value: eof (This class does not define the processing)

33. virtual int_type streambuf::uflow ()

Reads one character of the next pointer.
Return value: eof (This class does not define the processing)

34. virtual int_type streambuf::pbackfail (int_type c=eof)
Puts back the character specified by c.
Return value: eof (This class does not define the processing)

35. virtual streamsize streambuf::xsputn (const char* s, streamsize n)
Inserts n number of characters specified by s.
If the buffer is smaller than n, the number of characters for the buffer size is inserted.
Return value: The number of characters inserted

36. virtual int_type streambuf::overflow (int_type c=eof)
Inserts c in the output stream.
Return value: eof (This class does not define the processing)

555

(f) istream::sentry Class

Type Definition Name Description

Variable ok_ Whether the current state is input-
enabled

sentry (istream& is, bool noskipws= false) Constructor

~sentry() Destructor

Function

operator bool() References ok_

1. istream::sentry::sentry(istream& is, bool noskipws=_false)
Constructor of internal class sentry.
Return value: If good() is non-zero, enables input with or without a format.
 If tie() is non-zero, flushes related output stream.

2. istream::sentry::~sentry ()
Destructor of internal class sentry

3. istream::sentry::operator bool ()
References ok_.
Return value: ok_

556

(g) istream Class

Type Definition Name Description

Variable chcount The number of characters
extracted by the input function
called last.

int _ec2p_getistr(char* str,unsigned int dig, int mode) Converts str with the radix
specified by dig.

istream(streambuf* sb) Constructor.

virtual ~istream() Destructor.

istream& operator>>(bool& n)

istream& operator>>(short& n)

istream& operator>>(unsigned short& n)

istream& operator>>(int& n)

istream& operator>>(unsigned int& n)

istream& operator>>(long& n)

istream& operator>>(unsigned long& n)

istream& operator>>(float& n)

istream& operator>>(double& n)

istream& operator>>(long double& n)

Stores the extracted characters in
n.

istream& operator>>(void*& p) Converts the extracted characters
to a pointer to void and stores it in
p.

istream& operator >>(streambuf* sb) Extracts characters and stores
them in the memory area
specified by sb.

streamsize gcount() const Calculates chcount (number of
characters extracted).

Function

int_type get() Extracts a character.

557

Type Definition Name Description

istream& get(char& c)

istream& get(signed char& c)

istream& get(unsigned char& c)

Stores the extracted characters in c.

istream& get(char* s, streamsize n)

istream& get(signed char* s, streamsize n)

istream& get(unsigned char* s, streamsize n)

Extracts string literals with size n-1
and stores them in the memory area
specified by s.

istream& get(char* s, streamsize n, char delim)

istream& get(
 signed char* s,
 streamsize n,
 char delim)

istream& get(
 unsigned char* s,
 streamsize n,
 char delim)

Extracts string literals with size n-1
and stores them in the memory area
specified by s.
If delim is found in the string literal,
input is stopped.

istream& get(streambuf& sb) Extracts string literals and stores them
in the memory area specified by sb.

istream& get(streambuf& sb, char delim) Extracts string literals and stores them
in the memory area specified by sb.
If character delim is found, input is
stopped.

istream& getline(char* s, streamsize n)

istream& getline(signed char* s, streamsize n)

Function

istream& getline(unsigned char* s, streamsize n)

Extracts string literals with size n-1
and stores them in the memory area
specified by s.

558

Type Definition Name Description

istream& getline(char* s, streamsize n,char delim)

istream& getline(
 signed char* s,
 streamsize n,
 char delim)

istream& getline(
 unsigned char* s,
 streamsize n,
 char delim)

Extracts string literals with size n-1
and stores them in the memory
area specified by s.
If character delim is found, input is
stopped.

istream& ignore(
 streamsize n=1,
 int_type delim=streambuf::eof)

Skips reading the number of
characters specified by n.
If character delim is found,
skipping is stopped.

int_type peek() Seeks for input characters that can
be acquired next.

istream& read(char* s, streamsize n)

istream& read(signed char* s, streamsize n)

istream& read(unsigned char* s, streamsize n)

Extracts string literals with size n
and stores them in the memory
area specified by s.

streamsize readsome(char* s, streamsize n)

streamsize readsome(signed char* s, streamsize n)

streamsize readsome(
 unsigned char* s,
 streamsize n)

Extracts string literals with size n
and stores them in the memory
area specified by s.

istream& putback(char c) Returns a character to the input
stream.

istream& unget() Returns the position of the input
stream.

Function

int sync() Checks for an input stream.
This function calls
streambuf::pubsync().

559

Type Definition Name Description

pos_type tellg() Checks for the input stream
position.
This function calls
streambuf::pubseekoff(0,cur,in).

istream& seekg(pos_type pos) Moves the current stream pointer
for pos.
This function calls
streambuf::pubseekpos(pos).

Function

istream& seekg(off_type off, ios_base::seekdir dir)

Moves the position to read the
input stream by using the method
specified by dir.
This function calls
stream::pubseekoff(off,dir).

1. int istream::_ec2p_getistr (char* str, unsigned int dig, int mode)
Converts str with the radix specified by dig.
Return value: Returns the converted radix.

2. istream::istream (streambuf* sb)

Constructor of class istream.
Calls ios::init(sb).
Specifies chcount=0.

3. virtual istream::~istream ()

Destructor of class istream.

4. istream& istream::operator>> (bool& n)

istream& istream::operator>> (short& n)
istream& istream::operator>> (unsigned short& n)
istream& istream::operator>> (int& n)
istream& istream::operator>> (unsigned int& n)
istream& istream::operator>> (long& n)
istream& istream::operator>> (unsigned long& n)
istream& istream::operator>> (float& n)
istream& istream::operator>> (double& n)
istream& istream::operator>> (long double& n)

Stores the extracted characters in n.
Return value: *this

560

5. istream& istream::operator>> (void*& p)
Converts the extracted characters to a void type and stores them in the memory specified by p.
Return value: *this

6. istream& istream::operator>> (streambuf* sb)
Extracts characters and stores them in the memory area specified by sb.
If there is no extracted character, setstate(failbit) is called.
Return value: *this

7. streamsize istream::gcount () const

References chcount (number of extracted characters).
Return value: chcount

8. int_type istream::get ()
Extracts characters.
Return value: If characters are extracted: Extracted characters.
 If no characters are extracted: Calls setstate(failbat), and streambuf::eof.

9. istream& istream::get(char& c)

istream& istream::get(signed char& c)
istream& istream::get(unsigned char& c)

Extracts characters and stores them in c. If the extracted characters are streambuf::eop, failbit
is specified.
Return value: *this

10. istream& istream::get (char* s, streamsize n)

istream& istream::get(signed char* s, streamsize n)
istream& istream::get(unsigned char* s, streamsize n)

Extracts string literals with size n-1 and stores them in the memory area specified by s. If
ok_= =false or no characters were extracted, failbit is specified.
Return value: *this

561

11. istream& istream::get(char* s, streamsize n, char delim)
istream& istream::get(signed char* s, streamsize n, char delim)
istream& istream::get(unsigned char* s, streamsize n, char delim)

Extracts string literals with size n-1 and stores them in the memory area specified by s.
If delim is found in the string literal, input is stopped.
If ok_= =false or no characters were extracted, failbit is specified.
Return value: *this

12. istream& istream::get(streambuf& sb)

Extracts string literals and stores them in the memory area specified by sb.
If ok_= =false or no characters were extracted, failbit is specified.
Return value: *this

13. istream& istream::get(streambuf& sb, char delim)

Extracts string literals and stores them in the memory area specified by sb.
If delim is found in the string literal, input is stopped.
If ok_= =false or no characters were extracted, failbit is specified.
Return value: *this

14. istream& istream::getline (char* s, streamsize n)

istream& istream::getline(signed char* s, streamsize n)
istream& istream::getline(unsigned char* s, streamsize n)

Extracts string literals with size n-1 and stores them in the memory area specified by s.
If ok_= =false or no characters were extracted, failbit is specified.
Return value: *this

15. istream& istream::getline(char* s, streamsize n, char delim)

istream& istream::getline(signed char* s, streamsize n, char delim)
istream& istream::getline(unsigned char* s, streamsize n, char delim)

Extracts string literals with size n-1 and stores them in the memory area specified by s.
If character delim is found, input is stopped.
If ok_= =false or no characters were extracted, failbit is specified.
Return value: *this

562

16. istream& istream::ignore (streamsize n=1, int_type delim=streambuf::eof)
Skips reading the number of characters specified by n.
If character delim is found, skipping is stopped.
Return value: *this

17. int_type istream::peek ()

Seeks input characters that can be acquired next.
Return value: If ok_= =false::streambuf::eof
If ok_!=false: rdbuf()->sgetc()

18. istream& istream::read (char* s, streamsize n)

istream& istream::read(signed char* s, streamsize n)
istream& istream::read(unsigned char* s, streamsize n)

If ok_!=false, extracts string literals with size n and stores them in the memory area specified
by s. If the number of extracted characters does not match with the number of n, eofbit is
specified.
Return value: *this

19. streamsize istream::readsome (char* s, streamsize n)
streamsize istream::readsome(signed char* s, streamsize n)
streamsize istream::readsome(unsigned char* s, streamsize n)

Extracts string literals with size n and stores them in the memory area specified by s.
If the number of characters exceeds the stream size, only the number of characters equal to the
stream size is stored.
Return value: The number of extracted characters

20. istream& istream::putback (char c)
Returns characters c to the input stream.
If the characters put back are streambuf::eof, badbit is specified.
Return value: *this

563

21. istream& istream::unget ()
Returns the input stream pointer by one.
If the extracted characters are streambuf::eof, badbit is specified.
Return value: *this

22. int istream::sync ()
Checks for an input stream.
This function calls streambuf::pubsync().
Return value: If there is no input stream: streambuf::eof
 If there is an input stream: 0

23. pos_type istream::tellg ()
Checks for the input stream position.
This function calls streambuf::pubseekoff(0,cur,in).
Return value: Offset from the beginning of the stream.
 If an input processing error occurs, -1 is returned.

24. istream& istream::seekg(pos_type pos)
Moves the current stream pointer for pos.
This function calls streambuf::pubseekpos(pos).
Return value: *this

25. istream& istream::seekg (off_type off, ios_base::seekdir dir)
Moves the position to read the input stream by using the method specified by dir.
This function calls streambuf::pubseekoff(off,dir). If an input processing error is generated,
this processing is not performed.
Return value: *this

564

(h) istream Class Manipulator

Type Definition Name Description

Function istream& ws(istream& is) Skips reading space

1. istream& ws(istream& is)
Skips reading white space.
Return value: is

(i) istream Non-Member Function

Type Definition Name Description

istream& operator>>(istream& in,char* s)

istream& operator>>(istream& in, signed char* s)

istream& operator>>(istream& in, unsigned char* s)

Extracts character strings and
stores them in the memory area
specified by s

istream& operator>>(istream& in, char& c)

istream& operator>>(istream& in, singed char& c)

Function

istream& operator>>(istream& in, unsigned char& c)

Extracts characters and stores
them in c

1. istream& operator>>(istream& in, char* s)
istream& operator>>(istream& in, signed char* s)
istream& operator>>(istream& in, unsigned char* s)

Extracts character strings and stores them in the memory area specified by s. Processing is
terminated when
• the number of characters stored equals field width – 1
• streambuf::eof is found in the input line
• the next input enabled character c is isspace(c)=1
If no characters are stored, failbit is specified.
Return value: in

2. istream& operator>>(istream& in, char& c)
istream& operator>>(istream& in, singed char& c)
istream& operator>>(istream& in, unsigned char& c)

Extracts characters and stores them in c. If no characters are stored, failbit is specified.
Return value: in

565

(j) ostream::sentry Class

Definition Names

Type Definition Name Description

ok_ Whether the current state is output enabled Variable

_ _ec2p_os Pointer to the ostream object

sentry(ostrream& os) Constructor

~sentry() Destructor

Function

operator bool() References ok_

1. ostream::sentry::sentry (ostream& os)
Constructor of internal class sentry.
If good() is non-zero and tie() is non-zero, flush() is called.
Specifies os in _ _ec2p_os.

2. ostream::sentry::~sentry ()

Destructor of internal class sentry.
If _ _ec2p_os->flags() & ios_base::unitbuf is true, flush() is called.

3. ostream::sentry::operator bool ()

References ok_.
Return value: ok_.

566

(k) ostream Class

Type Definition Name Description

ostream(streambuf* sbptr) Constructor.

virtual ~ostream() Destructor.

ostream & operator<<(bool n)

ostream & operator<<(short n)

ostream & operator<<(unsigned short n)

ostream & operator<<(int n)

ostream & operator<<(unsigned int n)

ostream & operator<<(long n)

ostream & operator<<(unsigned long n)

ostream & operator<<(float n)

ostream & operator<<(double n)

ostream & operator<<(long double n)

ostream & operator<<(void* n)

Inserts n in the output
stream.

ostream & operator<<(streambuf* sbptr) Inserts the output line of sbptr
into the output stream.

Function

ostream & putc(char c) Inserts characters c into the
output stream.

567

Type Definition Name Description

ostream & write(
 const char* s,
 streamsize n)

ostream & write(
 const signed char* s,
 streamsize n)

ostream & write(
 const unsigned char* s,
 streamsize n)

Inserts n number of characters from s
into the output stream.

ostream & flush() Flushes the output stream.
This function calls
streambuf::pubsync().

pos_type tellp() Calculates the current write position.
This function calls
streambuf::pubseekoff(0,cur,out).

ostream& seekp(pos_type pos) Calculates the offset from the
beginning of the stream to the current
position.
Moves the current stream pointer for
pos.
This function calls
streambuf::pubseekpos(pos).

Function

ostream& seekp(off_type off, seekdir dir) Moves the stream write position for
off, from dir.
This function calls
streambuf::pubseekoff(off,dir).

1. ostream::ostream (streambuf* sbptr)
Constructor.
Calls ios (sbptr).

2. virtual ostream::~ostream ()
Destructor.

568

3. ostream& ostream::operator<< (bool n)
ostream& ostream::operator<< (short n)
ostream& ostream::operator<< (unsigned short n)
ostream& ostream::operator<< (int n)
ostream& ostream::operator<< (unsigned int n)
ostream& ostream::operator<< (long n)
ostream& ostream::operator<< (unsigned long n)
ostream& ostream::operator<< (float n)
ostream& ostream::operator<< (double n)
ostream& ostream::operator<< (long double n)
ostream& ostream::operator<< (void* n)

If sentry::ok_= =true, n is inserted into the output stream.
If sentry::ok_= =false, failbit is specified.
Return value: *this

4. ostream& ostream::operator<< (streambuf* sbptr)

If sentry::ok_= =true, the output string of sbptr is inserted into the output stream.
If sentry::ok_= =false, failbit is specified.
Return value: *this

5. ostream& ostream::putc (char c)

If sentry::ok_= =true and rdbuf()->sputc(c)!=streambuf::eof, c is inserted into the output
stream.
Otherwise failbit is specified.
Return value: *this

6. ostream& ostream::write (const char* s, streamsize n)
ostream& ostream::write(const signed char* s, streamsize n)
ostream& ostream::write(const unsigned char* s, streamsize n)

If sentry::ok_= =true and rdbuf()->sputn(s, n)= =n, n number of characters from s is inserted
to the output stream.
Otherwise badbit is specified.
Return value: *this

569

7. ostream& ostream::flush ()
Flushes the output stream.
This function calls streambuf::pubsync().
Return value: *this

8. pos_type ostream::tellp ()

Calculates the current write position.
This function calls streambuf::pubseekoff(0,cur,out).
Return value: The current stream position.
 If an error occurs during processing, -1 is returned.

9. ostream& ostream::seekp (pos_type pos)
If no error occurs, the offset from the beginning of the stream to the current position is
calculated.
Moves the current stream buffer pointer for pos.
This function calls streambuf::pubseekpos(pos).
Return value: *this

10. ostream& ostream::seekp (off_type off, seekdir dir)
Moves the stream position for off, from dir.
This function calls streambuf::pubseekoff(pos,dir).
Return value: *this

570

(l) ostream Class Manipulator

Type Definition Name Description

ostream& endl(ostream& os) Adds a new line and flushes the output stream

ostream& ends(ostream& os) Adds a NULL code

Function

ostream& flush(ostream& os) Flushes the output stream

1. ostream& endl(ostream& os)
Adds a new line code (end of line indicator) and flushes the output stream.
This function calls flush ().
Return value: os

2. ostream& ends(ostream& os)

Inserts a NULL code to the output line.
Return value: os

3. ostream& flush(ostream& os)
Flushes the output stream.
This function calls stream::sync().
Return value: os

571

(m) ostream Non-Member Function

Type Definition Name Description

ostream& operator<<(ostream& os, char s)

ostream& operator<<(ostream& os, signed char s)

ostream& operator<<(ostream& os, unsigned char s)

ostream& operator<<(ostream& os,const char* s)

ostream& operator<<(ostream& os, const signed char* s)

Function

ostream& operator<<(ostream& os, const unsigned char* s)

Inserts s into the
output stream

1. ostream& operator<<(ostream& os, char s)
ostream& operator<<(ostream& os, signed char s)
ostream& operator<<(ostream& os, unsigned char s)
ostream& operator<<(ostream& os, const char* s)
ostream& operator<<(ostream& os, const singed char* s)
ostream& operator<<(ostream& os, const unsigned char* s)

If sentry::ok_= =true and an error does not occur, s is inserted into the output stream.
Otherwise failbit is specified.
Return value: os

572

(n) smanip Class Manipulator

Type Definition Name Description

smanip resetiosflags(ios_base::fmtflags mask) Clears the flag specified by the mask
value

smanip setiosflags(ios_base::fmtflags mask) Specifies the format flag (fmtfl)

smanip setbase(int base) Sets the radix used at output

smanip setfill(char c) Specifies the fill character (fillch)

smanip setprecision(int n) Specifies the precision (prec)

Function

smanip setw(int n) Specifies the field width (wide)

1. smanip resetiosflags(ios_base::fmtflags mask)
Clears the flag specified by the mask value.
Return value: Target object of input/output

2. smanip setiosflags(ios_base::fmtflags(0), mask)
Specifies the format flag (fmtfl).
Return value: Target object of input/output

3. smanip setbase(int base)
Sets the radix used at output.
Return value: Target object of input/output

4. smanip setfill(char c);
Specifies the fill characters.
Return value: Target object of input/output

5. smanip setprecision(int n)
Specifies the precision.
Return value: Target object of input/output

6. smanip setw(int n)
Specifies the field width.
Return value: Target object of input/output

573

streambuf

(o) Example of Using EC++ Input/Output Libraries

Input/output stream can be used if a pointer to an object of the mystrbuf class is used instead of
streambuf at the initialization of objects istream and ostream.

The following shows the hierarchy of these classes. An arrow (->) indicates that a derived class
refers to a base class.

mystrbuf

my

574

Type Definition Name Description

Variable _file_ptr File pointer.

mystrbuf()

mystrbuf(void* ptr)

Constructor.
Initializes the streambuf buffer.

virtual~mystrbuf() Destructor.

void* myfptr() const Returns a pointer to the FILE type
structure.

mystrbuf* open(const char* filename,
 int mode)

Specifies the file name and mode and
opens file.

mystrbuf* close() Closes file.

virtual streambuf* setbuf(char* s,
 stremsize n)

Reserves stream input/output buffer.

virtual pos_type seekoff(
 off_type off,
 ios_base::seekdir way,
 ios_base::openmode=
(ios_base::openmode)
 (ios_base::in | ios_base::out))

Changes the position of the stream pointer.

virtual pos_type seekpos(
 pos_type sp,
 ios_base::openmode=
(ios_base::openmode)
 (ios_base::in | ios_base::out))

Changes the position of the stream pointer.

virtual int sync() Flushes the stream.

virtual int showmanyc() Returns the number of valid characters of
input line.

virtual int_type underflow() Reads one character without moving the
stream position.

virtual int_type pbackfail(int_type c =
 streambuf::eof)

Puts back the character specified by c.

virtual int_type overflow(int_type c =
 streambuf::eof)

Inserts character specified by c.

Function

void _Init(_f_type* fp) Initial processing.

575

<Example>

#include <istream>
#include <ostream>
#include <mystrbuf>
#include <string>
#include <new>
void main(void)
{
 mystrbuf myfin(stdin);
 mystrbuf myfout(stdout);
 istream mycin(&myfin);
 ostream mycout(&myfout);

 int i;
 short s;
 long l;
 char c;
 string str;

 mycin >> i >> s >> l >> c >> str;
 mycout << "This is EC++ Library." << endl
 << i << s << l << c << str << endl;

 return;
}

576

(3) Memory Management Library

The header file for the memory management library is as follows.

<new>
Defines memory allocation/deallocation function. By setting an exception processing function
address to the _ec2p_new_handler variable, exception processing can be executed when memory
allocation fails. The _ec2p_new_handler is a static variable and the initial value is NULL. If this
handler is used, reentrant will be lost.

Operations required for the exception processing function:

• Creates an allocatable area and returns the area.

• Operations are not prescribed for cases where an area cannot be created and returned.

Type Definition Name Description

Macro new_handler Pointer type to the function that returns a
void type

Variable _ec2p_new_handler Pointer to an exception processing function

void* operator new(size_t size) Allocates memory area with a size specified
by size

void* operator new[](size_t size) Allocates array area with a size specified by
size

void* operator new(
 size_t size, void* ptr)

Allocates the area specified by ptr as the
memory area

void* operator new[](
 size_t size, void* ptr)

Allocates the area specified by ptr as the
array area

void operator delete(void* ptr) Deallocates the memory area

void operator delete[](void* ptr) Deallocates the array area

Function

new_handler set_new_handler(
 new_handler new_P)

Sets exception processing function address
(new_P) in _ec2p_new_handler

577

1. void* operator new(size_t size)
Allocates a memory area with the size specified by size.
If no memory area is allocated and when the new_handler is set, new_handler is called.
Return value: If memory allocation succeeds: Pointer to void type
 If memory allocation fails: NULL

2. void* operator new[](size_t size)
Allocates an array area with the size specified by size.
If no array area is allocated and when the new_handler is set, new_handler is called.
Return value: If memory allocation succeeds: Pointer to void type
 If memory allocation fails: NULL

3. void* operator new(size_t size, void* ptr)
Allocates the area specified by ptr as the memory area.
Return value: ptr

4. void* operator new[](size_t size, void* ptr)
Allocates the area specified by ptr as the array area.
Return value: ptr

5. void operator delete(void* ptr)
Deallocates the memory area specified by ptr.
If ptr is NULL, no operation will be performed.

6. void operator delete[](void* ptr)
Deallocates the array area specified by ptr.
If ptr is NULL, no operation will be performed.

7. new_handler set_new_handler(new_handler new_P)
Sets new_P in _ec2p_new_handler.
Return value: Value of _ec2p_new_handler

578

(4) Complex Number Calculation Class Libraries

The header file for the complex number calculation class libraries is as follows.

1. <complex>

Defines float_complex class and double_complex class.

These classes have no hierarchy.

579

(a) float_complex Class

Type Definition Name Description

Type value_type float type.

_re Defines the real part of float precision. Variable

_im Defines the imaginary part of float
precision.

float_complex(float re = 0.0f, float im = 0.0f)

float_complex(const double_complex& rhs)

Constructor.

float real() const Calculates the real part (_re).

float imag() const Calculates the imaginary part (_im).

float_complex& operator=(float rhs) Copies rhs to the real part.
0.0f is specified for the imaginary part.

float_complex& operator+=(float rhs) Adds rhs to the real part and stores the
sum in *this.

float_complex& operator−=(float rhs) Subtracts rhs from the real part and stores
the difference in *this.

float_complex& operator*=(float rhs) Multiplies by rhs and stores the product in
*this.

float_complex& operator/=(float rhs) Divides by rhs and stores the quotient in
*this.

float_complex& operator=(
 const float_complex&rhs)

Copies rhs.

float_complex& operator+=(
 const float_complex& rhs)

Adds rhs and stores the sum in *this.

float_complex& operator−=(
 const float_complex& rhs)

Subtracts rhs and stores the difference in
*this.

float_complex& operator*=(
 const float_complex& rhs)

Multiplies by rhs and stores the product in
*this.

Function

float_complex& operator/=(
 const float_complex& rhs)

Divides by rhs and stores the quotient in
*this.

580

1. float_complex::float_complex (float re=0.0f, float im=0.0f)
Constructor of class float_complex.
The initial settings are as follows:
_re = re;
_im = im;

2. float_complex::float_complex(const double_complex& rhs)

Constructor of class float_complex.
The initial settings are as follows:
_re = (float)rhs.real();
_im = (float)rhs.imag();

3. float float_complex::real () const

Calculates the real part.
Return value: this->_re

4. float float_complex::imag () const
Calculates the imaginary part.
Return value: this->_im

5. float_complex& float_complex::operator= (float rhs)

Copies rhs to the real part (_re).
0.0f is specified for the imaginary part (_im).
Return value: *this

6. float_complex& float_complex::operator+=(float rhs)
Adds rhs to the real part (_re) and stores the sum in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

7. float_complex& float_complex::operator−= (float rhs)
Subtracts rhs from the real part and stores the difference in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

581

8. float_complex& float_complex::operator*= (float rhs)
Multiplies by rhs and stores the product in *this.
(_re=_re*rhs, _im=_im*rhs)
Return value: *this

9. float_complex& float_complex::operator/= (float rhs)

Divides by rhs and stores the quotient in *this.
(_re=_re/rhs, _im=_im/rhs)
Return value: *this

10. float_complex& float_complex::operator= (const float_complex& rhs)
Copies rhs
Return value: *this

11. float_complex& float_complex::operator+= (const float_complex& rhs)
Adds rhs and stores the sum in *this
Return value: *this

12. float_complex& float_complex::operator−=(const float_complex& rhs)
Subtracts rhs and stores the difference in *this.
Return value: *this

13. float_complex& float_complex::operator*= (const float_complex& rhs)
Multiplies by rhs and stores the product in *this.
Return value: *this

14. float_complex& float_complex::operator/= (const float_complex& rhs)
Divides by rhs and stores the quotient in *this.
Return value: *this

582

(b) float_complex Non-Member Function

Type Definition Name Description

float_complex operator+(
 const float_complex& lhs)

Performs unary + operation of lhs

float_complex operator+(
 const float_complex& lhs,
 const float_complex& rhs)

float_complex operator+(
 const float_complex& lhs,
 const float& rhs)

float_complex operator+(
 const float& lhs,
 const float_complex& rhs)

Adds lhs to rhs and stores the sum in lhs

float_complex operator-(
 const float_complex& lhs)

Performs unary - operation of lhs

float_complex operator-(
 const float_complex& lhs,
 const float_complex& rhs)

float_complex operator-(
 const float_complex& lhs,
 const float& rhs)

float_complex operator-(
 const float& lhs,
 const float_complex& rhs)

Subtracts rhs from lhs and stores the
difference in lhs

float_complex operator*(
 const float_complex& lhs,
 const float_complex& rhs)

float_complex operator*(
 const float_complex& lhs,
 const float& rhs)

float_complex operator*(
 const float& lhs,
 const float_complex& rhs)

Multiples lhs by rhs and stores the product
in lhs

float_complex operator/ (
 const float_complex& lhs,
 const float_complex& rhs)

Function

float_complex operator/ (
 const float_complex& lhs,
 const float& rhs)

Divides lhs by rhs and stores the quotient
in lhs

583

Type Definition Name Description

float_complex operator/ (
 const float& lhs,
 const float_complex& rhs)

Divides lhs by rhs and stores the
quotient in lhs

bool operator==(
 const float_complex& lhs,
 const float_complex& rhs)

bool operator==(
 const float_complex& lhs,
 const float& rhs)

bool operator== (
 const float& lhs,
 const float_complex& rhs)

Compares the real parts of lhs and rhs,
and the imaginary parts of lhs and rhs

bool operator!=(
 const float_complex& lhs,
 const float_complex& rhs)

bool operator!=(
 const float_complex& lhs,
 const float& rhs)

bool operator!=(
 const float& lhs,
 const float_complex& rhs)

Compares the real parts of lhs and rhs,
and the imaginary parts of lhs and rhs

istream& operator>>(
 istream& is,
 float_complex& x)

Inputs x in a format of u, (u), or (u,v)(u:
real part, v: imaginary part)

ostream& operator<<(
 ostream& os,
 float_complex& x)

Outputs x in a format of u, (u), or
(u,v)(u: real part, v: imaginary part)

float real(const float_complex& x) Calculates the real part

float imag(const float_complex& x) Calculates the imaginary part

float abs(const float_complex& x) Calculates the absolute value

float arg(const float_complex& x) Calculates the phase angle

float norm(const float_complex& x) Calculates the absolute value of the
square

Function

float_complex conj(const float_complex& x) Calculates the conjugate complex
number

584

Type Definition Name Description

float_complex polar(
 const float& rho,
 const float& theta)

Calculates the float_complex value for a
complex number with size rho and phase
angle theta

float_complex cos(const float_complex& x) Calculates the complex cosine

float_complex cosh(const float_complex& x) Calculates the complex hyperbolic
cosine

float_complex exp(const float_complex& x) Calculates the exponent function

float_complex log(const float_complex& x) Calculates the natural logarithm

float_complex log10(const float_complex& x) Calculates the common logarithm

float_complex pow(
 const float_complex& x,
 int y)

float_complex pow(
 const float_complex& x,
 const float& y)

float_complex pow(
 const float_complex& x,
 const float_complex& y)

float_complex pow(
 const float& x,
 const float_complex& y)

Calculates the x to the yth power

float_complex sin(const float_complex& x) Calculates the complex sine

float_complex sinh(const float_complex& x) Calculates the complex hyperbolic sine

float_complex sqrt(const float_complex& x) Calculates the square root within the
right half space

float_complex tan(const float_complex& x) Calculates the complex tangent

Function

float_complex tanh(const float_complex& x) Calculates the complex hyperbolic
tangent

585

1. float_complex operator+ (const float_complex& lhs)
Performs unary + operation of lhs.
Return value: lhs

2. float_complex operator+(const float_complex& lhs, const float_complex& rhs)
float_complex operator+(const float_complex& lhs, const float& rhs)
float_complex operator+(const float& lhs, const float_complex& rhs)

Adds lhs to rhs and stores the sum in lhs.
Return value: float_complex(lhs)+=rhs

3. float_complex operator−(const float_complex& lhs)
Performs unary - operation of lhs.
Return value: float_complex(−lhs.real(),−lhs.imag())

4. float_complex operator−(const float_complex& lhs, const float_complex& rhs)

float_complex operator−(const float_complex& lhs, const float& rhs)
float_complex operator−(const float& lhs, const float_complex& rhs)

Subtracts rhs from lhs and stores the difference in lhs.
Return value: float_complex(lhs)−=rhs

5. float_complex operator*(const float_complex& lhs, const float_complex& rhs)
float_complex operator*(const float_complex& lhs, const float& rhs)
float_complex operator*(const float& lhs, const float_complex& rhs)

Multiples lhs by rhs and stores the product in lhs.
Return value: float_complex(lhs)*=rhs

6. float_complex operator/(const float_complex& lhs, const float_complex& rhs)

float_complex operator/(const float_complex& lhs, const float& rhs)
float_complex operator/(const float& lhs, const float_complex& rhs)

Divides lhs by rhs and stores the quotient in lhs.
Return value: float_complex(lhs)/=rhs

586

7. bool operator= =(const float_complex& lhs, const float_complex& rhs)
bool operator= =(const float_complex& lhs, const float& rhs)
bool operator= =(const float& lhs, const float_complex& rhs)

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a float type parameter, the imaginary part is assumed 0.0f.
Return value: lhs.real()= =rhs.real() && lhs.imag()= =rhs.imag()

8. bool operator!=(const float_complex& lhs, const float_complex& rhs)
bool operator!=(const float_complex& lhs, const float& rhs)
bool operator!=(const float& lhs, const float_complex& rhs)

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a float type parameter, the imaginary part is assumed 0.0f.
Return value: lhs.real()!=rhs.real() || lhs.imag()!=rhs.imag()

9. istream& operator>>(istream& is, float_complex& x)
Inputs x in a format of u,(u), or (u,v) (u: real part, v: imaginary part).
The input value is converted to float_complex.
If x is input in a format other than the u, (u), or (u,v) format, is.setstate(ios_base::failbit) is
called.
Return value: is

10. ostream& operator<<(ostream& os, const float_complex& x)
Outputs x to os.
The output format is u, (u), or (u,v) (u: real part, v: imaginary part).
Return value: os

11. float real(const float_complex& x)
Calculates the real part.
Return value: x.real()

12. float imag(const float_complex& x)
Calculates the imaginary part.
Return value: x.imag()

13. float abs(const float_complex& x)
Calculates the absolute value.
Return value: |x.real()| + |x.imag()|

587

14. float arg(const float_complex& x)
Calculates the phase angle.
Return value: atan2f(x.imag() , x.real())

15. float norm(const float_complex& x)
Calculates the absolute value of the square.
Return value: x.real()^2+ x.imag()^2

16. float_complex conj(const float_complex& x)
Calculates the conjugate complex number.
Return value: float_complex(x.real(), (-1)*x.imag())

17. float_complex polar(const float& rho, const float& theta)
Calculates the float_complex value for a complex number with size rho and phase angle
(argument) theta.
Return value: float_complex(rho*cosf(theta), rho*sinf(theta))

18. float_complex cos(const float_complex& x)
Calculates the complex cosine.
Return value: float_complex(cosf(x.real())*coshf(x.imag()),
(-1)*sinf(x.real())*sinhf(x.imag()))

19. float_complex cosh(const float_complex& x)
Calculates the complex hyperbolic cosine.
Return value: cos(float_complex((-1)*x.imag(), x.real()))

20. float_complex exp(const float_complex& x)
Calculates the exponential function.
Return value: expf(x.real())*cosf(x.imag()),expf(x.real())*sinf(x.imag())

21. float_complex log(const float_complex& x)
Calculates the natural logarithm (base e).
Return value: float_complex(logf(x)), arg(x)))

22. float_complex log10(const float_complex& x)
Calculates the common logarithm (base 10).
Return value: float_complex(log10f(abs(x)), arg(x)/logf(10))

588

23. float_complex pow(const float_complex& x, int y)
float_complex pow(const float_complex& x, const float& y)
float_complex pow(const float_complex& x, const float_complex& y)
float_complex pow(const float& x, const float_complex& y)
Calculates the x to the yth power.
If pow(0,0), a domain error will occur.
Return value: For float_complex pow (const float_complex& x,const float_complex& y):
 exp(y*logf(x))
 Otherwise: exp(y*log(x))

24. float_complex sin(const float_complex& x)
Calculates the complex sine.
Return value: float_complex(sinf(x.real())*coshf(x.imag()), cosf(x.real())*sinhf(x.imag()))

25 float_complex sinh (const float_complex& x)
Calculates the complex hyperbolic sine.
Return value: float_complex(0,-1)*sin(float_complex((-1)*x.imag(),x.real()))

26. float_complex sqrt(const float_complex& x)
Calculates the square root within the right half space.
Return value: float_complex(sqrtf(abs(x))*cosf(arg (x)/2, sqrtf(abs(x))*sinf(arg(x)/2))

27. float_complex tan(const float_complex& x)

Calculates the complex tangent.
Return value: sin(x) / cos(x)

28. float_complex tanh(const float_complex& x)
Calculates the complex hyperbolic tangent.
Return value: sinh(x) / cosh(x)

589

(c) double_complex Class

Type Definition Name Description

Type value_type double type.

_re Defines the real part of double
precision.

Variable

_im Defines the imaginary part of double

precision.

double_complex(
 double re=0.0,
 double im=0.0)

double_complex(const float_complex&)

Constructor.

double real() const Calculates the real part.

double imag() const Calculates the imaginary part.

double_complex& operator=(double rhs) Copies rhs to the real part.
0.0 is specified for the imaginary part.

double_complex& operator+=(double rhs) Adds rhs to the real part and stores the
sum in *this.

double_complex& operator−=(double rhs) Subtracts rhs from the real part and
stores the difference in *this.

double_complex& operator*=(double rhs) Multiplies by rhs and stores the product
in *this.

double_complex& operator/=(double rhs) Divides by rhs and stores the quotient
in *this.

double_complex& operator=(
 const double_complex& rhs)

Copies rhs.

double_complex& operator+=(
 const double_complex& rhs)

Adds rhs and stores the sum in *this.

double_complex& operator−=(
 const double_complex& rhs)

Subtracts rhs and stores the difference
in *this.

double_complex& operator*=(
 const double_complex& rhs)

Multiplies by rhs and stores the product
in *this.

Function

double_complex& operator/=(
 const double_complex& rhs)

Divides by rhs and stores the quotient
in *this.

590

1. double_complex::double_complex(double re=0.0, double im=0.0)
Constructor of class double_complex.
The initial settings are as follows:
_re = re;
_im = im;

2. double_complex::double_complex(const float_complex&)
Constructor of class double_complex.
The initial settings are as follows:
_re = (double)rhs.real();
_im = (double)rhs.imag();

3. double double_complex::real () const

Calculates the real part.
Return value: this->_re

4. double double_complex::imag () const
Calculates the imaginary part.
Return value: this->_im

5. double_complex& double_complex::operator=(double rhs)
Copies rhs to the real part (_re).
0.0 is specified for the imaginary part (_im).
Return value: *this

6. double_complex& double_complex::operator+= (double rhs)
Adds rhs to the real part (_re) and stores the sum in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

7. double_complex& double_complex::operator−=(double rhs)

Subtracts rhs from the real part and stores the difference in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

591

8. double_complex& double_complex::operator*= (double rhs)
Multiplies by rhs and stores the product in *this.
(_re=_re*rhs, _im=_im*rhs)
Return value: *this

9. double_complex& double_complex::operator/= (double rhs)

Divides by rhs and stores the quotient in *this.
(_re=_re/rhs, _im=_im/rhs)
Return value: *this

10. double_complex& double_complex::operator= (const double_complex& rhs)
Copies rhs.
Return value: *this

11. double_complex& double_complex::operator+= (const double_complex& rhs)
Adds rhs and stores the sum in *this.
Return value: *this

12. double_complex& double_complex::operator−= (const double_complex& rhs)
Subtracts rhs and stores the difference in *this.
Return value: *this

13. double_complex& double_complex::operator*= (const double_complex& rhs)
Multiplies by rhs and stores the product in *this.
Return value: *this

14. double_complex& double_complex::operator/= (const double_complex& rhs)
Divides by rhs and stores the quotient in *this.
Return value: *this

592

(d) double_complex Non-Member Function

Type Definition Name Description

double_complex operator+(
 const double_complex& lhs)

Performs unary + operation of lhs

double_complex operator+(
 const double_complex& lhs,
 const double_complex& rhs)

double_complex operator+(
 const double_complex& lhs,
 const double& rhs)

double_complex operator+(
 const double& lhs,
 const double_complex& rhs)

Adds rhs to lhs and stores the sum in lhs

double_complex operator-(
 const double_complex& lhs)

Performs unary – operation of lhs

double_complex operator-(
 const double_complex& lhs,
 const double_complex& rhs)

double_complex operator-(
 const double_complex& lhs,
 const double& rhs)

double_complex operator-(
 const double& lhs,
 const double_complex& rhs)

Subtracts rhs from lhs and stores the
difference in lhs

double_complex operator*(
 const double_complex& lhs,
 const double_complex& rhs)

double_complex operator*(
 const double_complex& lhs,
 const double& rhs)

double_complex operator*(
 const double& lhs,
 const double_complex& rhs)

Multiples lhs by rhs and stores the product
in lhs

double_complex operator/ (
 const double_complex& lhs,
 const double_complex& rhs)

Function

double_complex operator/ (
 const double_complex& lhs,
 const double& rhs)

Divides lhs by rhs and stores the quotient
in lhs

593

Type Definition Name Description

double_complex operator/ (
 const double& lhs,
 const double_complex& rhs)

Divides lhs by rhs and stores the quotient
in lhs

bool operator==(
 const double_complex& lhs,
 const double_complex& rhs)

bool operator==(
 const double_complex& lhs,
 const double& rhs)

bool operator== (
 const double& lhs,
 const double_complex& rhs)

Compares the real part of lhs and rhs, and
the imaginary parts of lhs and rhs

bool operator!=(
 const double_complex& lhs,
 const double_complex& rhs)

bool operator!=(
 const double_complex& lhs,
 const double& rhs)

bool operator!=(
 const double& lhs,
 const double_complex& rhs)

Compares the real parts of lhs and rhs,
and the imaginary parts of lhs and rhs

istream& operator>>(
 istream& is,
 double_complex& x)

Inputs x in a format of u,(u), or (u,v)(u: real
part, v: imaginary part)

ostream& operator<<(
 ostream& os,
 double_complex& x)

Outputs x in a format of u,(u), or (u,v)(u:
real part, v: imaginary part)

double real(const double_complex& x) Calculates the real part

double imag(const double_complex& x) Calculates the imaginary part

double abs(const double_complex& x) Calculates the absolute value

double arg(const double_complex& x) Calculates the phase angle

double norm(const double_complex& x) Calculates the absolute value of the
square

Function

double_complex conj(
 const double_complex& x)

Calculates the conjugate complex number

594

Type Definition Name Description

double_complex polar(
 const double& rho,
 const double& theta)

Calculates the double_complex value for a
complex number with size rho and phase
angle theta

double_complex cos(
 const double_complex& x)

Calculates the complex cosine

double_complex cosh(
 const double_complex& x)

Calculates the complex hyperbolic cosine

double_complex exp(
 const double_complex&)

Calculates the exponential function

double_complex log(
 const double_complex& x)

Calculates the natural logarithm

double_complex log10(
 const double_complex& x)

Calculates the common logarithm

double_complex pow(
 const double_complex& x,
 int y)

double_complex pow(
 const double_complex& x,
 const double& y)

double_complex pow(
 const double_complex& x,
 const double_complex& y)

double_complex pow(
 const double& x,
 const double_complex& y)

Calculates the x to the yth power

double_complex sin(
 const double_complex& x)

Calculates the complex sine

double_complex sinh(
 const double_complex& x)

Calculates the complex hyperbolic sine

double_complex sqrt(
 const double_complex& x)

Calculates the square root within the right
half space

double_complex tan(
 const double_complex& x)

Calculates the complex tangent

Function

double_complex tanh(
 const double_complex& x)

Calculates the complex hyperbolic tangent

595

1. double_complex operator+(const double_complex& lhs)
Performs unary + operation of lhs.
Return value: lhs

2. double_complex operator+(const double_complex& lhs, const double_complex& rhs)
double_complex operator+(const double_complex& lhs, const double& rhs)
double_complex operator+(const double& lhs, const double_complex& rhs)
Adds lhs to rhs and stores the sum in lhs.
Return value: double_complex(lhs)+=rhs

3. double_complex operator−(const double_complex& lhs)
Performs unary - operation of lhs.
Return value: double_complex(−lhs.real(), −lhs.imag())

4. double_complex operator−(const double_complex& lhs, const double_complex& rhs)
double_complex operator−(const double_complex& lhs, const double& rhs)
double_complex operator−(const double& lhs, const double_complex& rhs)
Subtracts rhs from lhs and stores the difference in lhs.
Return value: double_complex(lhs)−=rhs

5. double_complex operator*(const double_complex& lhs, const double_complex& rhs)
double_complex operator*(const double_complex& lhs, const double& rhs)
double_complex operator*(const double& lhs, const double_complex& rhs)
Multiples lhs by rhs and stores the product in lhs.
Return value: double_complex(lhs)*=rhs

6. double_complex operator/(const double_complex& lhs, const double_complex& rhs)
double_complex operator/(const double_complex& lhs, const double& rhs)
double_complex operator/(const double& lhs, const double_complex& rhs)
Divides lhs by rhs and stores the quotient in lhs.
Return value: double_complex(lhs)/=rhs

596

7. bool operator= =(const double_complex& lhs, const double_complex& rhs)
bool operator= =(const double_complex& lhs, const double& rhs)
bool operator= =(const double& lhs, const double_complex& rhs)
Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a double type parameter, the imaginary part is assumed 0.0.
Return value: lhs.real()= =rhs.real() && lhs.imag()= =rhs.imag()

8. bool operator!=(const double_complex& lhs, const double_complex& rhs)
bool operator!=(const double_complex& lhs, const double& rhs)
bool operator!=(const double& lhs, const double_complex& rhs)
Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a double type parameter, the imaginary part is assumed 0.0.
Return value: lhs.real()!=rhs.real() || lhs.imag()!=rhs.imag()

9. istream& operator>>(istream& is, double_complex& x)
Inputs x with a format of u, (u), or (u,v) (u: real part, v: imaginary part).
The input value is converted to double_complex.
If x is input in a format other than the (u,v) format, is.setstate(ios_base::failbit) is called.
Return value: is

10. ostream& operator<<(ostream& os, const double_complex& x)
Outputs x to os.
The output format is u, (u), or (u,v) (u: real part, v: imaginary part).
Return value: os

11. double real(const double_complex& x)
Calculates the real part.
Return value: x.real()

12. double imag(const double_complex& x)
Calculates the imaginary part.
Return value: x.imag()

13. double abs(const double_complex& x)
Calculates the absolute value.
Return value: |x.real()| + |x.imag()|

597

14. double arg(const double_complex& x)
Calculates the phase angle.
Return value: atan2(x.imag() , x.real())

15. double norm(const double_complex& x)
Calculates the absolute value of the square.
Return value: x.real()^2+ x.imag()^2

16. double_complex conj(const double_complex& x)
Calculates the conjugate complex number.
Return value: double_complex(x.real(), (-1)*x.imag())

17. double_complex polar(const double& rho, const double& theta)
Calculates the double_complex value for a complex number with size rho and phase angle
(argument) theta.
Return value: double_complex(rho*cos(theta), rho*sin(theta))

18. double_complex cos(const double_complex& x)
Calculates the complex cosine.
Return value: double_complex(cos(x.real())*cosh(x.imag()),
(-1)*sin(x.real())*sinh(x.imag()))

19. double_complex cosh(const double_complex& x)
Calculates the complex hyperbolic cosine.
Return value: cos(double_complex((-1)*x.imag(), x.real()))

20. double_complex exp(const double_complex& x)
Calculates the exponent function.
Return value: exp(x.real())*cos(x.imag()),exp(x.real())*sin(x.imag())

21. double_complex log(const double_complex& x)
Calculates the natural logarithm (base e).
Return value: double_complex(log(abs(x)), arg(x)))

598

22. double_complex log10(const double_complex& x)
Calculates the common logarithm (base 10).
Return value: double_complex(log10(abs(x)), arg(x)/log(10))

23. double_complex pow(const double_complex& x, int y)

double_complex pow(const double_complex& x, const double& y)
double_complex pow(const double_complex& x, const double_complex& y)
double_complex pow(const double& x, const double_complex& y)

Calculates the x to the yth power.
If pow(0,0), a domain error will occur.
Return value: exp(y*log(x))

24. double_complex sin(const double_complex& x)
Calculates the complex sine
Return value: double_complex(sin(x.real())*cosh(x.imag()), cos(x.real())*sinh(x.imag()))

25 double_complex sinh (const double_complex& x)
Calculates the complex hyperbolic sine
Return value: double_complex(0,-1)*sin(double_complex((-1)*x.imag(),x.real()))

26. double_complex sqrt(const double_complex& x)
Calculates the square root within the right half space
Return value: double_complex(sqrt(abs(x))*cos(arg(x)/2, sqrt(abs(x))*sin(arg(x)/2)

27. double_complex tan(const double_complex& x)
Calculates the complex tangent.
Return value: sin(x) / cos(x)

28. double_complex tanh(const double_complex& x)
Calculates the complex hyperbolic tangent.
Return value: sinh(x) / cosh(x)

599

(5) String Handling Class Library

The header file for string handling class library is as follows.

1. <string>

Defines the string class. This class has no hierarchy.

(a) string Class

Type Definition Name Description

iterator char* type Type

const_iterator const char* type

Constant npos Maximum string literal length (UNIT_MAX
characters)

s_ptr Pointer to the memory area where the
string literal is stored by the object

s_len The length of the string literal stored by the
object

Variable

s_res Size of the defined memory area to store
string literal by the object

string(void)

string::string(
 const string& str,
 size_t pos=0,
 size_t n=npos)

string::string(const char* str, size_t n)

string::string(const char* str)

string::string(size_t n, char c)

Constructor

~string() Destructor

string& operator=(const string& str) Assigns str

string& operator=(const char* str) Assigns str

string& operator=(char c) Assigns c

iterator begin()

const_iterator begin() const

Calculates the start pointer of the string
literal

iterator end()

Function

const_iterator end() const

Calculates the end pointer of the string
literal

600

Type Definition Name Description

size_t size() const

size_t length() const

Calculates the length of the stored string
literal

size_t max_size() const Calculates the size of the defined memory
area

void resize(size_t n, char c) Changes the string literal length to n that
can be stored

void resize(size_t n) Changes the string literal length to n that
can be stored

size_t capacity() const Calculates the size of the defined memory
area

void reserve(size_t res_arg = 0) Performs re-allocation of the memory area

void clear() Clears the stored string literal

bool empty() const Checks whether the stored string literal
length is 0

const char& operator[](size_t pos) const

char& operator[] (size_t pos)

const char& at(size_t pos) const

char& at(size_t pos)

References s_ptr[pos]

string& operator+=(const string& str) Adds the string literal stored by str to the
object

string& operator+=(const char* str) Adds the string literal stored by str to the
object

string& operator+=(char c) Adds the characters stored by c to the
object

string& append(const string& str)

string& append(const char* str)

Adds the string literal stored by str to the
object

Function

string& append(
 const string& str,
 size_t pos,
 size_t n)

Adds n number of characters of the str
string literal to the object position pos

601

Type Definition Name Description

string& append(const char* str, size_t n) Adds n number of characters of the str
string literal

string& append(size_t n, char c) Adds n number of characters c

string& assign(const string& str)

string& assign(const char* str)

Assigns str string literal

string& assign(
 const string& str,
 size_t pos,
 size_t n)

Adds n number of characters of the str
string literal to position pos

string& assign(const char* str, size_t n) Assigns n number of characters of str string
literal

string& assign(size_t n, char c) Assigns n number of characters c

string& insert(size_t pos1, const string& str) Inserts str string literal to position pos1

string& insert(
 size_t pos1,
 const string& str,
 size_t pos2,
 size_t n)

Inserts n number of characters to position
pos1 from position pos2 of str string literal

string& insert(
 size_t pos,
 const char* str,
 size_t n)

Inserts n number of characters of string
literal str to position pos

string& insert(size_t pos, const char* str) Inserts string literal str to position pos

string& insert(size_t pos, size_t n, char c) Inserts a string literal of n number of
characters c to position pos

Function

iterator insert(iterator p, char c=char()) Inserts characters c at the head of the string
literal specified by p

602

Type Definition Name Description

void insert(iterator p, size_t n, char c) Inserts n number of characters c before
the characters specified by p

string& erase(size_t pos=0, size_t n=npos) Deletes n number of characters from
position pos

iterator erase(iterator position) Deletes the characters referenced by
position

iterator erase(iterator first, iterator last) Deletes the characters in range [first, last]

string& replace(
 size_t pos1,
 size_t n1,
 const string& str)

string& replace(
 size_t pos1,
 size_t n1,
 const char* str)

Replaces string literal of n1 characters
from position pos1 with the str string literal

string& replace(
 size_t pos1,
 size_t n1,
 const string& str,
 size_t pos2,
 size_t n2)

Replaces string literal of n1 characters
from position pos1 with string literal of n2
characters from str position pos2

string& replace(
 size_t pos,
 size_t n1,
 const char* str,
 size_t n2)

Replaces string literal of n1 characters
from position pos with n2 characters of the
str string literal

string& replace(
 size_t pos,
 size_t n1,
 size_t n2,
 char c)

Replaces string literal of n1 characters
from position pos with n2 characters c

Function

string& replace(
 iterator i1,
 iterator i2,
 const string& str)

Replaces string literal i1 to i2 with the str
string literal

603

Type Definition Name Description

string& replace(
 iterator i1,
 iterator i2,
 const char* str)

Replaces string literal i1 to i2 with the str
string literal

string& replace(
 iterator i1,
 iterator i2,
 const char* str,
 size_t n)

Replaces string literal i1 to i2 with n
number of characters of str string literal

string& replace(
 iterator i1,
 iterator i2,
 size_t n,
 char c)

Replaces string literal from position i1 to
i2 with n number of characters c

size_t copy(
 char* str,
 size_t n,
 size_t pos=0) const

Copies n characters of string literal str to
position pos

void swap(string& str) Swaps with str string literal

const char* c_str() const

const char* data() const

References the pointer to the memory
area where the string literal is stored

size_t find(
 const string& str,
 size_t pos=0) const

size_t find(
 const char* str,
 size_t pos=0) const

Finds the position where the string literal
same as the str string literal first appears
after position pos

size_t find(
 const char* str,
 size_t pos,
 size_t n) const

Finds the position where the string literal
same as the n characters of str first
appears after position pos

size_t find(char c, size_t pos=0) const Finds the position where character c first
appears after position pos

size_t rfind(
 const string& str,
 size_t pos=npos) const

Function

size_t rfind(
 const char* str,
 size_t pos=npos)const

Finds the position where a string literal
same as the str string literal appears
most recently before position pos

604

Type Definition Name Description

size_t rfind(
 const char* str,
 size_t pos, size_t n) const

Finds the position where the string
literal same as n characters of str
appears most recently before position
pos

size_t rfind(char c, size_t pos=npos) const Finds the position where character c
appears most recently before position
pos

size_t find_first_of(
 const string& str,
 size_t pos=0) const

size_t find_first_of(
 const char* str,
 size_t pos=0) const

Finds the position where any
character included in the string literal
str first appears after position pos

size_t find_first_of(
 const char* str,
 size_t pos,
 size_t n) const

Finds the position where any
character included in n characters of
string literal str first appears after
position pos

size_t find_first_of(
 char c,
 size_t pos=0) const

Finds the position where character c
first appears after position pos

size_t find_last_of(
 const string& str,
 size_t pos=npos) const

size_t find_last_of(
 const char* str,
 size_t pos=npos) const

Finds the position where any
character included in the string literal
str appears most recently before
position pos

size_t find_last_of(
 const char* str,
 size_t pos,
 size_t n) const

Finds the position where any
character included in the n characters
of string literal str appears most
recently before position pos

size_t find_last_of(
 char c,
 size_t pos=npos) const

Finds the position where character c
appears most recently before position
pos

size_t find_first_not_of(
 const string& str,
 size_t pos=0) const

Function

size_t find_first_not_of(
 const char* str,
 size_t pos=0) const

Finds the position where a character
different from any character included
in the str first appears after position
pos

605

Type Definition Name Description

size_t find_first_not_of(
 const char* str,
 size_t pos, size_t n)const

Finds the position where a character
different from any character from the
start of str to n characters first appears
after position pos.

size_t find_first_not_of(
 char c,
 size_t pos=0) const

Finds the position where a character
different from c first appears after
position pos

size_t find_last_not_of(
 const string& str,
 size_t pos=npos) const

size_t find_last_not_of(
 const char* str,
 size_t pos=npos) const

Finds the position where a character
different from any character included in
the str appears most recently before
position pos

size_t find_last_not_of(
 const char* str,
 size_t pos, size_t n) const

Finds the position where a character
different from any character from the
start of str to n characters appears most
recently before position pos.

size_t find_last_not_of(
 char c,
 size_t pos=npos) const

Finds the location where a character
different from c appears most recently
before position pos

string substr(
 size_t pos=0,
 size_t n=npos) const

Creates an object with a string literal
range [pos,n] for the stored string literal

int compare(const string& str) const Compares a string literal with str string
literal

int compare(
 size_t pos1,
 size_t n1,
 const string& str) const

Compares a string literal of n1 characters
from position pos1 with str

int compare(
 size_t pos1,
 size_t n1,
 const string& str,
 size_t pos2,
 size_t n2) const

Compares a string literal of n1 characters
from position pos1 with the string literal
of n2 characters from str position pos2

int compare(const char* str) const Compares with str

Function

int compare(
 size_t pos1,
 size_t n1,
 const char* str,
 size_t n2=npos) const

Compares a string literal of n1 characters
from position pos1 with n2 characters of
str

606

1. string::string(void)
The settings are as follows:
 s_ptr = 0;
 s_len = 0;
 s_res = 0;

2. string::string(const string& str, size_t pos=0, size_t n=npos)
Copies str. Note that s_len will be the smaller value of n and s_len.

3. string::string(const char* str, size_t n)
The settings are as follows:
s_ptr = str;
s_len = n;
s_res = n+1;

4. string::string(const char* str)

The settings are as follows:
s_ptr = str;
s_len = String literal length of str;
s_res = String literal length of str +1;

5. string::string (size_t n, char c)
The settings are as follows:
s_ptr=String literal of n number of characters c
s_len = n;
s_res = n+1;

6. string::~string()
Destructor of class string.
Deallocates the memory area where the string literal is stored.

7. string& string::operator= (const string& str)
Assigns the str data.
Return value: *this

607

8. string& string::operator= (const char* str)
Creates a string object from str and assigns the data of str to the string object.
Return value: *this

9. string& string::operator=(char c)
Creates a string object from c and assigns the data of c to the string object.
Return value: *this

10. string::iterator string::begin ()
string::const_iterator string::begin() const
Calculates the start pointer of the string literal.
Return value: Start pointer of string literal

11. string::iterator string::end()
string::const_iterator string::end() const
Calculates the end pointer of the string literal.
Return value: End pointer of string literal

12. size_t string::size () const
size_t string::length () const
Calculates the length of the stored string literal.
Return value: Length of the stored string literal

13. size_t string::max_size () const
Calculates the size of the defined memory area.
Return value: Size of the defined area

14. void string::resize (size_t n, char c)
Changes the string literal length to n that can be stored.
If n<=size(), replaces the string literal with the original string literal with length n.
If n>size(), replaces the string literal with a string literal that has c added to the end so that the
length equal to n.
The length must be n<=max_size.
If n>max_size(), the string literal length is assumed n=max_size().

608

15. void string::resize (size_t n)
Changes the string literal length to n that can be stored.
If n<=size(), replaces the string literal with the original string literal with length n.
The length must be n<=max_size.

16. size_t string::capacity () const
Calculates the size of the defined memory area.
Return value: Size of the defined memory area

17. void string::reserve (size_t res_arg = 0)
Re-allocates the memory area.
After reserve(), capacity() will be equal to or larger than the reserve() parameter.
When memory area is re-allocated, all references, pointers, and iterator that references the
elements of the numeric literal (number sequence, series) become invalid.

18. void string::clear ()

Clears the stored string literal.

19. bool string::empty () const

Checks whether the stored string literal length is 0.
Return value: If the length of the stored string literal is 0: true
 If the length of the stored string literal is not 0: false

20. const char& string::operator[] (size_t pos) const
char& string::operator[] (size_t pos)
const char& string::at(size_t pos) const
char& string::at (size_t pos)
References s_ptr[pos].
Return value: If n< s_len: s_ptr [pos]
 If n>= s_len: ’\0’

21. string& string::operator+= (const string& str)
Adds the string literal stored by str.
Return value: *this

22. string& string::operator+= (const char* str)
Creates a string object from str and adds the string literal to the object.
Return value: *this

609

23. string& string::operator+=(char c)
Creates a string object from c and adds the string literal to the object.
Return value: *this

24. string& string::append (const string& str)
string& string::append(const char* str)
Adds str string literal to the object.
Return value: *this

25. string& string::append(const string& str, size_t pos, size_t n)
Adds n number of characters of the str string literal to the object position pos.
Return value: *this

26. string& string::append(const char* str, size_t n)
Adds n number of characters of the str string literal.
Return value: *this

27. string& string::append(size_t n, char c)
Adds n number of characters c.
Return value: *this

28. string& string::assign (const string& str)
string& string::assign(const char* str)
Assigns str string literal.
Return value: *this

29. string& string::assign(const string& str, size_t pos, size_t n)
Assigns n number of characters of str string literal to position pos.
Return value: *this

30. string& string::assign (const char* str, size_t n)
Assigns n number of characters of string literal str.
Return value: *this

610

31. string& string::assign (size_t n, char c)
Assigns n number of characters c.
Return value: *this

32. string& string::insert (size_t pos1, const string& str)
Inserts str string literal to position pos1.
Return value: *this

33. string& string::insert(size_t pos1, const string& str, size_t pos2, size_t n)
Inserts n number of characters to position pos1 from str string literal position pos2.
Return value: *this

34. string& string::insert(size_t pos, const char* str, size_t n)
Inserts n number of characters of str string literal to position pos.
Return value: *this

35. string& string::insert(size_t pos, const char* str)
Inserts string literal str to position pos.
Return value: *this

36. string& string::insert (size_t pos, size_t n, char c)

Inserts a string literal of n number of characters c to position pos.
Return value: *this

37. string::iterator string::insert(iterator p, char c=char())
Inserts character c at the head of the string literal specified by p.
Return value: *this

38. void string::insert (iterator p, size_t n, char c)
Inserts n number of characters c before the characters specified by p.
Return value: *this

39. string& string::erase (size_t pos=0, size_t n=npos)
Deletes n number of characters from position pos.
Return value: *this

611

40. iterator string::erase (iterator position)
Deletes the characters referenced by position.
Return value: If an iterator exists after the delete elements: The next iterator of deleted
 elements
 If an iterator does not exist after the deleted elements: end()

41. iterator string::erase(iterator first, iterator last)
Deletes the characters in range [first, last].
Return value: If an iterator exists after last: Iterator after last
 If an iterator does not exists after last: \0

42. string& string::replace (size_t pos1, size_t n1, const string& str)
string& string::replace(size_t pos1, size_t n1, const char* str)
Replaces string literal of n1 characters from position pos1 with the str string literal.
Return value: *this

43. string& string::replace(size_t pos, size_t n1, const string& str, size_t pos2, size_t n2)
Replaces string literal of n1 characters from position pos1 with string literal of n2 characters
from str position pos2.
Return value: *this

44. string& string::replace(size_t pos, size_t n1, const char* str, size_t n2)
Replaces string literal of n1 characters from position pos with the str string literal of n2
characters
Return value: *this

45. string& string::replace(size_t pos, size_t n1, size_t n2, char c)
Replaces string literal of n1 characters from position pos with n2 characters c.
Return value: *this

46. string& string::replace(iterator i1, iterator i2, const string& str)
string& string::replace(iterator i1, iterator i2, const char* str)
Replaces string literal i1 to i2 with the str string literal.
Return value: *this

47. string& string::replace(iterator i1, iterator i2, const char* str, size_t n)
Replaces string literal i1 to i2 with n characters of str string literal
Return value: *this

612

48. string& string::replace (iterator i1, iterator i2, size_t n, char c)
Replaces characters from position i1 to i2 with n number of characters c.
Return value: *this

49. size_t string::copy (char* str, size_t n, size_t pos=0) const
Copies n characters of string literal str to position pos.
Return value: rlen

50. void string::swap (string& str)
Swaps with str string literal.

51. const char* string::c_str () const
const char* string::data () const
References the pointer to the area where the string literal is stored.
Return value: s_ptr

52. size_t string::find(const string& str, size_t pos=0) const
size_t string::find (const char* str, size_t pos=0) const
Finds the position where the string literal same as the str string literal first appears after
position pos.
Return value: Offset of string literal

53. size_t string::find(const char* str, size_t pos, size_t n) const
Finds the position where the string literal same as n characters of str first appears after position
pos.
Return value: Offset of string literal

54. size_t string::find (char c, size_t pos=0) const
Finds the position where character c first appears after position pos.
Return value: Offset of string literal

55. size_t string::rfind (const string& str, size_t pos=npos) const
size_t string::rfind(char *str, size_t pos=npos) const
Finds the position where the string literal same as the str string literal appears most recently
before position pos.
Return value: Offset of string literal

613

56. size_t string::rfind(const char* str,size_t pos,size_t n) const
Finds the position where the string literal same as n characters of str appears most recently
before position pos.
Return value: Offset of string literal

57. size_t string::rfind(char c,size_t pos=npos) const

Finds the position where character c appears most recently before position pos.
Return value: Offset of string literal

58. size_t string::find_first_of (const string& str, size_t pos=0) const
size_t string::find_first_of(const char* str, size_t pos=0) const
Finds the position where any character included in the string literal str first appears after
position pos.
Return value: Offset of string literal

59. size_t string::find_first_of(const char* str, size_t pos, size_t n) const
Finds the position where any character included in n characters of string literal str first appears
after position pos.
Return value: Offset of string literal

60. size_t string::find_first_of(char c, size_t pos=0) const
Finds the position where character c first appears after position pos.
Return value: Offset of string literal

61. size_t string::find_last_of (const string& str, size_t pos=npos) const
size_t string::find_last_of(const char* str, size_t pos=npos) const
Finds the position where any character included in the string literal str appears most recently
before position pos.
Return value: Offset of string literal

62. size_t string::find_last_of(const char* str, size_t pos, size_t n) const
Finds the position where any character included in n characters of string literal str appears
most recently before position pos.
Return value: Offset of string literal

63. size_t string::find_last_of(char c, size_t pos=npos) const
Finds the position where character c appears most recently before position pos.
Return value: Offset of string literal

614

64. size_t string::find_first_not_of (const string& str, size_t pos=0) const
size_t string::find_first_not_of(const char* str, size_t pos=0) const
Finds the position where a character different from any character included in the str first
appears after position pos.
Return value: Offset of string literal

65. size_t string::find_first_not_of(const char* str, size_t pos, size_t n) const
Finds the position where a character different from any character from the start of str for n
characters first appears after position pos.
Return value: Offset of string literal

66. size_t string::find_first_not_of (char c, size_t pos=0) const
Finds the position where a character different from character c first appears after position pos
Return value: Offset of string literal

67. size_t string::find_last_not_of (const string& str, size_t pos=npos) const
size_t string::find_last_not_of(const char* str, size_t pos=npos) const
Finds the position where a character different from any character included in the str appears
most recently before position pos.
Return value: Offset of string literal

68. size_t string::find_last_not_of(const char* str, size_t pos, size_t n) const
Finds the position where a character different from any character from the start of str to n
characters appears most recently before position pos.
Return value: Offset of string literal

69. size_t string::find_last_not_of(char c, size_t pos=npos) const
Finds the location where a character different from character c appears most recently before
position pos.
Return value: Offset of string literal

70. string string::substr (size_t pos=0, size_t n=npos) const
Creates an object with a string literal range [pos,n] for the stored string literal.
Return value: Object address with string literal range [pos,n]

615

71. int string::compare (const string& str) const
Compares a string literal with str string literal.
Return value: If the string literals are the same: 0
 If the string literals are different: 1 when this->s_len>str.s_len,
 -1 when this->s_len < str.s_len

72. int string::compare (size_t pos1, size_t n1, const string& str) const
Compares a string literal of n1 characters from position pos1 with str.
Return value: If the string literals are the same: 0
 If the string literals are different: 1 when this->s_len>str.s_len,
 -1 when this->s_len < str.s_len

73. int string::compare(size_t pos1, size_t n1, const string& str, size_t pos2, size_t n2) const
Compares a string literal of n1 characters from position pos1 with the string literal of n2
characters from str position pos2.
Return value: If the string literals are the same: 0
 If the string literals are different: 1 when this->s_len>str.s_len,
 -1 when this->s_len < str.s_len

74. int string::compare(const char* str) const
Compares with str.
Return value: If the string literals are the same: 0
 If the string literals are different: 1 when this->s_len>str.s_len,
 -1 when this->s_len < str.s_len

75. int string::compare(size_t pos1, size_t n1, const char* str, size_t n2=npos) const
Compares a string literal of n1 characters from position pos1 with sn2 characters of str.
Return value: If the string literals are the same: 0
 If the string literals are different: 1 when this->s_len>str.s_len,
 -1 when this->s_len < str.s_len

616

(b) string Class Manipulators

Type Definition Name Description

string operator +(
 const string& lhs,
 const string& rhs)

string operator +(const char* lhs, const string& rhs)

string operator +(char lhs, const string& rhs)

string operator +(const string& lhs, const char* rhs)

string operator +(const string& lhs, char rhs)

Adds the string literal (or character)
of rhs to the string literal (or
character) of lhs, creates an object
and stores the string literal in the
object

bool operator ==(
 const string& lhs,
 const string& rhs)

bool operator ==(const char* lhs, const string& rhs)

bool operator ==(const string& lhs, const char* rhs)

Compares the string literal of lhs
with string literal of rhs

bool operator !=(const string& lhs, const string& rhs)

bool operator !=(const char* lhs, const string& rhs)

bool operator !=(const string& lhs, const char* rhs)

Compares the string literal of lhs
with string literal of rhs

bool operator <(const string& lhs, const string& rhs)

bool operator <(const char* lhs, const string& rhs)

bool operator <(const string& lhs, const char* rhs)

Compares the string literal length
of lhs with the string literal length of
rhs

bool operator >(const string& lhs, const string& rhs)

bool operator >(const char* lhs, const string& rhs)

Function

bool operator >(const string& lhs, const char* rhs)

Compares the string literal length
of lhs with the string literal length of
rhs

617

Type Definition Name Description

bool operator <=(
 const string& lhs,
 const string& rhs)

bool operator <=(const char* lhs, const string& rhs)

bool operator <=(const string& lhs, const char* rhs)

Compares the string literal length
of lhs with the string literal length of
rhs

bool operator >=(const string& lhs, const string& rhs)

bool operator >=(const char* lhs, const string& rhs)

bool operator >=(const string& lhs, const char* rhs)

Compares the string literal length
of lhs with the string literal stored in
rhs

void swap(string& lhs, string& rhs) Swaps the string literal of lhs with
the string literal of rhs

istream& operator >> (istream& is,string& str) Extracts a string literal in str

ostream& operator << (
 ostream& os,
 const string& str)

Inserts a string literal

istream& getline(
 istream& is,
 string& str,
 char delim)

Extracts a string literal from is and
adds it to str. If ‘delim’ is detected,
terminates input.

Function

istream& getline (istream& is, string& str) Extracts a string literal from is and
adds it to str. If a new-line
character is detected, terminates
input.

618

1. string operator+(const string& lhs, const string& rhs)
string operator+(const char* lhs, const string& rhs)
string operator+(char lhs, const string& rhs)
string operator+(const string& lhs, const char* rhs)
string operator+(const string& lhs, char rhs)
Links the string literal (characters) of lhs with the strings literal (characters) of rhs, creates an
object and stores the string literal in the object.
Return value: Object where the linked string literal is stored

2. bool operator= =(const string& lhs, const string& rhs)
bool operator= =(const char* lhs, const string& rhs)
bool operator= =(const string& lhs, const char* rhs)
Compares the string literal of lhs with the string literal of rhs.
Return value: If the string literals are the same: true
 If the string literals are different: false

3. bool operator!=(const string& lhs, const string& rhs)
bool operator!=(const char* lhs, const string& rhs)
bool operator!=(const string& lhs, const char* rhs)
Compares the string literal of lhs with the string literal of rhs.
Return value: If the string literals are the same: true
 If the string literals are different: false

4. bool operator<(const string& lhs, const string& rhs)
bool operator<(const char* lhs, const string& rhs)
bool operator<(const string& lhs, const char* rhs)
Compares the string literal length of lhs with the string literal length of rhs.
Return value: If lhs.s_len < rhs.s_len: true
 If lhs.s_len >= rhs.s_len: false

5. bool operator>(const string& lhs, const string& rhs)
bool operator>(const char* lhs, const string& rhs)
bool operator>(const string& lhs, const char* rhs)
Compares the string literal length of lhs with the string literal length of rhs.
Return value: If lhs.s_len > rhs.s_len: true
 If lhs.s_len <= rhs.s_len: false

619

6. bool operator<=(const string& lhs, const string& rhs)
bool operator<=(const char* lhs, const string& rhs)
bool operator<=(const string& lhs, const char* rhs)
Compares the string literal length of lhs with the string literal length of rhs.
Return value: If lhs.s_len <= rhs.s_len: true
 If lhs.s_len > rhs.s_len: false

7. bool operator>=(const string& lhs, const string& rhs)
bool operator>=(const char* lhs, const string& rhs)
bool operator>=(const string& lhs, const char* rhs)
Compares the string literal length of lhs with the string literal stored in rhs.
Return value: If lhs.s_len >= rhs.s_len: true
 If lhs.s_len < rhs.s_len: false

8. void swap(string& lhs,string& rhs)
Swaps the string literal of lhs with the string literal of rhs.

9. istream& operator>> (istream& is,string& str)

Extracts a string literal in str.
Return value: is

10. ostream& operator<< ostream& os, const string& str)
Inserts a string literal.
Return value: os

11. istream& getline(istream& is, string& str, char delim)
istream& getline(istream& is, string& str)
Extracts a string literal from is and adds it to str.
If delim is detected, terminates input.
Return value: is

12. istream& getline (istream& is, string& str)
Extracts a string literal from is and adds it to str.
If a new-line character is detected, terminates input.
Return value: is

620

10.3.3 Reentrant Library

Table 10.42 lists reentrant libraries. The functions that are marked with ∆ in the table set the
errno variables. Therefore, the functions can be executed in reentrant unless the program refers to
errno.

If you want more reentrant capability using a semaphore, specify the reent option to the standard
library generator. The library then generated is reentrant except for the rand and srand functions.
Also note that the behavior of subsequent calls of the strtok function using the same string is not
guaranteed. Refer to section, 9.2.2 (7) (b) Specifications of low-level interface routines, and
section, 9.2.2 (7) (d) Example of low-level interface routines for reentrant library

Table 10.42 Reentrant Library List

No. Standard Include File Function Name Reentrant

1 stddef.h 1 offsetof O

2 assert.h 2 assert X

3 isalnum O

4 isalpha O

5 iscntrl O

6 isdigit O

7 isgraph O

8 islower O

9 isprint O

10 ispunct O

11 isspace O

12 isupper O

13 isxdigit O

14 tolower O

3 ctype.h

15 toupper O

16 acos ∆

17 asin ∆

4 math.h

18 atan ∆

621

Table 10.42 Reentrant Library List (cont)

No. Standard Include File Function Name Reentrant

19 atan2 ∆

20 cos ∆

21 sin ∆

22 tan ∆

23 cosh ∆

24 sinh ∆

25 tanh ∆

26 exp ∆

27 frexp ∆

28 ldexp ∆

31 modf ∆

32 pow ∆

33 sqrt ∆

34 ceil ∆

35 fabs ∆

36 floor ∆

4 math.h(cont)

37 fmod ∆

38 acosf ∆

39 asinf ∆

40 atanf ∆

41 atan2f ∆

42 cosf ∆

43 sinf ∆

44 tanf ∆

45 coshf ∆

46 sinhf ∆

47 tanhf ∆

48 expf ∆

49 frexpf ∆

50 ldexpf ∆

5 mathf.h

51 logf ∆

622

Table 10.42 Reentrant Library List (cont)

No. Standard Include File Function Name Reentrant

52 log10f ∆

53 modff ∆

54 powf ∆

55 sqrtf ∆

56 ceilf ∆

57 fabsf ∆

58 floorf ∆

5 mathf.h(cont)

59 fmodf ∆

60 setjmp O 6 setjmp.h

61 longjmp O

62 va_start O

63 va_arg O

7 stdarg.h

64 va_end O

65 fclose X

66 fflush X

67 fopen X

68 freopen X

69 setbuf X

70 setvbuf X

71 fprintf X

72 fscanf X

73 printf X

74 scanf X

75 sprintf ∆

76 sscanf ∆

77 vfprintf X

78 vprintf X

79 vsprintf ∆

80 fgetc X

81 fgets X

82 fputc X

8 stdio.h

83 fputs X

623

Table 10.42 Reentrant Library List (cont)

No. Standard Include File Function Name Reentrant

84 getc X

85 getchar X

86 gets X

87 putc X

88 putchar X

89 puts X

90 ungetc X

91 fread X

92 fwrite X

93 fseek X

94 ftell X

95 rewind X

96 clearerr X

97 feof X

98 ferror X

8 stdio.h (cont)

99 perror X

100 atof ∆

101 atoi ∆

102 atol ∆

103 strtod ∆

104 strtol ∆

105 rand X

106 srand X

107 calloc X

108 free X

109 malloc X

110 realloc X

111 bsearch O

112 qsort O

113 abs O

114 div ∆

115 labs O

9 stdlib.h

116 ldiv ∆

Table 10.42 Reentrant Library List (cont)

624

No. Standard Include File Function Name Reentrant

117 memcpy O

118 strcpy O

119 strncpy O

120 strcat O

121 strncat O

122 memcmp O

123 strcmp O

124 strncmp O

125 memchr O

126 strchr O

127 strcspn O

128 strpbrk O

129 strrchr O

130 strspn O

131 strstr O

132 strtok X

133 memset O

134 strerror O

135 strlen O

10 string.h

136 memmove O

Reentrant column: O: Reentrant
 X: Non-reentrant
 ∆: _errno is set.

625

10.3.4 Unsupported Libraries

Table 10.43 lists the libraries not supported by this compiler.

Table 10.43 Unsupported Libraries

No. Standard Include File Reentrant

1 locale.h* setlocale, localeconv

2 signal.h* signal, raise

3 stdio.h remove, rename, tmpfile, tmpnam, fgetpos, fsetpos

4 stdlib.h strtoul, abort, atexit, exit, getenv, system, mblen, mbtowc, wctomb,
mbstowcs, wcstombs

5 string.h strcoll, strxfrm

6 time.h clock, difftime, mktime, time, asctime, ctime, gmtime, localtime,
strftime

Note: The header file is not supported.

626

627

Section 11 Assembly Specifications

11.1 Program Elements

11.1.1 Source Statements

(1) Source Statement Structure

The following shows the structure of a source statement.

 [<label>] [∆<operation>[∆<operand (s)>]] [<comment>]

Example:

;This is an example of a source statement.

Label

Operation
Operands

Comment

@R0,R1MOV.LLABEL1:

(a) Label

A symbol or a local symbol is written as a tag attached to a source statement.
A symbol is a name defined by the programmer.

(b) Operation

The mnemonic of an executable instruction, an assembler directive, or a preprocessor
directive is written as the operation.
Executable instructions are microprocessor instructions.
Assembler directives are instructions that give directions to the assembler.
Preprocessor directives are used for file inclusion, conditional assembly, structured
assembly syntax, and macro functions.

628

(c) Operand

The object(s) of the operation's execution are written as the operand.
The number of operands and their types are determined by the operation. There are also
operations which do not require any operands.

(d) Comment

Notes or explanations that make the program easier to understand are written as the
comment.

(2) Coding of Source Statements

Source statements are written using ASCII characters. Strings literal and comments can
include Japanese characters (shift JIS code or EUC code) or LATIN1 code character.
In principle, a single statement should be written on a single line. The maximum length of a
line is 8,192 characters.

(a) Coding of Label

The label is written as follows:

• Written starting in the first column,

Or:

• Written with a colon (:) appended to the end of the label.

Examples:

LABEL1 ; This label is written starting in the first column.

 LABEL2: ; This label is terminated with a colon.

--

 LABEL3 ; This label is regarded as an error by the assembler,

 ; since it is neither written starting in the first column

 ; nor terminated with a colon.

629

(b) Coding of Operation

The operation is written as follows:

 When there is no label:

Written starting in the second or later column.

 When there is a label:

Written after the label, separated by one or more spaces or tabs.

Example:

 ADD R0,R1 ; An example with no label.

LABEL1: ADD R1,R2 ; An example with a label.

(c) Coding of Operand

The operand is written following the operation field, separated by one or more spaces or
tabs.

Example:

 ADD R0,R1 ; The ADD instruction takes two operands.

 SHAL R1 ; The SHAL instruction takes one operand.

(d) Coding of Comment

The comment is written following a semicolon (;).
The assembler regards all characters from the semicolon to the end of the line as the
comment.

Example:

 ADD R0,R1 ; Adds R0 to R1.

630

(3) Coding of Source Statements across Multiple Lines

A single source statement can be written across several lines in the following situations:

 When the source statement is too long as a single statement.

 When it is desirable to attach a comment to each operand.

Write source statements across multiple lines using the following procedure.

(a) Insert a new line after a comma that separates operands.

(b) Insert a plus sign (+) in the first column of the new line.

(c) Continue writing the source statement following the plus sign.

Spaces and tabs can be inserted following the plus sign. A comment can be written at the end
of each line.

Example:

 .DATA.L H'FFFF0000,

+ H'FF00FF00,

+ H'FFFFFFFF

; In this example, a single source statement is written across three lines.

A comment can be attached at the end of each line.

Example:

 .DATA.L H'FFFF0000, ; Initial value 1.

+ H'FF00FF00, ; Initial value 2.

+ H'FFFFFFFF ; Initial value 3.

; In this example, a comment is attached to each operand.

631

11.1.2 Reserved Words

Reserved words are names that the assembler reserves as symbols with special meanings.
Register names, operators, and the location counter are used as reserved words. Register names are
different depending on the target CPU. Refer to the programming manual of the target CPU, for
details.
Reserved words must not be used as user symbols.

• Register names

ER0 to ER7, E0 to E7, R0 to R7, R0H to R7H, R0L to R7L, SP*, CCR, EXR, MACH, MACL,
PC, SBR, VBR

• Operators

STARTOF, SIZEOF, HIGH, LOW, HWORD, LWORD

• Location counter

$

Note: Either ER7 (for the H8SX, H8S/2600, H8S/2000, and H8/300H) or R7 (for the H8/300,

and H8/300L) and SP indicate the same register.

11.1.3 Symbols

(1) Functions of Symbols

Symbols are names defined by the programmer, and perform the following functions.

 Address symbols: Express data storage or branch destination addresses.

 Constant symbols: Express constants.

 Bit data names: Express 1-bit data on memory for bit manipulation instructions.

 Aliases of register names: Express general registers and floating-point registers.

 Section names: Express section names.

632

The following shows examples of symbol usage.

Examples:

 ∼

 BRA SUB1 ;BRA is a branch instruction.

 ;SUB1 is the address symbol of the destination.

 ∼

SUB1:

--
 ∼

MAX: .EQU 100 ;.EQU is an assembler directive that sets a value to a symbol.

 MOV.B #MAX,R0 ; MAX expresses the constant value 100.

 ∼

--
 ∼

BYSM: .BEQU 1,SYM ;.BEQU is an assembler directive that sets a value to a bit data.

 BLD BSYM ;BSYM indicates bit 1 of SYM

SYM: .RES.B 1

 ∼

--

 ∼

MIN: .REG R0 ;.REG is an assembler directive that defines a register alias.

 MOV.B #100,MIN ;MIN is an alias for R0.

 ∼

--
 ∼

 .SECTION CD,CODE,ALIGN=2

 ;.SECTION is an assembler directive that declares a section.

 ;CD is the name of the current section.

 ∼

633

(2) Naming Symbols

(a) Available Characters

The following ASCII characters can be used.

• Alphabetical uppercase and lowercase letters (A to Z, a to z)

• Numbers (0 to 9)

• Underscore (_)

• Dollar sign ($)

The assembler distinguishes uppercase letters from lowercase letters in symbols.

(b) First Character in a Symbol

The first character in a symbol must be one of the following.

• Alphabetical uppercase and lowercase letters (A to Z, a to z)

• Underscore (_)

• Dollar sign ($)

Note: The dollar sign character used alone is a reserved word that expresses the location counter.

(c) Maximum Length of a Symbol

Not limited.

(d) Names that Cannot Be Used as Symbols

(i) Reserved words
Register mnemonic (ER0 to ER7, E0 to E7, R0 to R7, R0H to R7H, R0L to R7L, SP,
CCR, EXR, MACH, MACL, PC, SBR, VBR)
Arithmetic operator (STARTOF, SIZEOF, HIGH, LOW, HWORD, LWORD)
Location counter ($)

(ii) Assembler generation symbols
Internal symbol _$$mmmmm (m: a number from 0 to F)
Structured assembly symbol _$Innnnn, _$Snnnnn, _$Fnnnnn, _$Wnnnnn, _$Rnnnnn
(n: a number from 0 to 9)

Note: Internal symbols are necessary for assembler internal processing. Internal symbols are not

output to assemble listings or object modules.

(e) Defining and Referencing Symbols

To define a symbol, it must be entered as a label. To reference a symbol, it must be entered
as an operand. Symbols that are entered as operands for .SECTION or .MACRO directives,
however, constitute an exception. To reference a symbol (macro name) that has been
defined by a .MACRO directive, the symbol must be entered as an operation (macro call).
A symbol may be referenced before it has been defined. We reference to such as reference
as an forward reference. Such references can usually be used, but in some cases they are
prohibited.

634

When a program consists of multiple source files, symbols may be referenced from more
than one files. The way a symbol defined in one file is referenced to from another file is
called external definition. To reference a symbol that is defined in another file is called
external reference. External definitions can be declared by .EXPORT, .GLOBAL,
and .BEXPORT directives. External references can be defined by .IMPORT, .GLOBAL,
and BIMPORT directives. Be careful with the use of forward and external references,
because in some cases, external references such as forward references are prohibited.

635

11.1.4 Constants

(1) Integer Constants

Integer constants are expressed with a prefix that indicates the radix.
The radix indicator prefix is a notation that indicates the radix of the constant.

 Binary numbers The radix indicator “B'” plus a binary constant.

 Octal numbers The radix indicator “Q'” plus an octal constant.

 Decimal numbers The radix indicator “D'” plus a decimal constant.

 Hexadecimal numbers The radix indicator “H'” plus a hexadecimal constant.

The assembler does not distinguish uppercase letters from lowercase letters in the radix
indicator.
The radix indicator and the constant value must be written with no intervening space.

The radix indicator can be omitted. Integer constants with no radix indicator are normally
decimal constants, although the radix for such constants can be changed with the .RADIX
assembler directive.

Example:

.DATA.B B'10001000 ;

.DATA.B Q'210 ;These source statements express the same

.DATA.B D'136 ;numerical value.

.DATA.B H'88 ;

Note: "Q" is used instead of "O" to avoid confusion with the digit 0.

(2) Character Constants

Character constants are considered to be constants that represent ASCII codes.
Character constants are written by enclosing up to four ASCII characters in double quotation
marks.
The following ASCII characters can be used in character constants.

ASCII code

H'09 (tab)
H'20 (space) to H'7E (tilde)

636

In addition, Japanese characters (shift JIS code or EUC code) and LATIN1 code character can
be used. Use two double quotation marks in succession to indicate a single double quotation
mark in a character constant. When using Japanese characters in shift JIS code or EUC code,
be sure to specify the sjis or euc command line option, respectively. When using Latin1 code
character, be sure to specify the latin1 command line option. Note that the shift JIS code, EUC
code, and LATIN1 code character cannot be used together in one source program.

Example 1:

.DATA.L "ABC" ;This is the same as .DATA.L H'00414243.

.DATA.W "AB" ;This is the same as .DATA.W H'4142.

.DATA.B "A" ;This is the same as .DATA.B H'41.

 ;The ASCII code for A is: H'41

 ;The ASCII code for B is: H'42

 ;The ASCII code for C is: H'43

Example 2:

.DATA.B """" ;This is a character constant consisting of a single

 ;double quotation mark.

637

11.1.5 Location Counter

The location counter expresses the address (location) in memory where the corresponding object
code (the result of converting executable instructions and data into code the microprocessor can
understand) is stored.
The value of the location counter is automatically adjusted according to the object code output.
The value of the location counter can be changed intentionally using assembler directives.

Examples:

.ORG

.DATA.W

.DATA.W

.DATA.W

∼

H'00001000.

H'FF
H'F0

H'10

;This assembler directive sets the location counter to H'00001000

;The object code generated by this assembler directive has
;a length of 2 bytes.

;The location counter changes to H'00001002.

;The object code generated by this assembler directive has
;a length of 2 bytes.

;The location counter changes to H'00001004.

;The object code generated by this assembler directive has
;a length of 2 bytes.

;The location counter changes to H'00001006.

∼

;.ORG is an assembler directive that sets the value of the
location ;counter.

;.ALIGN is an assembler directive that adjusts the value of
the ;location

;.DATA is an assembler directive that reserves data in
memory ;counter.

;.W is a specifier that indicates that data is handled in word
(2 ;bytes) size.

;.L is a specifier that indicates that data is handled in longword
(4 ;bytes) size.

The location counter is referenced using the dollar sign ($).

638

Examples:

LABEL1:

.EQU $

;This assembler directive sets the value of the

 ;location counter to the symbol LABEL1.

 ;.EQU is an assembler directive that sets the value to a symbol.

11.1.6 Expressions

Expressions are combinations of constants, symbols, and operators that derive a value, and are
used as the operands of executable instructions and assembler directives.

(1) Elements of Expression

An expression consists of terms, operators, and parentheses.

(a) Terms

The terms are the followings:

• A constant

• The location counter ($)

• A symbol (excluding aliases of the register name)

• The result of a calculation specified by a combination of the above terms and an
operator.

An individual term is also a kind of expression.

(b) Operators

Table 11.1 shows the operators supported by the assembler.

639

Table 11.1 Operators

Operator Type Operator Operation Coding

Arithmetic operations + Unary plus + <term>

 – Unary minus – <term>

 + Addition <term1> + <term2>

 – Subtraction <term1> – <term2>

 * Multiplication <term1> * <term2>

 / Division <term1> / <term2>

Logic operations ~ Unary negation ~ <term>

 & Logical AND <term1> & <term2>

 | Logical OR <term1> | <term2>

 ~ Exclusive OR <term1> ~ <term2>

Shift operations << Arithmetic left shift <term 1> << <term 2>

 >> Arithmetic right shift <term 1> >> <term 2>

Section set operations* STARTOF Determines the starting
address of a section set.

STARTOF <section name>

 SIZEOF Determines the size of a
section set in bytes.

SIZEOF <section name>

Extraction operations HIGH Extracts the high-order byte HIGH <term>

 LOW Extracts the low-order byte LOW <term>

 HWORD Extracts the high-order word HWORD <term>

 LWORD Extracts the low-order word LWORD <term>

Note: HWORD and LWORD cannot be used for the H8/300 or H8/300L.

(c) Parentheses

Parentheses modify the operation precedence.

640

(d) Operation Precedence

When multiple operations appear in a single expression, the order in which the processing is
performed is determined by the operator precedence and by the use of parentheses. The
assembler processes operations according to the following rules.

 Rule 1

Processing starts from operations enclosed in parentheses.
When there are nested parentheses, processing starts with the operations surrounded by the
innermost parentheses.

 Rule 2

Processing starts with the operator with the highest precedence.

 Rule 3

Processing proceeds in the direction of the operator association rule when operators have
the same precedence.

Table 11.2 shows the operator precedence and the association rule.

Table 11.2 Operator Precedence and Association Rules

Precedence Operator Association Rule

1

2

3

4

5

6

 (high)

 (low)

+ – ~ STARTOF SIZEOF
HIGH LOW HWORD LWORD*

* /

+ –

<< >>

&

| ~

Operators are processed from right to left.

Operators are processed from left to right.

Operators are processed from left to right.

Operators are processed from left to right.

Operators are processed from left to right.

Operators are processed from left to right.

Note: The operators of precedence 1 (highest precedence) are for unary operation.

641

The figures below show examples of expressions.

Example 1:

 1 + (2 - (3 + (4 - 5)))
(a)

(b)

(c)

(d)
The assembler calculates this expression in the order (a) to (d).

The result of (a) is –1
The result of (b) is 2
The result of (c) is 0
The result of (d) is 1

The final result of this calculation is 1.

Example 2:

– H'FFFFFFF1 + H'000000F0 *
(a) (b) (d)

(c)

(e)

H'00000010 | H'000000F0 & H'0000FFFF

The assembler calculates this expression in the order (a) to (e).

The result of (a) is H'0000000F
The result of (b) is H'00000F00
The result of (c) is H'00000F0F
The result of (d) is H'000000F0
The result of (e) is H'00000FFF

The final result of this calculation is H'00000FFF.

642

Example 3:

- - H'0000000F
(a)

(b)

(c)

(d)

~ ~

The assembler calculates this expression in the order (a) to (d).

The result of (a) is H'FFFFFFF0
The result of (b) is H'00000010
The result of (c) is H'FFFFFFEF
The result of (d) is H'00000011

The final result of this calculation is H'00000011.

(2) Detailed Description on Operation

(a) STARTOF Operation

Determines the start address of a section set after the specified sections are linked by the
optimizing linkage editor.

(b) SIZEOF Operation

Determines the size of a section set after the specified sections are linked by the optimizing
linkage editor.

643

Example:

 .CPU 2600A

 .SECTION INIT_RAM,DATA,ALIGN=2

 .RES.B H'100

;

 .SECTION INIT_DATA,DATA,ALIGN=2

INIT_BGN .DATA.L STARTOF INIT_RAM ; (1)

INIT_END .DATA.L STARTOF INIT_RAM + SIZEOF INIT_RA ; (2)

;

;

 .SECTION MAIN,CODE,ALIGN=2

INITIAL:

 MOV.L @INIT_BGN,ER1

 MOV.L @INIT_END,ER2 Initializes the data area in section

 MOV.W #0,R3 INIT_RAM to 0.

LOOP:

 CMP.L ER1,ER2

 BEQ END

 MOV.W R3,@ER1

 ADDS.L #1,ER1

 BRA LOOP

END:

 SLEEP

 .END

(1) Determines the start address of section INIT_RAM.

(2) Determines the end address of section INIT_RAM.

644

(c) HIGH Operation

Extracts the high-order byte from the low-order two bytes of a 4-byte value.

H'00 H'00 H'00 H'xx
31 24 23 16 15 8 7 0

H'xx
31 24 23 16 15 8 7 0

After operationBefore operation

 Example:

 LABEL .EQU H'00007FFF

 MOV.W #HIGH LABEL,R0 ; Assigns H’7F to R0.

(d) LOW Operation

Extracts the lowest-order one byte from a 4-byte value.

H'00 H'00 H'00 H'xx
31 24 23 16 15 8 7 0

H'xx
31 24 23 16 15 8 7 0

After operationBefore operation

(e) HWORD Operation

Extracts the high-order two bytes from a 4-byte value.

H'0000 H'xxxx
31 16 15 0

H'xxxx
31 16 15 0

After operationBefore operation

(f) LWORD Operation

Extracts the low-order two bytes from a 4-byte value.

H'0000 H'xxxx
31 16 15 0

H'xxxx
31 16 15 0

After operationBefore operation

645

(3) Notes on Expressions

(a) Internal Processing

The assembler regards expression values as the signed 32-bit signed values regardless of
the operand size (8, 16, or 32 bits).

Accordingly, the following example causes an error:

 Example:

 MOV.B #~H’80:8,R0L

The assembler regards H’80 as H’00000080, so the value of ~H’80 is H’FFFFFF7F. Since
H’FFFFFF7F is outside the 8-bit value range, it causes an error. To avoid this error, see
the following example:

 Example:

 MOV.B #H’7F:8,R0L ; The result value of the operation is written directly.

 MOV.B #~H’80&H’FF:8,R0L ; Low-order bits are validated by using AND

 MOV.B #LOW ~H’80:8,R0L ; Lower 8 bits are validated by extracting the low-order bytes

646

(b) Logic Operators

The logic operators cannot take terms that contain relative values or externally referenced
symbols as their operands.

(c) Arithmetic Operators

Where values must be determined at assembly, the multiplication and division operators
cannot take terms that contain relative values or externally referenced symbols as their
operands.

Also, a divisor of 0 cannot be used with the division operator.

Example:

.IMPORT SYM

.DATA SYM/10 ; Correctly assembled.

.ORG SYM/10 ; An error will occur.

647

11.1.7 String Literal

A string literal is sequences of character data.
The following ASCII characters can be used in strings literal.

ASCII code

H'09 (tab)
H'20 (space) to H'7E (tilde)

A single character in a string literal has as its value the ASCII code for that character and is
represented as a byte sized data object. In addition, Japanese characters in shift JIS code or EUC
code, and LATIN1 code character can be used. When using Japanese characters in shift JIS code
or EUC code, be sure to specify the sjis or euc option, respectively. If not specified, Japanese
characters are handled as the Japanese code specified by the host computer. When using LATIN1
code character, be sure to specify the latin1 command line option.
Strings literal must be written enclosed in double quotation marks.
Use two double quotation marks in succession to indicate a single double quotation mark in a
string literal.

Examples:

 .SDATA “Hello!” ; This statement reserves the string literal data
; Hello!

 .SDATA “assembler” ; This statement reserves the string literal data
; assembler

 .SDATA “ “ “ Hello!” ” ” ; This statement reserves the string literal data
; “ Hello! ”

; .SDATA is an assembler directive that reserves string literal data in memory.

Note: The difference between character constants and strings literal is as follows.
Character constants are numeric values. They have a data size of either 1 byte, 2 bytes, or
4 bytes.
Strings literal cannot be handled as numeric values. A string literal has a data size between
1 byte and 255 bytes.

648

11.1.8 Local Label

(1) Local Label Functions

A local label is valid locally between address symbols. Since a local label does not conflict
with the other labels outside its scope, the user does not have to consider other label names. A
local label can be defined by writing in the label field in the same way as a normal address
symbol, and can be referenced by an operand.
An example of local label descriptions is shown below.

Note: A local label cannot be referenced during debugging.

A local label cannot be specified as any of the following items:

 Macro name

 Section name

 Object module name

 Label in .ASSIGNA, .ASSIGNC, .EQU, .BEQU, .ASSIGN, .REG, or .DEFINE

 Operand in .EXPORT, .IMPORT,.GLOBAL, .BEXPORT, or .BIMPORT

Example:

LABEL1: ; Local block 1 start

?0001: CMP.W R1,R2

 BEQ ?0002

 BRA ?0001

?0002:

LABEL2: ; Local block 2 start

?0001: CMP.W R1,R2

 BGE ?0002

 BRA ?0001

?0002:

LABEL3:

649

(2) Naming Local Labels

 First Character:

A local label is a string starting with a question mark (?).

 Usable Characters:

The following ASCII characters can be used in a local label, except for the first character:

• Alphabetical uppercase and lowercase letters (A to Z and a to z)

• Numbers (0 to 9)

• Underscore (_)

• Dollar sign ($)

The assembler distinguishes uppercase letters from lowercase ones in local labels.

 Maximum Length:

The length of local label characters is 2 to 16 characters. If 17 or more characters are
specified, the assembler will not recognize them as a local label.

(3) Scope of Local Labels

The scope of a local label is called a local block. Local blocks are separated by address
symbols, or by the .SECTION directives.
The local label defined within a local block can be referenced in that local block.
A local label belonging to a local block is interpreted as being unique even if its spelling is the
same as local labels in other local blocks; it does not cause an error.

Note: The address symbols defined by the .ASSIGNA, .ASSIGNC, .EQU, .BEQU, .ASSIGN,

or .REG directive are not interpreted as delimiters for the local block.

650

11.2 Executable Instructions

11.2.1 Overview of Executable Instructions

The executable instructions are the instructions of microprocessor. The microprocessor interprets
and executes the executable instructions in the object code stored in memory.

An executable instruction source statement has the following basic form.

[<symbol>:] <mnemonic>[.<operation size>] [<addressing mode>[,<addressing mode]] [;<comment>]

Label Operation Operand Comment

This section describes the mnemonic, operation size, and addressing mode.

(1) Mnemonic

The mnemonic expresses the executable instruction. Abbreviations that indicate the type of
processing are provided as mnemonics for microprocessor instructions.
The assembler does not distinguish uppercase and lowercase letters in mnemonics.

(2) Operation Size

The operation size is the unit for processing data. The operation sizes vary with the executable
instruction. The assembler does not distinguish uppercase and lowercase letters in the
operation size.

Specifier Data Size

B Byte (1 byte)

W Word (2 bytes)

L Longword (4 bytes)

(3) Addressing Mode

The addressing mode specifies the data area accessed, and the destination address. The
addressing modes vary with the executable instruction.

Table 11.3 lists the addressing modes.

651

Table 11.3 Addressing Modes

Addressing Mode Name Description

ERn, Rn, En, RnL, RnH Register direct The contents of the specified register.

@ERn, @Rn Register indirect A memory location. The value in (E)Rn gives the
start address of the memory accessed.

@ERn+, @Rn+,
@ERn–, @Rn–

Register indirect with
post-
increment/decrement

A memory location. The value in ERn (before being
incremented*1/decremented*2) gives the start
address of the memory accessed.
The microprocessor first uses the value in (E)Rn for
the memory reference, and increments/decrements
(E)Rn afterwards.

@–ERn, @–Rn,
@+ERn, @+Rn,

Register indirect with
pre-
decrement/increment

A memory location. The value in (E)Rn (after being
decremented*2/incremented*1) gives the start
address of the memory accessed.
The microprocessor first decrements/increments
(E)Rn, and then uses that value for the memory
reference.

@(disp,ERn),
@(disp,Rn)

Register indirect with
displacement*3

A memory location. The start address of the
memory access is given by the value of (E)Rn plus
the displacement (disp).
The value of (E)Rn is not changed.

@(disp,RnL.B),
@(disp,Rn,W),
@(disp,ERn.L)

Index register indirect
with displacement

A memory location. The start address of the
memory access is given by the value of
RnL.B/Rn.W/ERn.L plus the displacement (disp).
The value of (E)Rn is not changed.

@abs Absolute address A memory location. The start address of the
memory access is given by the specified absolute
address (abs).

#imm Immediate Indicates a constant.

Notes: 1. Increment
 The amount of the increment is 1 when the operation size is a byte, 2 when the

operation size is a word (2 bytes), and 4 when the operation size is a longword (4
bytes).

 2. Decrement
 The amount of the decrement is 1 when the operation size is a byte, 2 when the

operation size is a word, and 4 when the operation size is a longword.
 3. Displacement
 A displacement is the distance between two points. In this assembly language, the unit

of displacement values is in bytes.

652

Table 11.3 Addressing Modes (cont)

Addressing Mode Name Description

@@abs Memory indirect A memory location. The operand in memory is
specified, and its contents are used as the jump
address.

@@vec:7 Extended Memory
indirect

A memory location. The operand in memory is
specified, and its contents are used as the jump
address.

@(disp,PC) PC relative with
displacement

A memory location. The start address of the
memory access is given by the value of the PC
plus the displacement (disp).

@(RnL.B, PC),
@(Rn.W, PC),
@(ERn.L, PC)

PC relative with index
register

A memory location. The start address of the
memory access is given by the value of the PC
plus RnL.B/Rn.W/ERn.L.
The value of (E)Rn is not changed.

<CCR>, <EXR>,
<MACH>, <MACL>,
<SBR>, <VBR>

Control registers <CCR>: The internal state of CPU.
<EXR>: Trace bit and interrupt mask bits
<MACH>, <MACL>: MAC operation results
<SBR>: Short address base address
<VBR>: Vector base address

11.2.2 Notes on Executable Instructions

The operation size that can be specified vary with the mnemonic and the addressing mode
combination.

(1) H8SX Executable Instruction and Operation Size Combinations:

(a) Size of the executable instruction

Table 11.4 shows the H8SX allowable executable instruction and operation size combinations
when in the maximum mode, advanced mode, middle mode, or normal mode.

653

Table 11.4 H8SX Executable Instruction and Operation Size Combinations

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

ADD O O O B

ADDS × × O L

ADDX O O O B

AND O O O B

ANDC O × × B

BAND O × × B

Bcc - - - -*1

BCLR O × × B

BCLR/EQ O × × B

BCLR/NE O × × B

BFLD O × × B

BFST O × × B

BIAND O × × B

BILD O × × B

BIOR O × × B

BIST O × × B

BISTZ O × × B

BIXOR O × × B

BLD O × × B

BNOT O × × B

BOR O × × B

BRA/BC - - - -*1

BRA/BS - - - -*1

BRA/S - - - -*1

BSET O × × B

BSET/EQ O × × B

BSET/NE O × × B

BSR - - - -*1

BSR/BC - - - -*1

BSR/BS - - - -*1

Note: 1. Size cannot be specified.

654

Table 11.4 H8SX Executable Instruction and Operation Size Combinations (cont)

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

BST O × × B

BSTZ O × × B

BTST O × × B

BXOR O × × B

CLRMAC - - - -*1, *3

CMP O O O B

DAA O × × B

DAS O × × B

DEC O O O B

DIVS × O O W

DIVU × O O W

DIVXS O O × B

DIVXU O O × B

EEPMOV O O × B

EXTS × O O W

EXTU × O O W

INC O O O B

JMP - - - -*1

JSR - - - -*1

LDC O O O B/L *4

LDM × × O L

LDMAC × × O L*3

MAC - - - -*1, *3

Notes: 1. Size cannot be specified.
3. Valid when specified with a multiplier.
4. If the control register specified is CCR or EXR, B (byte size) or W (word size) can be

specified and the default is B.
If the control register specified is SBR or VBR, only L (long word size) can be specified.

655

Table 11.4 H8SX Executable Instruction and Operation Size Combinations (cont)

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

MOV O O O B

MOVA × × O L *5

MOVFPE O × × B

MOVMD O O O B

MOVSD O × × B

MOVTPE O × × B

MULS × O O W

MULS/U × × O L*3

MULU × O O W

MULU/U × × O L*3

MULXS O O × B

MULXU O O × B

NEG O O O B

NOP - - - -*1

NOT O O O B

OR O O O B

ORC O × × B

POP × O O *2

PUSH × O O *2

Notes: 1. Size cannot be specified.

2. L (longword size) in the maximum mode, advanced mode, or middle mode, and W
(word size) in normal mode.

3. Valid when specified with a multiplier.
5. Specify C as an operation size in order to generate an object code of the compact

format. With C specified, the assembler will generate the object code using only the
destination register number. No error will occur and the register number in the source
operand is ingored when the register number in the source operand differs from the
destination register number and when C is the operation size.
 MOVA/B.L @(10:16,R1.W),ER1 ; General format. Object code: H’78197A99000A
 MOVA/B.C @(10:16,R1.W),ER1 ; Compact format. Object code: H’7A99000A

656

Table 11.4 H8SX Executable Instruction and Operation Size Combinations (cont)

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

ROTL O O O B

ROTR O O O B

ROTXL O O O B

ROTXR O O O B

RTE - - - -*1

RTE/L - - - -*1

RTS - - - -*1

RTS/L - - - -*1

SHAL O O O B

SHAR O O O B

SHLL O O O B

SHLR O O O B

SLEEP - - - -*1

STC O O O B/L *4

STM × × O L

STMAC × × O L*3

SUB O O O B

SUBS × × O L

SUBX O O O B

TAS O × × B

TRAPA - - - -*1

XOR O O O B

XORC O × × B

Notes: 1. Size cannot be specified.
3. Valid when specified with a multiplier.
4. If the control register specified is CCR or EXR, B (byte size) or W (word size) can be

specified and the default is B.
If the control register specified is SBR or VBR, only L (long word size) can be specified.

657

(b) Addressing format

The addressing format for the H8SX in maximum mode, advanced mode, or middle mode,
and in normal mode is shown in table 11.5.

Table 11.5 H8SX Series Addressing Format

Addressing Format Description*1

Register direct {ERn | En | Rn | RnH | RnL}

Register indirect @ERn

Post-increment register indirect @ERn+

Post-decrement register indirect @ERn-

Pre-increment register indirect @+ERn

Pre-decrement register indirect @-ERn

Register indirect with displacement @(disp[: {2 | 16 | 32}], ERn)

Index register indirect with displacement @(disp[: {16 | 32}],
{RnL.B | Rn.W | ERn.L)

Absolute address @abs[: {8 | 16 | 24 | 32}]

Immediate data #imm[: {3 | 4 | 5 | 8 | 16 | 32}]

Memory indirect @@abs[: 8]

Extension memory indirect @@vec:7

Program counter relative with displacement d[: {8 | 16}]

Program counter index relative {RnL.B | Rn.W | ERn.L}

Control registers CCR, EXR, MACH, MACL, SBR, VBR

Notes: 1. n: Register number (0 to 7*2)
disp: Displacement
abs: Absolute address
imm: Immediate data
vec: Vector address

 2. ER7 is the same as SP (stack pointer).

658

(2) H8S/2600 Executable Instruction and Operation Size Combinations:

(a) Size of the executable instruction

Table 11.6 shows the H8S/2600 allowable executable instruction and operation size
combinations when in the advanced mode or normal mode.

Table 11.6 H8S/2600 Executable Instruction and Operation Size Combinations

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

ADD O O O B

ADDS × × O L

ADDX O × × B

AND O O O B

ANDC O × × B

BAND O × × B

Bcc - - - -*1

BCLR O × × B

BIAND O × × B

BILD O × × B

BIOR O × × B

BIST O × × B

BIXOR O × × B

BLD O × × B

BNOT O × × B

BOR O × × B

BSET O × × B

BSR - - - -*1

BST O × × B

BTST O × × B

BXOR O × × B

Note: 1. Size cannot be specified.

659

Table 11.6 H8S/2600 Executable Instruction and Operation Size Combinations (cont)

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

CLRMAC - - - -*1

CMP O O O B

DAA O × × B

DAS O × × B

DEC O O O B

DIVXS O O × B

DIVXU O O × B

EEPMOV O O × B

EXTS × O O W

EXTU × O O W

INC O O O B

JMP - - - -*1

JSR - - - -*1

LDC O O × B

LDM × × O L

LDMAC × × O L

MAC - - - -*1

MOV O O O B

MOVFPE O × × B

MOVTPE O × × B

MULXS O O × B

MULXU O O × B

NEG O O O B

NOP - - - -*1

NOT O O O B

OR O O O B

Note: 1. Size cannot be specified.

660

Table 11.6 H8S/2600 Executable Instruction and Operation Size Combinations (cont)

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

ORC O × × B

POP × O O *2

PUSH × O O *2

ROTL O O O B

ROTR O O O B

ROTXL O O O B

ROTXR O O O B

RTE - - - -*1

RTS - - - -*1

SHAL O O O B

SHAR O O O B

SHLL O O O B

SHLR O O O B

SLEEP - - - -*1

STC O O × B

STM × × O L

STMAC × × O L

SUB O O O B

SUBS × × O L

SUBX O × × B

TAS O × × B

TRAPA - - - -*1

XOB O O O B

XOBC O × × B

Notes: 1. Size cannot be specified.
 2. L (longword size) in the advanced mode, and W (word size) in normal mode.

661

(b) Addressing format

The addressing format for the H8S/2600 in advanced mode and in normal mode is shown
in table 11.7.

Table 11.7 H8S/2600 Series Addressing Format

Addressing Format Description*1

Register direct {ERn | En | Rn | RnH | RnL}

Register indirect @ERn

Post-increment register indirect @ERn+

Pre-decrement register indirect @-ERn

Register indirect with displacement @(disp[: {16 | 32}], ERn)

Absolute address @abs[: {8 | 16 | 24 | 32}]

Immediate data #imm[: {8 | 16 | 32}]

Memory indirect @@abs[: 8]

Program counter relative with displacement d[: {8 | 16}]

Control registers CCR, EXR, MACH, MACL

Notes: 1. n: Register number (0 to 7*2)
disp: Displacement
abs: Absolute address
imm: Immediate data

 2. ER7 is the same as SP (stack pointer).

662

(3) H8S/2000 Executable Instruction and Operation Size Combinations:

(a) Size of the executable instruction

Table 11.8 shows the H8S/2000 allowable executable instruction and operation size
combinations when in the advanced mode or normal mode.

Table 11.8 H8S/2000 Executable Instruction and Operation Size Combinations

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

ADD O O O B

ADDS × × O L

ADDX O × × B

AND O O O B

ANDC O × × B

BAND O × × B

Bcc - - - -*1

BCLR O × × B

BIAND O × × B

BILD O × × B

BIOR O × × B

BIST O × × B

BIXOR O × × B

BLD O × × B

BNOT O × × B

BOR O × × B

BSET O × × B

BSR - - - -*1

BST O × × B

BTST O × × B

BXOR O × × B

Note: 1. Size cannot be specified.

663

Table 11.8 H8S/2000 Executable Instruction and Operation Size Combinations (cont)

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

CMP O O O B

DAA O × × B

DAS O × × B

DEC O O O B

DIVXS O O × B

DIVXU O O × B

EEPMOV O O × B

EXTS × O O W

EXTU × O O W

INC O O O B

JMP - - - -*1

JSR - - - -*1

LDC O O × B

LDM × × O L

MOV O O O B

MOVFPE O × × B

MOVTPE O × × B

MULXS O O × B

MULXU O O × B

NEG O O O B

NOP - - - -*1

NOT O O O B

OR O O O B

ORC O × × B

POP × O O *2

PUSH × O O *2

Notes: 1. Size cannot be specified.
 2. L (longword size) in the advanced mode, and W (word size) in normal mode.

664

Table 11.8 H8S/2000 Executable Instruction and Operation Size Combinations (cont)

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

ROTL O O O B

ROTR O O O B

ROTXL O O O B

ROTXR O O O B

RTE - - - -*1

RTS - - - -*1

SHAL O O O B

SHAR O O O B

SHLL O O O B

SHLR O O O B

SLEEP - - - -*1

STC O O × B

STM × × O L

SUB O O O B

SUBS × × O L

SUBX O × × B

TAS O × × B

TRAPA - - - -*1

XOR O O O B

XORC O × × B

Note: 1. Size cannot be specified.

665

(b) Addressing format

The addressing format for the H8S/2000 in advanced mode and in normal mode is shown
in table 11.9.

Table 11.9 H8S/2000 Series Addressing Format

Addressing Format Description*1

Register direct {ERn | En | Rn | RnH | RnL}

Register indirect @ERn

Post-increment register indirect @ERn+

Pre-decrement register indirect @-ERn

Register indirect with displacement @(disp[: {16 | 32}], ERn)

Absolute address @abs[: {8 | 16 | 24 | 32}]

Immediate data #imm[: {8 | 16 | 32}]

Memory indirect @@abs[: 8]

Program counter relative with displacement d[: {8 | 16}]

Control registers CCR, EXR

Notes: 1. n: Register number (0 to 7*2)
disp: Displacement
abs: Absolute address
imm: Immediate value

 2. ER7 is the same as SP (stack pointer).

666

(4) H8/300H Executable Instruction and Operation Size Combinations:

(a) Size of the executable instruction

Table 11.10 shows the H8/300H allowable executable instruction and operation size
combinations when in the advanced mode or normal mode.

Table 11.10 H8/300H Executable Instruction and Operation Size Combinations

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

ADD O O O B

ADDS × × O L

ADDX O × × B

AND O O O B

ANDC O × × B

BAND O × × B

Bcc - - - -*1

BCLR O × × B

BIAND O × × B

BILD O × × B

BIOR O × × B

BIST O × × B

BIXOR O × × B

BLD O × × B

BNOT O × × B

BOR O × × B

BSET O × × B

BSR - - - -*1

BST O × × B

BTST O × × B

BXOR O × × B

Note: 1. Size cannot be specified.

667

Table 11.10 H8/300H Executable Instruction and Operation Size Combinations (cont)

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

CMP O O O B

DAA O × × B

DAS O × × B

DEC O O O B

DIVXS O O × B

DIVXU O O × B

EEPMOV O O × B

EXTS × O O W

EXTU × O O W

INC O O O B

JMP - - - -*1

JSR - - - -*1

LDC O O × B

MOV O O O B

MOVFPE O × × B

MOVTPE O × × B

MULXS O O × B

MULXU O O × B

NEG O O O B

NOP - - - -*1

NOT O O O B

OR O O O B

ORC O × × B

POP × O O *2

PUSH × O O *2

Notes: 1. Size cannot be specified.
 2. L (longword size) in the advanced mode, and W (word size) in normal mode.

668

Table 11.10 H8/300H Executable Instruction and Operation Size Combinations (cont)

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

ROTL O O O B

ROTR O O O B

ROTXL O O O B

ROTXR O O O B

RTE - - - -*1

RTS - - - -*1

SHAL O O O B

SHAR O O O B

SHLL O O O B

SHLR O O O B

SLEEP - - - -*1

STC O O × B

SUB O O O B

SUBS × O O L

SUBX O × × B

TRAPA - - - -*1

XOR O O O B

XORC O × × B

Note: 1. Size cannot be specified.

669

(b) Addressing format

The addressing format for the H8/300H in advanced mode and in normal mode is shown in
table 11.11.

Table 11.11 H8/300H Series Addressing Format

Addressing Format Description*1

Register direct {ERn | En | Rn | RnH | RnL}

Register indirect @ERn

Post-increment register indirect @ERn+

Pre-decrement register indirect @-ERn

Register indirect with displacement @(disp[: {16 | 24}], ERn)

Absolute address @abs[: {8 | 16 | 24}]

Immediate data #imm[: {8 | 16 | 32}]

Memory indirect @@abs[: 8]

Program counter relative with displacement d[: {8 | 16}]

Control registers CCR

Notes: 1. n: Register number (0 to 7*2)
disp: Displacement
abs: Absolute address
imm: Immediate value

 2. ER7 is the same as SP (stack pointer).

670

(5) H8/300 and H8/300L Executable Instruction and Operation Size Combinations:

(a) Size of the executable instruction

Table 11.12 shows the H8/300 and H8/300L allowable executable instruction and operation
size combinations when in the advanced mode or normal mode.

Table 11.12 H8/300 and H8/300L Executable Instruction and Operation Size Combinations

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

ADD O O × B

ADDS × O × W

ADDX O × × B

AND O × × B

ANDC O × × B

BAND O × × B

Bcc - - - -*

BCLR O × × B

BIAND O × × B

BILD O × × B

BIOR O × × B

BIST O × × B

BIXOR O × × B

BLD O × × B

BNOT O × × B

BOR O × × B

BSET O × × B

BSR - - - -*

BST O × × B

BTST O × × B

BXOR O × × B

Note: Size cannot be specified.

671

Table 11.12 H8/300 and H8/300L Executable Instruction and Operation Size Combinations
(cont)

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

CMP O O × B

DAA O × × B

DAS O × × B

DEC O × × B

DIVXU O × × B

EEPMOV - - - -*

INC O × × B

JMP - - - -*

JSR - - - -*

LDC O × × B

MOV O O × B

MOVFPE* O × × B

MOVTPE* O × × B

MULXU O × × B

NEG O × × B

NOP - - - -*

NOT O × × B

OR O × × B

ORC O × × B

POP × O × W

PUSH × O × W

Note: Size cannot be specified.

672

Table 11.12 H8/300 and H8/300L Executable Instruction and Operation Size Combinations
(cont)

Executable Instructions Operation Sizes

Mnemonic B W L Default when Omitted

ROTL O × × B

ROTR O × × B

ROTXL O × × B

ROTXR O × × B

RTE - - - -*

RTS - - - -*

SHAL O × × B

SHAR O × × B

SHLL O × × B

SHLR O × × B

SLEEP - - - -*

STC O × × B

SUB O O × B

SUBS × O × W

SUBX O × × B

XOR O × × B

XORC O × × B

Note: Size cannot be specified.

673

(b) Addressing format

The addressing format for the H8/300 and H8/300L in advanced mode and in normal mode
is shown in table 11.13.

Table 11.13 H8/300 and H8/300L Series Addressing Format

Addressing Format Description*1

Register direct {Rn | RnH | RnL}

Register indirect @Rn

Post-increment register indirect @Rn+

Pre-decrement register indirect @-Rn

Register indirect with displacement @(disp[: 16], Rn)

Absolute address @abs[: {8 | 16}]

Immediate data #imm[: {8 | 16}]

Memory indirect @@abs[: 8]

Program counter relative with displacement d[: 8]

Control registers CCR

Notes: 1. n: Register number (0 to 7*2)
disp: Displacement
abs: Absolute address
imm: Immediate value

 2. R7 is the same as SP (stack pointer).

674

11.3 Assembler Directives

The assembler directives are instructions that the assembler interprets and executes. . The
underscores indicate the default. Table 11.14 lists the assembler directives provided by this
assembler.

Table 11.14 Assembler Directives

Type Mnemonic Function

Target CPU .CPU Specifies the target CPU.

8-bit short absolute area .SBR Specifies the origin of the 8-bit short absolute
address area.

Section and the location
counter

.SECTION

.ORG

.ALIGN

Declares a section.

Sets the value of the location counter.

Corrects the value of the location counter to a
multiple of boundary alignment value.

Symbols .EQU

.ASSIGN

.REG

.BEQU

Sets a symbol value.

Sets or resets a symbol value.

Defines the alias of a register name.

Defines a bit data name.

Data and data area
reservation

.DATA

.DATAB

.SDATA

.SDATAB

.SDATAC

.SDATAZ

.RES

.SRES

.SRESC

.SRESZ

Reserves integer data.

Reserves an integer data block.

Reserves string literal data.

Reserves a string literal data block.

Reserves string literal data (with length).

Reserves string literal data (with zero terminator).

Reserves data area.

Reserves string literal data area.

Reserves string literal data area (with length).

Reserves string literal data area (with zero
terminator).

675

Table 11.14 Assembler Directives (cont)

Type Mnemonic Function

Externally defined and
externally referenced symbol

.EXPORT

.IMPORT

.GLOBAL

.BEXPORT

.BIMPORT

.ABS8

.NOABS8

Declares externally defined symbols.

Declares externally referenced symbols.

Declares externally defined and externally
referenced symbols.

Declares externally defined symbol BEQU.

Declares externally referenced symbol BEQU.

Specifies the 8-bit short absolute address symbol.

Disables specifying the 8-bit short absolute address
symbol.

Object modules .OUTPUT

.DEBUG

.LINE

.DISPSIZE

Controls object module and debugging information
output.

Controls the output of symbolic debugging
information.

Changes the file name and line number for the
debugging information.

Sets the displacement size.

Assemble listing .PRINT

.LIST

.FORM

.HEADING

.PAGE

.SPACE

Controls assemble listing output.

Controls the output of the source program listing.

Sets the number of lines and columns in the
assemble listing.

Sets the header for the source program listing.

Inserts a new page in the source program listing.

Outputs blank lines to the source program listing.

Other directives .PROGRAM

.RADIX

.END

.STACK

Sets the name of the object module.

Sets the radix in which integer constants with no
radix specifier are interpreted.

Specifies an entry point and the end of the source
program.

Defines the stack value for the specified symbol.

676

.CPU

Description Format: ∆.CPU∆<target CPU>

<target CPU>={AE5 |
 H8SXX [:<bit width of the address space>] [:{M|D|MD}] |
 H8SXA [:<bit width of the address space>] [:{M|D|MD}] |
 H8SXM [:<bit width of the address space>] [:{M|D|MD}] |
 H8SXN [:{M|D|MD}] |
 2600A [:<bit width of the address space>] |
 2600N |
 2000A [:<bit width of the address space>] |
 2000N |
 300HA [:<bit width of the address space>] |
 300HN |
 300 | 300L }

The label field is not used.

Description: .CPU specifies the CPU type and the operating mode for the object program
to be generated, the bit width of the address area, and whether or not the
multiplier and/or divider exist.

 The bit width of the address area can be specified only in the maximum
mode, advanced mode, and middle mode.

 The target CPU and the bit width of the address area are as follows:

677

Suboption Name Description

AE5 Creates an object for the AE5.

H8SXX[:<bit width of
the address space>]
[:{M|D|MD}]

Creates an object for the H8SX maximum mode. <bit width
of the address space> is 28 or 32, which is 256 Mbytes or 4
Gbytes, respectively. <bit width of the address space> is 32
by default. A multiplier and/or a divider can be specified.

H8SXA [:<bit width
of the address
space>] [:{M|D|MD}]

Creates an object for the H8SX advanced mode. <bit width
of the address space> is 20, 24, 28, or 32, which is 1 Mbyte,
16 Mbytes, 256 Mbytes, or 4 Gbytes, respectively. <bit width
of the address space> is 24 by default. A multiplier and/or a
divider can be specified.

H8SXM [:<bit width
of the address
space>] [:{M|D|MD}]

Creates an object for the H8SX middle mode. <bit width of
the address space> is 20 or 24, which is 1 Mbyte or 16
Mbytes, respectively. <bit width of the address space> is 24
by default. A multiplier and/or a divider can be specified.

H8SXN [:{M|D|MD}] Creates an object for the H8SX normal mode. A multiplier
and/or a divider can be specified.

2600A[:<bit width of
the address space>]

Creates an object for the H8S/2600 advanced mode. <bit
width of the address space> is 20, 24, 28, or 32, which is 1
Mbyte, 16 Mbytes, 256 Mbytes, or 4 Gbytes, respectively.
<bit width of the address space> is 24 by default.

2600N Creates an object for the H8S/2600 normal mode.

2000A[:<bit width of
the address space>]

Creates an object for the H8S/2000 advanced mode. <bit
width of the address space> is 20, 24, 28, or 32, which is 1
Mbyte, 16 Mbytes, 256 Mbytes, or 4 Gbytes, respectively.
<bit width of the address space> is 24 by default.

2000N Creates an object for the H8S/2000 normal mode.

300HA[:<bit width of
the address space>]

Creates an object for the H8/300H advanced mode. <bit
width of the address space> is 20 or 24, which is 1 Mbyte or
16 Mbytes, respectively. <bit width of the address space> is
24 by default.

300HN Creates an object for the H8/300H normal mode.

300 Creates an object for the H8/300.

300L Creates an object for the H8/300L.

678

Specify whether or not a multiplier and/or a divider exist as follows:

Multiplier/Divider Specification Method

Without multiplier and without divider No specification

With multiplier and without divider M

Without multiplier and with divider D

With multiplier and with divider MD

Use MAC, LDMAC, STMAC, CLRMAC, MULU/U, or MULS/U as an
additional instruction with a multiplier.

There are no additional instructions with a divider.

Specify this directive at the beginning of the source program. If it is not
specified at the beginning, an error will occur. However, directives related to
assembly listing can be written before this directive.

When several .CPU directives are specified, only the first specification
becomes valid.

The assembler gives priority to target CPU specification in the order of
cpu option, .CPU directive, and the H38CPU environment variable.

If the directive is not specified, the CPU selected by the environment variable
H38CPU becomes valid.

Example: .CPU 2600A:20 ;Assembles program for 1 Mbyte
SECTION A,CODE,ALIGN=2 ; of H8S/2600 advanced mode.
MOV.L ER0,ER1
MOV.L ER0,ER2

679

.SBR

Description Format: ∆.SBR∆[<constant>]

The label field is not used.

Description: .SBR declares the origin of the 8-bit short absolute address area.
When .SBR <constant> is specified, the specified constant value is the origin
of the 8-bit short absolute address area. The lower 8 bits of the origin must be
0.
When only .SBR is specified without <constant>, the origin of the 8-bit short
absolute address area differs depending on whether or not the SBR option is
specified. When the SBR option is specified, the origin is specified with the
SBR option. When the SBR option is not specified, the origin is as shown
below depending on the bit width of the address space.

CPU/Operating Mode

 Origin of the 8-Bit Short
Absolute Address

H8SXX[:32] H’FFFFFF00 H8SX maximum mode

H8SXX:28 H’0FFFFF00

H8SXA:32 H’FFFFFF00

H8SXA:28 H’0FFFFF00

H8SXA[:24] H’00FFFF00

H8SX advanced mode

H8SXA:20 H’000FFF00

H8SXM[:24] H’00FFFF00 H8SX middle mode

H8SXM:20 H’000FFF00

H8SX normal mode H8SXN H’0000FF00

When the CPU is H8SXN, H8SXM, H8SXA, or H8SXX, the SBR directive
can be specified.
To set an address to SBR (short address base register), the LDC instruction
must be described.

Example: .CPU H8SXA:32
.SECTION A,CODE,ALIGN=2
.SBR H’10000 ;Declares H’00010000 as SBR.
MOV.L #H’10000,ER1
LDC.L ER1,SBR ;Sets an address to SBR.
~
MOV.B @H’FFFFFF00,R0L ;Selects @aa:16.

680

MOV.B @H’00010050,R0H ;Selects @aa:8.
~
.SBR ;Clears a declaration of SBR.
MOV.L #H’FFFFFF00,ER1
LDC.L ER1,SBR ;Returns SBR to default value.
~
MOV.B @H’FFFFFF00,R0L ;Selects @aa:8.
MOV.B @H’00010050,R0H ;Selects @aa:32.
~

681

.SECTION

Description Format: ∆.SECTION∆<section name> [,<section attribute> [,<section type>]]

<section attribute>={ CODE | DATA | STACK | DUMMY }
<section type>={LOCATE= <start address>|ALIGN=<boundary alignment
 value>}

The label field is not used.

Description: .SECTION is the section declaration assembler directive.
A section is a part of a program, and the linkage editor regards it as a unit of
processing.

(1) Start of a section

The rules for section names are the same as the rules for symbols. The
assembler distinguishes uppercase and lowercase letters.

Attribute Section Type

CODE Code section

DATA Data section

STACK Stack section

DUMMY Dummy section

Use locate=<start address> to output an object in an absolute address format.
Use align=<boundary alignment value> to output an object in a relative
address format. The linkage editor will adjust the start address of the section
to be the multiple of the boundary alignment value. When the format type is
not specified, align=2 is assumed.

Absolute Address Format: The start address of a section is set. The
maximum start address is shown below.

682

CPU/Operating Mode Maximum Value

H8SXX[:32] H’FFFFFFFF H8SX maximum mode

H8SXX:28 H’0FFFFFFF

H8SXA:32 H’FFFFFFFF

H8SXA:28 H’0FFFFFFF

H8SXA[:24] H’00FFFFFF

H8SX advanced mode

H8SXA:20 H’000FFFFF

H8SXM[:24] H’00FFFFFF H8SX middle mode

H8SXM:20 H’000FFFFF

H8SX normal mode H8SXN H’0000FFFF

2600A:32 H’FFFFFFFF

2600A:28 H’0FFFFFFF

2600A[:24] H’00FFFFFF

H8S/2600 advanced mode

2600A:20 H’000FFFFF

H8S/2600 normal mode 2600N H’0000FFFF

2000A:32 H’FFFFFFFF

2000A:28 H’0FFFFFFF

2000A[:24] H’00FFFFFF

H8S/2000 advanced mode

2600A:20 H’000FFFFF

H8S/2000 normal mode 2000N H’0000FFFF

300HA[:24] H’00FFFFFF H8/300H advanced mode

300HA:20 H’000FFFFF

H8/300H normal mode 300HN H’0000FFFF

H8/300 300 H’0000FFFF

H8/300L 300L H’0000FFFF

Relative Address Format: Boundary alignment value is set.
The linkage editor will adjust the start address of the section to be the
multiple of the boundary alignment value.
The values allowed for the boundary alignment value are powers of 2
The assembler provides a default section for the following cases:
• The use of executable instructions when no section has been declared.

• The use of data reservation assembler directives when no section has
 been declared.

• The use of the .ALIGN directive when no section has been declared.

• The use of the .ORG directive when no section has been declared.

• Reference to the location counter when no section has been declared.

683

• The use of statements consisting of only the label field when no section
 has been declared.

(2) Restart of the section

It is possible to redeclare (and thus restart,) a section that was previously
declared in the same file.
To restart a section, specify a section name that already exists.
The following is a simple example of section declaration.

.END

.SECTION DT,DATA,ALIGN=2

.SECTION DM,DUMMY

Source program

.SECTION CD,CODE,ALIGN=2

Source statement set 1*

*

*

Source statement set 2

Source statement set 3

This statement declares the start of
section CD.

This part of the source program
belongs to section CD.

This statement declares the start
of section DT.

This part of the source program
belongs to section DT.

This statement declares the start of
section DM.

This part of the source program
belongs to section DM.

This statement declares the end of the
source program.

Note: This example assumes that the .SECTION
directive does not appear in any of the source
statement sets 1 to 3.

684

The following is a simple example of section restart.

.END

.SECTION DT,DATA,ALIGN=2

.SECTION CD

Source program

.SECTION CD,CODE,ALIGN=2

Source statement set 1*

*

*

Source statement set 2

Source statement set 3

Note: This example assumes that the .SECTION
directive does not appear in any of the source
statement sets 1 to 3.

This statement declares the start of
section CD.

This part of the source program
belongs to section CD.

This statement declares the restart
of section CD.

This part of the source program
also belongs to section CD.
(This part of the program is a
continuation of source statement set 1.)

685

Example:

 .ALIGN 2

 .DATA.W H'0102,H'0304

 .SECTION CD,CODE,ALIGN=2

 MOV R0,R1

 MOV R0,R2

 .SECTION DT,DATA,LOCATE=H'00001000

 X1: .DATA.W H'2222

 .DATA.W H'3333

 .END

; This section of the program belongs to the default section P.

; The default section P is a code section, and is a relative

; address section with a boundary alignment value of 2.

; This section of the program belongs to the section CD.

; The section CD is a code section, and is a relative address

; section with a boundary alignment value of 2.

; This section of the program belongs to the section DT.

; The section DT is a data section, and is an absolute address

; section with a start address of H'00001000.

~

~

~

Note: This example assumes the .SECTION directive does not appear in the parts indicated by
"∼ ".

686

.ORG

Description Format: ∆.ORG∆<location-counter value>

The label field is not used.

Description: .ORG sets the value of the location counter. The .ORG directive is used to
place executable instructions or data at a specific address.
The location-counter value must be specified as follows:
• The specification must be a constant value or an address within the
 section, and,

• Forward reference symbols must not appear in the specification.

The maximum start address is shown below.

687

CPU/Operating Mode Maximum Value

H8SXX[:32] H’FFFFFFFF H8SX maximum mode

H8SXX:28 H’0FFFFFFF

H8SXA:32 H’FFFFFFFF

H8SXA:28 H’0FFFFFFF

H8SXA[:24] H’00FFFFFF

H8SX advanced mode

H8SXA:20 H’000FFFFF

H8SXM[:24] H’00FFFFFF H8SX middle mode

H8SXM:20 H’000FFFFF

H8SX normal mode H8SXN H’0000FFFF

2600A:32 H’FFFFFFFF

2600A:28 H’0FFFFFFF

2600A[:24] H’00FFFFFF

H8S/2600 advanced mode

2600A:20 H’000FFFFF

H8S/2600 normal mode 2600N H’0000FFFF

2000A:32 H’FFFFFFFF

2000A:28 H’0FFFFFFF

2000A[:24] H’00FFFFFF

H8S/2000 advanced mode

2600A:20 H’000FFFFF

H8S/2000 normal mode 2000N H’0000FFFF

300HA[:24] H’00FFFFFF H8/300H advanced mode

300HA:20 H’000FFFFF

H8/300H normal mode 300HN H’0000FFFF

H8/300 300 H’0000FFFF

H8/300L 300L H’0000FFFF

When the location-counter value is specified with an absolute address format,
the following condition must be satisfied:
<location-counter value> ≥ <section start address>
The assembler handles the value of the location counter as follows:
• An absolute address value within an absolute address section.

• A relative address value (relative distance from the section head) within a
 relative address section.

688

Example: .SECTION DT,DATA,LOCATE=H'0000FF00
.DATA.W H'0001
.ORG H'0000FF10 ; This statement sets the value of the location
 ; counter.
.DATA.L H'0002 ; The integer data H'0002 is stored at
 ; absolute address H'0000FF10.

∼

Explanatory Figure for the Coding Example

Absolute address
H'0000FF00

H'0001

H'0002

H'0000

H'0000
Absolute address
H'0000FF10

Locations from H'FFFF0002
to H'FFFF000F are filled
with H'00

Memory

2 bytes

689

.ALIGN

Description Format: ∆.ALIGN∆<boundary alignment value>

The label field is not used.

Description: .ALIGN corrects the location-counter value to be a multiple of the boundary
alignment value. Executable instructions and data can be allocated on
specific boundary values (address multiples) by using the .ALIGN directive.
The location counter value must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

The values allowed for the boundary alignment value are powers of 2.
The boundary alignment value differs depending on the specification of the
address area.
When .ALIGN is used in a relative section the following must be satisfied:

 Boundary alignment value specified by .SECTION ≥ Boundary
alignment value specified by .ALIGN

When .ALIGN is used in a code section, the assembler inserts NOP
instructions in the object code* to adjust the value of the location counter.
Odd byte size areas are filled with H'00.
When .ALIGN is used in a data, dummy, or stack section, the assembler only
adjusts the value of the location counter and does not insert an object code on
the memory.

Note: This object code is not displayed in the assemble listing.

690

Example: .CPU 2600A
.SECTION P,DATA,ALIGN=2 ; [1]
.DATA.B H'11 ; [2]
.ALIGN 2 ; [3]
.DATA.W H'2222

∼
[1]: This statement adjusts the start address of the relative address section to
 be a multiple of 2 at object module linkage.
[2]: The location counter value of the next data becomes the odd address to secure
 the one-byte data.
[3]: This statement adjusts the location counter value to be a multiple of 2
 (even address).

H'11 H'00
H'2222

Memory
2-byte
boundary

2 bytes

: Codes filled in by
 the assembler.

Explanatory Figure for the Coding Example

This example assumes that the byte-sized integer data H'11 is originally located at the
2-byte boundary address. The assembler will insert the filler data as shown in the figure
below.

691

.EQU

Description Format: <symbol>[:]∆.EQU∆<symbol value>

Description: .EQU sets a value to a symbol.

Symbols defined with the .EQU directive cannot be redefined.
The symbol value must be specified as follows:
• The specification must be a constant value, an address value, or an
 externally referenced symbol value* and,

• Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from H'00000000 to
H'FFFFFFFF.

Note: An externally referenced symbol, externally referenced symbol +
constant, or externally referenced symbol – constant can be specified.

Example: ∼

X1: .EQU 10 ;The value 10 is set to X1.
X2: .EQU 20 ;The value 20 is set to X2.

 CMP.W #X1,R0 ;This is the same as CMP.W #10,R0.
 BNE LABEL1
 CMP.W #X2,R0 ;This is the same as CMP.W #20,R0.
 BEQ LABEL2

 ∼

692

.ASSIGN

Description Format: <symbol>[:]∆.ASSIGN∆<symbol value>

Description: .ASSIGN sets a value to a symbol.

Symbols defined with the .ASSIGN directive can be redefined with
the .ASSIGN directive.
The symbol value must be specified as follows:
• The specification must be a constant value or an address value, and,

• Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from H'00000000 to
H'FFFFFFFF.
Definitions with the .ASSIGN directive are valid from the point of the
definition the program.
Symbols defined with .ASSIGN have the following limitations:
• They cannot be used as externally defined or externally referenced
symbols.

• They cannot be referenced from the debugger.

Example: ∼

X1: .ASSIGN 1
X2: .ASSIGN 2
 CMP.W #X1,R0 ;This is the same as CMP.W #1,R0.
 BNE LABEL1
 CMP.W #X2,R0 ;This is the same as CMP.W #2,R0.
 BEQ LABEL2

 ∼

X1: .ASSIGN 3
X2: .ASSIGN 4
 CMP.W #X1,R0 ; This is the same as CMP.W #3,R0.
 BNE LABEL3
 CMP.W #X2,R0 ; This is the same as CMP.W #4,R0.
 BEQ LABEL4

 ∼

693

.REG

Description Format: <symbol>[:]∆.REG∆(<register name>)

Description: .REG defines the alias of a register name.

.REG can be specified in two ways:
• Single register:

An alias is defined for one register. It can be specified in any place that
the register can be used. A general register can be specified.

• Multiple register:
An alias is defined for two or more registers. This is only available for
the CPU type of H8SX series, H8S/2600 series, or H8S/2000 series. It
can be specified for the operand of the LDM instruction, STM
instruction, or .REG directive. In the H8SX series, it can also be
specified for the operand of the RTS/L or RTE/L instruction. A 32-bit
general register can be specified for the register name.

694

Register specification is as follows:

Specification Description Example

Single register Specify either R0L
to R7L, R0H to
R7H, R0 to R7, E0
to E7, or ER0 to
ER7.

SINGLEREG .REG (R0)
An alias SINGLEREG is
defined for register R0.

Multiple register Specify more than
one register at
once by delimiting
them with hyphen (-
). If the left register
number is smaller
than the right
register number, an
error occurs
and .REG directive
is ignored.

RNG1 REG (ER0-ER3)
An alias RNG1 is defined for
four registers ER0, ER1,
ER2, and ER3.

RNG2 .REG (ER3-ER0)
An error occurs because
ER0 on the right is smaller
than ER3 on the left.*4

Redefining alias of register Specify an already
defined register
alias for an
operand.

ER00 .REG (ER0-ER3)
ER01 .REG (ER00)
An alias ER01 is defined for
four registers ER0 to ER3.

Notes: 1. The alias of a register name defined with .REG cannot be
 redefined.
2. Definitions with the .REG directive are valid from the point of the
 definition forward in the program.
3. Symbols defined with .REG have the following limitations:

 They cannot be used as externally defined or externally referenced
 symbols.

 They cannot be referenced from the debugger.
4. The combination of registers specified in the H8SX series is as
 follows: (ERn-ERn+1; n = 0 to 6), (ERn-ERn+2; n = 0 to 5), (ERn-
 ERn+3; n = 0 to 4).
 The combination of registers specified in the H8S/2600 series and
 H8S/2000 series is as follows: (ER0-ER1), (ER2-ER3), (ER4-ER5),
 (ER6-ER7), (ER0-ER2), (ER4-ER6), (ER0-ER3), (ER4-ER7).

695

Example: .CPU 2600A
RLST1: .REG (R0)
RLST2: .REG (ER0-ER2)
 MOV.W RLST1,@ER6 ; [1]
 LDM.L @SP+,(RLST2) ; [2]
 STM.L (RLST2),@-SP

[1]: Defines register R0 as RLST1
[2]: Defines RLST2 to three registers ER0, ER1, and ER2.

.BEQU

Description Format: <symbol>[:]∆.BEQU∆<bit number>, <replaced symbol name>

Description: .BEQU specifies a name for one-bit data which is on the memory where bit

manipulation is enabled.
The bit data name can be specified at the operand of the bit manipulation
instruction.
The specified bit name is replaced by the #xx,@aa format.
The bit number is specified as follows:
• The specification must be a constant value or an address value, and,

• Forward reference symbols must not appear in the specification.

A value from 0 to 7 can be specified for a bit number.
Specify the replaced symbol as follows:

CPU Type Replaced Symbol Name

H8SX series
H8S/2600 series
H8S/2000 series

8-bit absolute address format (@aa:8)
16-bit absolute address format (@aa:16)
32-bit absolute address format (@aa:32)

H8/300H series
H8/300 series
H8/300L series

8-bit absolute address format (@aa:8)

Notes: 1. Specifications with the .BEQU directive are valid from the point of
 specification forward in the program.
 2. A symbol defined by the .BEQU directive can be externally defined
 or externally referenced by the .BEXPORT and .BIMPORT
 symbols.

696

Example: .CPU 2600A:32
AD1 .EQU H’FFFFFF00
AD2 .EQU H’FFFF8000
AD1B0 .BEQU 0,AD1
AD1B1 .BEQU 1,AD1
AD2B2 .BEQU 2,AD2
AD2B3 .BEQU 3,AD2

 .SECTION A,CODE,ALIGN=2
 BSET.B AD1B0 ; BSET,B #0,@AD1:8
 BSET.B AD1B1 ; BSET,B #1,@AD1:8
 BSET.B AD2B2 ; BSET,B #2,@AD2:16
 BSET.B AD2B3 ; BSET,B #3,@AD2:16

Bit data name are as follows:
AD1B0: Bit 0 at address H’FFFFFF00
AD1B1: Bit 1 at address H’FFFFFF00
AD2B2: Bit 2 at address H’FFFF8000
AD2B3: Bit 3 at address H’FFFF8000

Supplement: Bit manipulation instructions that can specify bit data are as follows:

BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, BIOR, BXOR,
BIXOR, BLD, BILD, BST, and BIST

697

.DATA

Description Format: [<symbol>[:]]∆.DATA[.<operation size>]∆<integer data>[,...]

<operation size>: { B | W | L }

Description: .DATA reserves integer data in memory.
The operation size and the range of integer data are as follows:

Operation
Size

Data Size

Integer Data Range

B (byte) 1 byte H'00000000 to H'000000FF (0 to 255)
H'FFFFFF80 to H'FFFFFFFF (–128 to –1)

W (word) 2 bytes H'00000000 to H'0000FFFF (0 to 65,535)
H'FFFF8000 to H'FFFFFFFF (–32,768 to –1)

L
(longword)

4 bytes H'00000000 to H'FFFFFFFF (0 to 4,294,967,295)
H'80000000 to H'FFFFFFFF (–2,147,483,648 to –1)

Note: Numbers in parentheses are decimal.

The .DATA.B (byte size) is used when the operation size is omitted.
Arbitrary values, including relative values , forward referenced symbols and
externally referenced symbols, can be used to specify the integer data.
The operation size determines the range of the integer data that can be
specified.

698

Example:
 .SECTION A,DATA,ALIGN=2
X: .DATA.L H'11111111 ;
 .DATA.W H'2222 ; These statements reserve integer data.
 .DATA.B H'44,H'55 ;

Memory

2 bytes

11
11
22
44

11
11
22
44

Note:

Address symbol
X

The data in this figure
is hexadecimal.

Explanatory Figure for the Coding Example

699

.DATAB

Description Format: [<symbol>[:]]∆.DATAB[.<operation size>]∆<block count>,<integer data>

<operation size>: { B | W | L }

Description: .DATAB reserves the specified number of integer data for block count in
memory.
The operation size determines the size of the reserved data.
The DATAB.B (byte size) is used when the operation size is omitted.

The block count must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

Operation
Size

Data
Size

Block Size Range*

B (byte) 1 byte H'00000001 to H'FFFFFFFF (1 to 4,294,967,295)

W (word) 2 bytes H'00000001 to H'7FFFFFFF (1 to 2,147,483,647)

L (longword) 4 bytes H'00000001 to H'3FFFFFFF (1 to 1,073,741,823)

Note: Numbers in parentheses are decimal.

Arbitrary values, including relative values, forward reference symbols, and
externally referenced symbols, can be used to specify the integer data.
The operation size and the range of block size are as follows:
Operation Size Integer Data Range*

B H'00000000 to H'000000FF (0 to 255)
H'FFFFFF80 to H'FFFFFFFF (–128 to –1)

W H'00000000 to H'0000FFFF (0 to 65,535)
H'FFFF8000 to H'FFFFFFFF (–32,768 to –1)

L H'00000000 to H'FFFFFFFF (0 to 4,294,967,295)
H'80000000 to H'FFFFFFFF (–2,147,483,648 to –1)

Note: Numbers in parentheses are decimal.

700

Example:
 .SECTION A,DATA,ALIGN=2
X: .DATAB.L 1,H'11111111 ;
 .DATAB.W 2,H'2222 ; This statement reserves two blocks
 .DATAB.B 3,H'33 ; of integer data.

 ∼

Memory

2 bytes

11
11
22
22
33
33

11
11
22
22
33

Empty Note:

Address symbol
X

The data in this figure
is hexadecimal.

Explanatory Figure for the Coding Example

701

.SDATA

Description Format: [<symbol>[:]]∆.SDATA∆"<string literal>"[,...]

Description: .SDATA reserves string literal data in memory.
 When specifying a string literal, enclose the character with double quotation

marks (“). When a double quotation mark is used as a character, specify two
double quotation marks.
A control character can be appended to a string literal. Enclose the string
literal with double quotation marks and then enclose the control code with
angle brackets (< >).
"<string literal>"< control code>
The control code for a control character must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

Example: ∼

 .SECTION A,DATA,ALGIN=2
 .SDATA """AB""" ; The string literal in this example
 ; includes double quotation marks.
 .SDATA "AB"<H'07> ; The string literal in this example
 ; has a control code appended.

 ∼

Memory

2 bytes

22
42
41
07

41
22
42

Empty

Address symbol
X

Explanatory Figure for the Coding Example

Notes: The data in this figure is
hexadecimal.

The ASCII code for “A” is: H'41.
The ASCII code for “B” is: H'42.
The ASCII code for “"” is: H'22.

2.

1.

702

.SDATAB

Description Format: [<symbol>[:]]∆.SDATAB∆<block count>,"<string literal>"

Description: .SDATAB reserves the specified number of strings literal for the block count

consecutively in memory.
The <block count> must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

A value of 1 or larger must be specified as the block count.
The maximum value of the block count depends on the length of the string
literal data.
The length of the string literal data multiplied by the block count must be less
than or equal to H'FFFFFFFF (4,294,967,295 bytes).

 When specifying a string literal, enclose the character with double quotation
marks (“). When a double quotation mark is used as a character, specify two
double quotation marks.
A control code can be appended to a string literal. Enclose the string literal
with double quotation marks and then enclose the control code with angle
brackets (< >). A control character can be appended to a string literal.
The syntax for this notation is as follows:
"<string literal>"<control code>
The control code must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

703

Example: ∼

 .SECTION A,DATA,ALIGN=2
X:
 .SDATAB 2,"""B""" ; The string literal in this
 ; example includes double quotation
 ; marks.
 .SDATAB 2,"A"<H'07> ; The string literal in this
 ; example has a control code
 ; appended.

 ∼

Memory

2 bytes

22
22
42
41
41

42
22
22
07
07

Address symbol
X

Explanatory Figure for the Coding Example

Notes: The data in this figure is
hexadecimal.

The ASCII code for “A” is: H'41.
The ASCII code for “B” is: H'42.
The ASCII code for “"” is: H'22.

2.

1.

704

.SDATAC

Description Format: [<symbol>[:]]∆.SDATAC∆"<string literal>"[,...]

Description: .SDATAC reserves string literal data (with length) in memory.

A string literal data with length is reserved with a string literal plus a leading
byte that indicates the length of the string.
The length indicates the size of the string literal (not including the length) in
bytes.

 When specifying a string literal, enclose the character with double quotation
marks (“). When a double quotation mark is used as a character, specify two
double quotation marks.
A control code can be appended to a string literal. Enclose the string literal
with double quotation marks and then enclose the control code with angle
brackets (< >).
The syntax for this notation is as follows:
"<string literal>"<control code>
The control code must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

705

Example: ∼

 .SECTION A,DATA,ALGIN=2
X:
 .SDATAC "AA" ; This statement reserves character
 ; string data (with length).
 .SDATAC """B""" ; The string literal in this example
 ; includes double quotation marks.
 .SDATAC "AB"<H'07> ; The string literal in this example
 ; has a control code appended.

 ∼

Memory

2 bytes

02
41
22
22
41
07

41
03
42
02
42

Address symbol
X

Explanatory Figure for the Coding Example

Notes: The data in this figure is
hexadecimal.

The ASCII code for “A” is: H'41.
The ASCII code for “B” is: H'42.
The ASCII code for “"” is: H'22.

2.

1.

706

.SDATAZ

Description Format: [<symbol>[:]]∆.SDATAZ∆"<string literal>"[,...]

Description: .SDATAZ reserves string literal data (with zero terminator) in memory.

A string literal with zero terminator is a string literal with an appended
trailing byte (with the value H'00) that indicates the end of the string.

 When specifying a string literal, enclose the character with double quotation
marks (“). When a double quotation mark is used as a character, specify two
double quotation marks.
A control code can be appended to a string literal. Enclose the string literal
with double quotation marks and then enclose the control code with angle
brackets (< >).
The syntax for this notation is as follows:
"<string literal>"<control code>
The control code must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

707

Example: ∼

 .SECTION A,DATA,ALGIN=2
X:
 .SDATAZ "AA" ; This statement reserves character
 ; string data (with zero termination).
 .SDATAZ """B""" ; The string literal in this example
 ; includes double quotation marks.
 .SDATAZ "AB"<H'07> ; The string literal in this example
 ; has a control code appended.

 ∼

Memory

2 bytes

41
00
42
22
41
07

41
22
42
00
42
00

Address symbol
X

Explanatory Figure for the Coding Example

Notes: The data in this figure is
hexadecimal.

The ASCII code for “A” is: H'41.
The ASCII code for “B” is: H'42.
The ASCII code for “"” is: H'22.

2.

1.

708

.RES

Description Format: [<symbol>[:]]∆.RES[.<operation size>]∆<area count>

<operation size> = { B | W | L }

Description: .RES reserves data areas in memory.
The integer data of the specified size is reserved for area count.
The operation size determines the size of one area.
The range of values that can be specified as the area count varies with the
operation range.
Operation
Size

Data
Size

Area Count Range*

B (byte) 1 byte H'00000001 to H'FFFFFFFF (1 to 4,294,967,295)

W (word) 2 bytes H'00000001 to H'7FFFFFFF (1 to 2,147,483,647)

L
(longword)

4 bytes H'00000001 to H'3FFFFFFF (1 to 1,073,741,823)

Note: Numbers in parentheses are decimal.

The byte size is used when the operation size is omitted.
The area count must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

709

Example: ∼

 .SECTION A,DATA,ALIGN=2
 .ALIGN 4
X:
 .RES.L 1 ; This statement reserves one longword-size
 ; areas.
 .RES.W 2 ; This statement reserves two-word-size
 ; areas.
 .RES.B 3 ; This statement reserves three-byte-size
 ; areas.

 ∼

Memory

2 bytes

: Area reserved in longword
 size.

: Area reserved in word
 size.

: Area reserved in byte
 size.

�����������������������
�����������������������
�����������������������

������������
������������
������������
������������

������
������
������

Address symbol
X

Explanatory Figure for the Coding Example

710

.SRES

Description Format: [<symbol>[:]]∆.SRES∆<string-literal area size> [,...]

Description: .SRES reserves string literal data areas.

The size of the areas to be reserved is in byte units.
The string-literal area size must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

The values that are allowed for the string-literal area size are from
H'00000001 to H'FFFFFFFF (from 1 to 4,294,967,295 in decimal).

Example: ∼

 .SECTION A,DATA,ALIGN=2
X:
 .SRES 4 ; This statement reserves a 4-byte area.
 .SRES 5 ; This statement reserves a 5-byte area

 ∼

Memory

2 bytes

Address symbol
X

Explanatory Figure for the Coding Example

�����������������������
�����������������������
�����������������������
�����������������������

������������
������������
������������
������������

������������
������������
������������
������������

������������
������������
������������

711

.SRESC

Description Format: [<symbol>[:]]∆.SRESC∆<string-literal area size>[,...]

Description: .SRESC reserves string literal data areas (with length) in memory.

The specified area size (byte count) plus a byte that indicates the length of
the string is reserved.
The string-literal area size must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

The values that are allowed for the string-literal area size are from
H'00000000 to H'000000FF (from 0 to 255 in decimal).
The size of the area reserved in memory is the size of the string literal area
itself plus 1 byte for the count.

712

Example: ∼

 .SECTION A,DATA,ALIGN=2
X:
 .SRESC 3 ; This statement reserves 3 bytes plus 1 byte
 ; for the count.
 .SRESC 2 ; This statement reserves 2 bytes plus 1 byte
 ; for the count.

 ∼

Memory

2 bytes

Address symbol
X

Explanatory Figure for the Coding Example

�����������������������
�����������������������
�����������������������
�����������������������

������������
������������
������������
������������

713

.SRESZ

Description Format: [<symbol>[:]]∆.SRESZ∆<string-literal area size>[,...]

Description: .SRESZ allocates string literal data areas (with zero termination).

The specified area size (byte count) plus a byte that indicates zero
termination is reserved.
The string-literal area size must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

The values that are allowed for the string literal area size are from
H'00000000 to H'000000FF (from 0 to 255 in decimal).
The size of the area reserved in memory is the size of the string literal area
itself plus 1 byte for the terminating zero.

714

Example:
 .SECTION A,DATA,ALIGN=2
X:
 .SRESZ 4 ; This statement reserves 4 bytes plus 1 byte
 ; for the terminating byte.
 .SRESZ 3 ; This statement reserves 3 bytes plus 1 byte
 ; for the terminating byte.

 ∼

Memory

2 bytes

Address symbol
X

Explanatory Figure for the Coding Example

715

.EXPORT

Description Format: ∆.EXPORT∆<symbol>[:{8 | 16}][,...]

The label field is not used.

Description: .EXPORT declares externally defined symbols.
An externally defined symbol declaration is required to reference symbols
defined in the current file from other files.
The following can be declared to be externally defined symbols.
• Symbols with an address value

• Absolute address symbols

However, a symbol defined with the .ASSIGN directive or a symbol in a
dummy section cannot be declared.
By specifying an address size (:8 or :16) with the symbol name, the symbol is
addressed in 8- or 16-bit absolute addressing format. Note however that
specification of address size for the forward reference symbols is ignored.
Declaration with the .EXPORT directive is valid only once in a given
program. The assembler ignores the second and later specifications of
the .EXPORT directive. When the ABS8 or NOABS8 directive is specified
after this directive is specified, the direction of the ABS8 or NOABS8
directive is effective.
To reference a symbol externally from another program source, externally
referenced symbols must be declared in the file in which they are referenced
using the .IMPORT directive according to the externally defined symbol.

716

Example: (In this example, a symbol defined in file A is referenced from file B.)

File A:

 .EXPORT X ; This statement declares X to be an
 ; externally defined symbol.
 ∼

X: .EQU H'10000000 ; This statement defines X.

 ∼

File B:

 .IMPORT X ; This statement declares X to be an
 ; externally referenced symbol.
 ∼

 .SECTION A,DATA,ALIGN=2
 .DATA.L X ; This statement references X.

 ∼

717

.IMPORT

Description Format: ∆.IMPORT∆<symbol>[: { 8 | 16 }] [,...]

The label field is not used.

Description: .IMPORT declares externally referenced symbols.
An externally referenced symbol declaration is required to reference symbols
defined in another source program.
Symbols defined in the current source program cannot be declared to be
externally referenced symbols.
By specifying an address size (:8 or :16) with the symbol name, the symbol is
addressed in 8- or 16-bit absolute addressing format. Note however that
specification of address size for the forward reference symbols is ignored.
Declaration with the .IMPORT directive is valid only once in a given
program. The assembler ignores the second and later specifications of
the .IMPORT directive. When the ABS8 or NOABS8 directive is specified
after this directive is specified, the direction of the ABS8 or NOABS8
directive is effective.
To reference a symbol externally from another program, externally defined
symbols must be declared in the file in which they are referenced using
the .EXPORT directive.

718

Example: (In this example, a symbol defined in file A is referenced from file B.)

"File A"

 .CPU 2600A
 .EXPORT X ; This statement declares X to be an
 ; externally defined symbol.

 ∼

 .SECTION A,CODE,ALIGN=2
X: .EQU H'10000000 ; This statement defines X.

 ∼

"File B"

 .IMPORT X ; This statement declares X to be an
 ; externally referenced symbol.
 ∼

 .SECTION A,DATA,ALIGN=2
 .DATA.L X ; This statement references X.

 ∼

719

.GLOBAL

Description Format: ∆.GLOBAL∆<symbol>[: { 8 | 16 }][,...]

The label field is not used.

Description: .GLOBAL declares symbols to be either externally defined symbols or
externally referenced symbols.
An externally defined symbol declaration is required to reference symbols
defined in the source program from other source programs. An externally
referenced symbol declaration is required to reference symbols defined in
another source program.
A symbol defined within the current source program is declared to be an
externally defined symbol by a .GLOBAL declaration.
A symbol that is not defined within the current source program is declared to
be an externally referenced symbol by a .GLOBAL declaration.
The following can be declared to be externally defined symbols.
• Symbols with an address value

• Absolute address symbols

However, a symbol defined with the .ASSIGN directive or a symbol in a
dummy section cannot be declared.
By specifying an address size (:8 or :16) with the symbol name, the symbol is
addressed in 8- or 16-bit absolute addressing format. Note however that
specification of address size for the forward reference symbols is ignored.
Declaration with the .GLOBAL directive is valid only once in a given
program. The assembler ignores the second and later specifications of
the .GLOBAL directive. When the ABS8 or NOABS8 directive is specified
after this directive is specified, the direction of the ABS8 or NOABS8
directive is effective.

720

Example:
 .CPU 2600A
 .GLOBAL PROG1 ; This statement declares PROG1 to be an
 ; externally defined symbol.
 .GLOBAL PROG2 ; This statement declares PROG2 to be an
 ; externally referenced symbol.
:
 .SECTION A,CODE,ALIGN=2
PROG1:
 MOV.L ER0,ER1
 JSR @PR0G2:24
 MOV.L ER1,ER2
 RTS
:

721

.BEXPORT

Description Format: ∆.BEXPORT∆<symbol>[,...]

The label field is not used.

Description: .BEXPORT declares externally defined symbols for bit data names specified
by .BEQU.
An externally defined symbol declaration is required to reference
symbol .BEQU defined in the source program file from other files.

Example: (In this example, a symbol defined in file A is referenced from file B.)
File A:

 .CPU 2600A:12
 .BEXPORT AD1B0 ; This statement declares AD1B0 to
 ; be an externally defined symbol.
AD1 .EQU H’FFFFFF00
AD1B0 .BEQU 0,AD1

 ∼

File B:

 .BIMPORT AD1B0 ; This statement declares AD1B0 to
 ; be an externally referenced symbol.
 ∼

 .SECTION A,CODE,ALIGN=2
 .BSET.B AD1B0 ; This statement references AD1B0.

 ∼

722

.BIMPORT

Description Format: ∆.BIMPORT∆<symbol>[,...]

The label field is not used.

Description: .BIMPORT declares externally referenced symbols for bit data names
specified by .BEQU.
When a symbol is defined by a directive other than .BEQU after it is declared
by .BIMPORT, a warning occurs. Similarly, when a symbol is declared
by .BIMPORT after it is defined by .BEQU, a warning occurs.
To reference the symbol .BEQU externally from another source program,
externally referenced symbols must be declared in the file in which they are
referenced using the .BEXPORT directive according to the externally
defined symbol.

Example: (In this example, a symbol defined in file A is referenced from file B.)
File A:

 .BIMPORT AD1B0 ; This statement declares AD1B0 to be an
 ; externally referenced symbol.
 ∼

 .SECTION A,CODE,ALIGN=2
 .BSET.B AD1B0 ; This statement defines AD1B0.

 ∼

File B:

 .CPU 2600A:32
 .BEXPORT AD1B0 ; This statement declares AD1B0 to be an
 ; externally defined symbol.
AD1 .EQU H’FFFFFF00
AD1B0 .BEQU 0,AD1

 ∼

723

.ABS8

.NOABS8

Description Format: ∆.ABS8∆[<symbol>[,...]]

The label field is not used.

∆.NOABS8

The label field is not used.

Description: .ABS8 specifies a symbol that is addressed in the 8-bit absolute address
format. When only .ABS8 is specified, all the externally referenced or
definition symbols after this directive are targeted.

 When .NOABS8 is specified, all the externally referenced or definition
symbols that have been specified with 8-bit absolute address format are
excluded from the targets of 8-bit absolute address format after that directive.

 Priority of the access size is as follows:

Priority Format of the Access Size

High 1 Explicitly specified size by the absolute address format

 ↑

 ↓

2 Address size specified by the .IMPORT, .EXPORT,
and .GLOBAL directives

.ABS8 and .NOABS8 directives

Low 3 abs8 and abs16 options

724

Example: .CPU H8SXX:32
 .IMPORT sym1,sym3,sym5
 .IMPORT sym2:16
 .IMPORT sym4:8
 MOV.B @sym1 ,R1H ;32 bits (no specification)
 MOV.B @sym2 ,R1H ;16 bits (address size specified
 ; by .IMPORT)
 MOV.B @sym3:8,R1H ;8 bits (explicitly specified size)
 MOV.B @sym4 ,R1H ;8 bits (address size specified
 ; by .IMPORT)
 MOV.B @sym5 ,R1H ;32 bits (no specification)
 MOV.B @(sym1+sym2),R1H ;16 bits* (no specification and
 ; 16 bits mixed)
 .ABS8 sym1
 MOV.B @sym1 ,R1H ;8 bits (.ABS8 specified)
 MOV.B @sym2 ,R1H ;16 bits (address size specified
 ; by .IMPORT)
 MOV.B @sym3:8,R1H ;8 bits (explicitly specified size)
 MOV.B @sym4 ,R1H ;8 bits (address size specified
 ; by .IMPORT)
 MOV.B @sym5 ,R1H ;32 bits (no specification)
 MOV.B @(sym1+sym2),R1H ;8 bits* (8 bits and 16 bits
 ; mixed)
 .NOABS8
 MOV.B @sym1 ,R1H ;32 bits (.NOABS8 specified)
 MOV.B @sym2 ,R1H ;16 bits (address size specified
 ; by .IMPORT)
 MOV.B @sym3:8,R1H ;8 bits (explicitly specified size)
 MOV.B @sym4 ,R1H ;32 bits (.NOABS8 specified)
 MOV.B @sym5 ,R1H ;32 bits (no specification)
 MOV.B @(sym1+sym2),R1H ;16 bits* (32 bits and 16 bits

 ; mixed)

Supplement: When multiple external symbols are described in the absolute address format,

the minimum address size is used.

725

.OUTPUT

Description Format: ∆.OUTPUT∆<output specifier>[,...]

<output specifier> = { obj | noobj |
 dbg | nodbg }

The label field is not used.

Description: .OUTPUT controls object module and debugging information output.
 (1) Output of object module
 Controls the output of the object module.

Output Specifier Output Control

obj An object module is output.

noobj No object module is output.

 (2) Output of debugging information
 Controls the output of the debugging information.

Output Specifier Output Control

dbg Debugging information is output in the object module.

nodbg No debugging information is output in the object module.

If the .OUTPUT directive is used two or more times in a program with
inconsistent output specifiers, an error occurs.
The assembler gives priority to command line option specifications
concerning the object module and debugging information output.
The default when the output specifier is omitted is obj and nodbg.

726

 (These examples and its description assume that no command line
options concerning object module or debugging information output
were specified.)

Example 1: .OUTPUT OBJ ; An object module is output.
 ; No debugging information is output.
 ∼

Example 2: .OUTPUT OBJ,DBG ; Both an object module and debugging
 ; information are output.
 ∼

Example 3: .OUTPUT OBJ,NODBG ; An object module is output.
 ; No debugging information is output.
 ∼

Supplement: Debugging information is required when debugging a program using the

debugger, and is part of the object module.
 Debugging information includes information about source statements and

information about symbols.

727

.DEBUG

Description Format: ∆.DEBUG∆<output specifier>

<output specifier>= { ON | OFF }

The label field is not used.

Description: .DEBUG controls the output of symbolic debugging information.
This directive is used to output only those symbols among the symbols in the
source program that are necessary for debugging
This directive allows assembly time to be reduced by restricting the output of
symbolic debugging information to only those symbols required in
debugging.
The specification of the .DEBUG directive is only valid when both an object
module and debugging information are output.
Output Specifier Output Control

on Symbolic debugging information is output.

off No symbolic debugging information is output.

The .DEBUG directive can be specified more than once. The specification is
valid for the source statement of this directive.
The .DEBUG directive is valid only when the debugging information is
output.
The default when the output specifier is omitted is on.

728

Example:
.SECTION A,CODE,ALIGN=2
.DEBUG OFF ; Starting with the next statement, the
 ; assembler does not output symbolic
 ; debugging information.

 ∼

.DEBUG ON ; Starting with the next statement, the
 ; assembler outputs symbolic debugging
 ; information.

 ∼

Supplement: The term "symbolic debugging information" refers to the parts of debugging

information concerned with symbols.

729

.LINE

Description Format: ∆.LINE∆ ["<file name>",]<line number>

The label field is not used.

Description: .LINE changes the file name and line number of the debugging information.
The .LINE directive is supported by the C/C++ source level debugging.
Accordingly, the .LINE directive is embedded in the assembly source
program that is output by the compiler.
The file name and the line number managed by the assembler become the
values specified by this directive from the next line of the specification.
The file name and the line number specified by the .LINE directive are valid
only within the specified file.

Example:
ch38 –code=asmcode -debug test.c

C source program (test.c)

 int func()

 {

 int i,j;

 j=0;

 for (i=1;i<=10;i++){

 j+=i;

 }

 return(j);

 }

/*1*/

/*2*/

/*3*/

/*4*/

/*5*/

/*6*/

/*7*/

/*8*/

/*9*/

Assembly source program (test.src)

 .CPU 2600A:24

.EXPORT _func

 .SECTION P,CODE,ALIGN=2

 .LINE "/asm/test.c",1

_func: ; function: func

 .LINE 2

 .LINE 5

 .LINE 6

 SUB.L ER0,ER0

 MOV.B #1,R0L

 .LINE 6

L5:

 .LINE 7

 ADD.W R0,E0

 .LINE 6

 INC.W #1,R0

 .LINE 6

 CMP.W #10,R0

 BLE L5:8

 .LINE 8

 MOV.W E0,R0

 .LINE 9

 RTS

 .END

→

730

.DISPSIZE

Description Format: ∆.DISPSIZE∆<sub>=<bit count>[,...]

<sub>={ FBR | XBR | FRG | XRG | FWD | XTN | ALL }

The label field is not used.

Description: .DISPSIZE specifies the default size for the displacement of the branch
instructions, or when the displacement is the forward reference value or the
external reference value for the register indirect with displacement.
This directive is available for displacements which has no specification of
(:8, :16, :24, :32).
<sub> are as follows:

Item Description

FBR Forward reference branch instruction

XBR External reference branch instruction

FRG Register indirect with forward reference displacement

XRG Register indirect with external reference displacement

FWD Specifies FBR and FRG at the same time

XTN Specifies XBR and XRG at the same time

ALL Specifies FBR, XBR, FRG, and XRG at the same time

731

Bit count is as follows:

CPU Output Method*1

H8SX maximum
mode

FBR=8, 16, XBR=8, 16, FRG=16, 32, XRG=16, 32,
FWD=16, XTN=16, ALL=16

H8SX advanced
mode

FBR=8, 16, XBR=8, 16, FRG=16, 32, XRG=16, 32,
FWD=16, XTN=16, ALL=16

H8SX middle mode FBR=8, 16, XBR=8, 16, FRG=16, 32, XRG=16, 32,
FWD=16, XTN=16, ALL=16

H8SX normal mode FBR=8, 16, XBR=8, 16, FRG=16, XRG=16

H8S/2600 advanced
mode

FBR=8, 16, XBR=8, 16, FRG=16, 32, XRG=16, 32,
FWD=16, XTN=16, ALL=16

H8S/2600 normal
mode

FBR=8, 16, XBR=8, 16, FRG=16, XRG=16

H8S/2000 advanced
mode

FBR=8, 16, XBR=8, 16, FRG=16, 32, XRG=16, 32,
FWD=16, XTN=16, ALL=16

H8S/2000 normal
mode

FBR=8, 16, XBR=8, 16, FRG=16, XRG=16

H8/300H advanced
mode

FBR=8, 16, XBR=8, 16, FRG=16, 24, XRG=16, 24,
FWD=16, XTN=16, ALL=16

H8/300H normal
mode

FBR=8, 16, XBR=8, 16, FRG=16, XRG=16

H8/300, H8/300L FBR=8, XBR=8, FRG=16, XRG=16

Note: Underscored values indicate the settings when specification is omitted.
*1: In the H8/300 and the H8/300L, FBR=8, XBR=8, FRG=16, and
 XRG=16 are fixed, so they have no meanings.

The .DISPSIZE directive can be specified more than once.
The specification is valid from the next source statement of this directive.
FBR is valid when the optimize option or the br_relative option is not
specified.

732

Example:
 .CPU 2600A
 .SECTION A,DATA,ALIGN=2

 .DISPSIZE FBR=16 ; [1]
 BRA sym ; Same as BRA sym:16

 . DISPSIZE FBR=8 ; [2]
 BRA sym ; Same as BRA sym:8
sym:
 MOV.W R0,R1

[1]: Sets the displacement size of the forward reference branch instruction to 16 bits.
[2]: Sets the displacement size of the forward reference branch instruction to 8 bits.

733

.PRINT

Description Format: ∆.PRINT∆<output specifier>[,...]

<output specifier>={ LIST | NOLIST | SRC | NOSRC |
 CREF | NOCREF | SCT | NOSCT }
The label field is not used.

Description: .PRINT controls the following output.
(1) Assemble listing
(2) Source program listing
(3) Cross-reference listing
(4) Section information listing

Item

Output
Specifier*1

Assembler Action

list An assemble listing is output.*2 (1)

nolist No assemble listing is output.* 2

src A source program listing is output in the assemble
listing.*3*4

(2)

nosrc No source program listing is output in the assemble
listing.*3*4

cref A cross-reference listing is output in the assemble
listing.*3*5

(3)

nocref No cross-reference listing is output in the assemble
listing.*3*5

sct A section information listing is output in the assemble
listing.*3*6

(4)

nosct No section information listing is output in the assemble
listing.*3*6

Notes: 1. This specification is valid only once.
2. Valid when the list or nolist option is not specified.
3. Valid when the assemble listing is output.
4. Valid when the source or nosource option is not specified.
5. Valid when the cross_reference or nocross_reference option is
 not specified.
6. Valid when the section or nosection option is not specified.

734

If the .PRINT directive is used two or more times in a program with
inconsistent output specifiers, an error occurs.

Example: .PRINT LIST,SRC,NOCREF,NOSCT
;
 .SECTION A,CODE,ALIGN=2
START
 MOV.W R0,R1
 MOV.W R0,R2

 Only a source program listing is output in the assemble listing.

735

.LIST

Description Format: ∆.LIST∆<output specifier>[,...]

∆<output specifier>={ ON |OFF | COND | NOCOND | DEF | NODEF |
 CALL | NOCALL | EXP | NOEXP | STR |
 NOSTR | CODE | NOCODE }
The label field is not used.

Description: .LIST controls output of the source program listing in the following three

ways:
(1) Selects whether or not to output source statements.
(2) Selects whether or not to output source statements related to the

preprocessor function.
(3) Selects whether or not to output object code lines.
Output is controlled by output specifiers as follows:
 Output Specifier

Type Output Not output Object Description

a on off Source
statements

The source statements following this directive

cond nocond Failed condition* Condition-failed .AIF or .AIFDEF directive
statements

def nodef Definition* Macro definition statements
.AREPEAT and .AWHILE definition
statements
.INCLUDE directive statements
.ASSIGNA and .ASSSIGNC directive
statements

call nocall Call* Macro call statements,
.AIF, AIFDEF, and .AENDI directive
statements

exp noexp Expansion* Macro expansion statements
.AREPEAT and .AWHILE expansion
statements

b

str nostr Structured
assembly*

Structured assembly expansion statements

c code nocode Object code
lines*

The object code lines exceeding the source
statement lines

Note: This specification is valid when the show or noshow option is not
specified.

736

.LIST directive statements themselves are not output on the source program
listing.
The specification of the .LIST directive is only valid for the source
statements after the specification.

Example:
 .PRINT list
 ;
 .list off ; [1]
 .include “bbb.h” ;
 .list on ;[2]
 .section A,CODE,ALIGN=2
 START
 MOV.W R0,R1
 MOV.W R0,R2

 The .LIST directive suppresses the output of part of the source statements.
 Source statements between [1] and [2] are not output to the source program listing.

737

.FORM

Description Format: ∆.FORM∆<size specifier>[,...]

<size specifier> = { LIN = <line count> | COL = <column count> }

The label field is not used.

Description: .FORM sets the number of lines per page and columns per line in the
assemble listing.
The line count and column count must be specified as follows:
• The specifications must be constant values, and,

• Forward reference symbols must not appear in the specifications.

Size Specifier

Listing Size

Allowable
Range*3

When Not Specified

LIN=<line count> The specified value
is set to the number
of lines per page.*1

20 to 255 60

COL=
<column count>

The specified value
is set to the number
of columns per line.*2

79 to 255 132

Notes: 1. Valid when the lines option is not specified.
 2. Valid when the columns option is not specified.
 3. When a value less than 20 is specified, 20 is assumed, and when a
 value more than 255 is specified, 255 is assumed, and no error is
 output.

The assembler gives priority to command line option specifications
concerning the number of lines and columns in the assemble listing.
The .FORM directive can be used any number of times in a given source
program.
The specification of size becomes valid starting from the next page of this
directive.

738

Example:

 ∼
 .FORM LIN=60,COL=200 ; Starting with this page, the number of
 ; lines
 ; per page in the assemble listing is 60
 ; lines.
 ; Also, starting with this line, the number
 ; of columns per line in the assemble
 ; listing is 200 columns.

 ∼
 .FORM LIN=55,COL=150 ; Starting with this page, the number of
 ; lines
 ; per page in the assemble listing is 55
 ; lines.
 ; Also, starting with this line, the number
 ; of columns per line in the assemble
 ; listing is 150 columns.
 ∼

739

.HEADING

Description Format: ∆.HEADING∆"<string literal>"

The label field is not used.

Description: .HEADING sets the title in the header for the source program listing.
A string literal of up to 60 characters can be specified as the header.
Even when the number of characters exceeds 60 characters, no error message
is output.
When specifying a string literal, enclose the character with double quotation
marks (“). When a double quotation mark is used as a character, specify two
double quotation marks.
The range of validity for a given use of the .HEADING directive is as
follows:
• When the .HEADING directive is on the first line of a page, it is valid

starting with that page.

• When the .HEADING directive appears on the second or later line of a
page, it is valid starting with the next page.

The .HEADING directive can be used any number of times in a given source
program.

740

Example: ∼
.HEADING """SAMPLE.SRC"" WRITTEN BY YAMADA"

 ∼

"SAMPLE.SRC" WRITTEN BY YAMADA

Header

Source program listing

Page boundary

Second line

Explanatory Figure for the Coding Example

741

.PAGE

Description Format: ∆.PAGE

The label field is not used.

Description: .PAGE inserts a new page in the source program listing.
The .PAGE directive is ignored if it is used on the first line of a page.
.PAGE directive statements themselves are not output to the source program
listing.
This directive is valid when the source program listing is output.

Example: ∼
 .PRINT LIST
 .SECTION A,CODE,ALIGN=2
START
 .MOV.W R0,R1
 .MOV.W R0,R2
;
 .PAGE
 .SECTION B,DATA,ALIGN=2
DAT
 .DATA.W H'0001
 .DATA.W H'0002

∼

742

 4 00000000 0D01 4 MOV.W R0,R1
 5 00000022 0D02 5 MOV.W R0,R2

*** H8S,H8/300 ASSEMBLER Ver. 4.0 *** 07/18/00 21:28:14
 PROGRAM NAME =

 9 00000000 9 .SECTION B,DATA,ALIGN=2
 10 00000000 10 DAT
 11 00000000 0001 11 .DATA.W H'0001
 12 00000002 0002 12 .DATA.W H'0002

Source program listing

New
page

Explanatory Figure for the Coding Example

743

.SPACE

Description Format: ∆.SPACE[∆<line count>]

The label field is not used.

Description: .SPACE outputs the specified number of blank lines to the source program
listing. A single blank line is output if this operand is omitted.
The line count must be specified as follows:
• The specification must be a constant value, and,

• Forward reference symbols must not appear in the specification.

Values from 1 to 50 can be specified as the line count.
If a value less than 1 is specified, 1 is assumed. If a value more than 50 is
specified, 50 is assumed. In these cases, no error message is output.
Nothing is output for the lines output by the .SPACE directive; in particular
line numbers are not output for these lines.
When a new page occurs as the result of blank lines output by the .SPACE
directive, any remaining blank lines are not output on the new page.
.SPACE directive statements themselves are not output to the source program
listing.
This directive is valid when the source program listing is output.

Example: .SECTION A,DATA,ALIGN=2
.DATA.W H'1111
.DATA.W H'2222
.DATA.W H'3333
.DATA.W H'4444 ;Inserts five blank lines at the point
.SPACE 5 ; where the section changes.
.SECTION B,DATA,ALIGN=2

∼

744

*** H8S, H8/300 ASSEMBLER Ver. 4.0 *** 07/18/00 13:35:58
PROGRAM NAME =

 1 00000000 1 .SECTION A,DATA,ALIGN=2
 2 00000000 1111 2 .DATA.L H'1111
 3 00000002 2222 3 .DATA.L H'2222
 4 00000004 3333 4 .DATA.L H'3333
 5 00000006 4444 5 .DATA.L H'4444

 7 7 .SECTION B,DATA,ALIGN=2

~

Source program listing

Explanatory Figure for the Coding Example

745

.PROGRAM

Description Format: ∆.PROGRAM∆<object module name>

The label field is not used.

Description: .PROGRAM sets the object module name.
The object module name is a name that is required by the optimizing linkage
editor to identify the object module.
Object module naming conventions are the same as symbol naming
conventions.
The assembler distinguishes uppercase and lowercase letter in object module
names.
Setting the object module name with the .PROGRAM directive is valid only
once in a given program. The assembler ignores the second and later
specifications of the .PROGRAM directive.
If there is no .PROGRAM specification of the object module name, the
assembler will set a default (implicit) object module name.
The default object module name is the file name of the object file (the object
module output destination).

Example: Object file name

Object module name

PROG

File name
↓

PROG

=

obj

File type

=
·

The object module name can be the same as a symbol used in the program.

Example: .PROGRAM PROG1 ; This statement sets the object module
 ; name to be PROG1.

∼

746

.RADIX

Description Format: ∆.RADIX∆<radix specifier>

<radix specifier> = { B | Q | D | H }

The label field is not used.

Description: .RADIX sets the radix (base) for integer constants with no radix

specification.
This specifier sets the radix (base) for integer constants with no radix
specification.
If hexadecimal (radix specifier H) is specified as the radix for integer
constants with no radix specification, integer constants whose first digit is A
through F must be prefixed with a 0 (zero). (The assembler interprets
expressions that begin with A through F to be symbols.)
Specifications with the .RADIX directive are valid from the point of
specification forward in the program.

Radix Specifier Integer Constant with no Radix

B Binary

Q Octal

D Decimal

H Hexadecimal

When there is no radix specification with the .RADIX directive in a program,
integer constants with no radix specification are interpreted as decimal
constants.

747

Example: 1.
 ∼
 .RADIX D
 X: .EQU 100 ;This 100 is decimal.
 ∼

 .RADIX H
 Y: .EQU 64 ;This 64 is hexadecimal.
 ∼
2.
 ∼
 .RADIX H

 Z: .EQU 0F ; A zero is prefixed to this constant "0F" since it
 ; would be interpreted as a symbol if it were
 ; written as simply "F".
 ∼

.END

Description Format: ∆.END∆<symbol>

The label field is not used.

Description: .END sets the end of the source program and the entry point.
The assembly processing ends when the .END directive is detected.
A symbol specified for an operand is regarded as the entry point.
An externally defined symbol is specified for the symbol.

Example:
 .EXPORT START
 .SECTION P,CODE,ALIGN=2
START:

 ∼
 .END START ;Declares the end of the source program.
 ;Symbol START becomes the entry point.

748

.STACK

Description Format: ∆.STACK∆<symbol> = <stack value>

The label field is not used.

Description: .STACK defines the stack amount for a specified symbol referenced by using
the stack analysis tool.
The stack value for a symbol can be defined only one time; the second and
later specifications for the same symbol are ignored. A multiple of 2 in the
range from H'00000000 to H'FFFFFFFE can be specified for the stack value,
and any other value is invalid.
The stack value must be specified as follows:
• A constant value must be specified.
• Forward reference symbol, external reference symbol, and relative address
 symbol must not be used.

Example: ∼
 .STACK SYMBOL=H'100

 ∼

749

11.4 File Inclusion Function

The file inclusion function allows source files to be included into other source files. The file
included into another file is called an include file.

This assembler provides the .INCLUDE directive to perform file inclusion.

The file specified with the .INCLUDE directive is inserted at the location of the .INCLUDE
directive.

Example:

Source program

 .INCLUDE "FILE.H" Include file FILE.H

 .SECTION CD1,CODE,ALIGN=2 ON: .EQU 1

 MOV #ON,R0 OFF: .EQU 0

↓ ↓ ↓ ↓ ↓ ↓ ↓

 File included result (source list)

 .INCLUDE "FILE.H"

 ON: .EQU 1

 OFF: .EQU 0

 .SECTION CD1,CODE,ALIGN=2

 MOV #ON,R0

~

~

750

.INCLUDE

Description Format: ∆.INCLUDE∆"<file name>"

The label field is not used.

Description: .INCLUDE is the file inclusion assembler directive. If no file extension is
specified, only the file name is used as specified (the assembler does not
assume any default file extension).
The file name can include the directory path name. The directory can be
specified either by the absolute path (path from the root directory) or by the
relative path (path from the current directory).
Included files can include other files. The nesting depth for file inclusion is
limited to 30 levels.
The directory name of the filenames specified by .INCLUDE can be changed
by the include option.

Example: This example assumes the following directory configuration and operations:

dir1 dir2

file1.src file2.h file3.h

\

• Starts the assembler from the root directory (c:\)

• Inputs source file c:\dir1\file1.src

• Makes file2.h included in file1.src

• Makes file3.h included in file2.h

The start command is as follows:

>asm38 c:\dir1\file1.src (RET)

file1.src must have the following include directive:

C:C:C:C:

751

 .INCLUDE "dir2\file2.h" ; \ is the current directory
; (relative path
; specification).

or
 .INCLUDE "\dir2\file2.h" ; Absolute path

; specification

file2.h must have the following inclusion directive:

 .INCLUDE "file3.h" ; \dir2 is the current directory
; (relative path specification).

or
 .INCLUDE "\dir2\file3.h" ; Absolute path

; specification

Notes

When using UNIX, change the backslash (\) in the above example to slash
(/).

752

11.5 Conditional Assembly Function

11.5.1 Overview of the Conditional Assembly Function

The conditional assembly function provides the following assembly operations:

• Replaces a string literal in the source program with another string literal.

• Selects whether or not to assemble a specified part of a source program according to the
condition.

• Iteratively assembles a specified part of a source program.

(1) Preprocessor variables

Preprocessor variables are used to write assembly conditions. Preprocessor variables are of
either integer or character type.

(a) Integer preprocessor variables

Integer preprocessor variables are defined by the .ASSIGNA directive or the assigna
option(these variables can be redefined by the .ASSIGNA directive).

When referencing integer preprocessor variables, insert a backslash (\) and an ampersand
(&) in front of them.

A coding example is shown below:

Example:

 FLAG: .ASSIGNA 1 ; An integer value of 1 is set to FLAG.
 ∼

 .AIF \&FLAG EQ 1 ; MOV R0,R1 is assembled.
 MOV.W R0,R1 ; when FLAG is 1.
 .AENDI

 ∼

(b) Character preprocessor variables

Character preprocessor variables are defined by the .ASSIGNC directive or the assignc
option (these variables can be redefined by the .ASSIGNC directive).

When referencing character preprocessor variables, insert a backslash (\) and an ampersand
(&) in front of them.

A coding example is shown below:

753

Example:

 FLAG: .ASSIGNC "ON" ; String literal ON is set to FLAG.
 ∼
 .AIF "\&FLAG" EQ "ON" ; MOV.W R0,R1 is assembled
 MOV.W R0,R1 ; when FLAG is "ON".
 .AENDI
 ∼

(2) Replacement Symbols

The .DEFINE directive specifies symbols that will be replaced with the corresponding string
literals at assembly. A coding example is shown below.

Example:

 SYM1: .DEFINE "R1"

 ∼

 MOV.W SYM1,R0 ; Replaced with MOV.W R1,R0.
 ∼

754

(3) Conditional Assembly

The conditional assembly function determines whether or not to assemble a specified part of a
source program according to the (specified) conditions. Conditional assembly is classified into
two types: conditional assembly with comparison using relational operators and conditional
assembly with definition of replacement symbols.

(a) Conditional Assembly with Comparison

Selects the part of program to be assembled according to whether or not the specified
condition is satisfied. A coding example is as follows:

.AIF <comparison condition 1>

 <Statements to be assembled when condition 1 is satisfied>

.AELIF <comparison condition 2>

 <Statements to be assembled when condition 2 is satisfied>

.AELSE

 <Statements to be assembled when both conditions are not satisfied>

.AENDI

This part can be omitted.

Example:

 ∼

 .AIF "\&FLAG" EQ "ON"

 MOV.W R0,R02 ; Assembled when FLAG

 MOV.W R1,R3 ; is ON.

 MOV.W R2,R0 ;

 .AELSE

 MOV.W R2,R0 ; Assembled when FLAG

 MOV.W R3,R1 ; is not ON.

 .AENDI

 ∼

755

(b) Conditional Assembly with Definition

Selects the part of program to be assembled by whether or not the specified replacement
symbol has been defined. A coding example is as follows:

.AIFDEF <definition condition>

 <Statements to be assembled when the specified replacement symbol is defined>

.AELSE

 <Statements to be assembled when the specified replacement symbol is not defined>

.AENDI

This part can be omitted.

Example:

 ∼

 .AIFDEF FLAG

 MOV.W R0,R3 ; Assembled when FLAG is defined with

 MOV.W R1,R4 ; the .DEFINE directive before the .AIFDEF

 MOV.W R2,R5 ; directive in the program.

 .AELSE

 MOV.W R3,R0 ; Assembled when FLAG is not defined with

 MOV.W R4,R1 ; the .DEFINE directive before the .AIFDEF

 MOV.W R5,R2 ; directive in the program.

 .AENDI

 ∼

756

(4) Iterated Expansion

A part of a source program can be iteratively assembled the specified number of times. A
coding example is shown below.

Example:

 ∼

 .AREPEAT <count>

 <Statements to be iterated>

 .AENDR

 ∼

Example:

 MOV.B R1L,R1H

 .AREPEAT 2 ; The iterated count is specified.

 ADD.B R0L,R1L

 ADD.B R2L,R3L

 .AENDR

 After expansion

 MOV.B R1L,R1H

 ADD.B R0L,R1L

 ADD.B R2L,R3L

 ADD.B R0L,R1L

 ADD.B R2L,R3L

Expanded part

 ADD.B R3L,R1L

Source statements between .AREPEAT and .AENDR are iterated twice by expansion, and are

assembled.

757

(5) Conditional Iterated Expansion

A part of a source program can be iteratively assembled while the specified condition is
satisfied. A coding example is shown below.

 ∼

 .AWHILE <condition>

 <Statements to be iterated>

 .AENDW

 ∼

Example:

COUNT .ASSIGNA 2 ; The iterated count is specified.
 .AWHILE \&COUNT NE 0 ; Expanded while COUNT is not 0.
 ADD.B R0L,R1L
 ADD.B R0L,R2L
 INC.B R0L
COUNT .ASSIGNA \&COUNT-1 ; COUNT minus 1.
 .AENDW
 MOV.B R0L,@SP

 After expansion

 MOV.B R0H,R0L

 ADD.B R0L,R1L
 ADD.B R2L,R3L
 INC.B R0L
COUNT .ASSIGNA \&COUNT-1
 ADD.B R0L,R1L
 ADD.B R0L,R2L
 INC.B R0L
COUNT .ASSIGNA \&COUNT-1

Expanded part

 MOV.B R0L,@SP

Source statements between .AWHILE and .AENDW are iterated while COUNT is not zero by
expansion, and are assembled.

758

11.5.2 Conditional Assembly Directives

This assembler provides the conditional assembly directives shown in table 11.15.

Table 11.15 Conditional Assembly Directives

Category Mnemonic Function

.ASSIGNA Defines an integer preprocessor variable. The defined
variable can be redefined.

.ASSIGNC Defines a character preprocessor variable. The defined
variable can be redefined.

Variable definition

.DEFINE Defines a preprocessor replacement string literal.

.AIF

.AELIF

.AELSE

.AENDI

Determines whether or not to assemble a part of a source
program according to the specified condition. When the
condition is satisfied, the statements after the .AIF are
assembled. When not satisfied, the statements after
the .AELIF or .AELSE are assembled.

Conditional branch

.AIFDEF

.AELSE

.AENDI

Determines whether or not to assemble a part of a source
program according to the replacement symbol definition.
When the replacement symbol is defined, the statements
after the .AIFDEF are assembled. When not defined, the
statements after the .AELSE are assembled.

.AREPEAT

.AENDR

Repeats assembly of a part of a source program
(between .AREPEAT and .AENDR) the specified number
of times.

.AWHILE

.AENDW

Assembles a part of a source program (between .AWHILE
and .AENDW) iteratively while the specified condition is
satisfied.

Iterated expansion

. EXITM Terminates .AREPEAT or .AWHILE iterated expansion.

Others .AERROR Performs error processing in preprocessor expansion.

 .ALIMIT Specifies the maximum count of .AWHILE expansion.

759

.ASSIGNA

Description Format: <preprocessor variable>[:]∆. ASSIGNA ∆ <value>

Description: .ASSIGNA defines a value for an integer preprocessor variable. The syntax
of integer preprocessor variables is the same as that for symbols. An integer
preprocessor variable can be defined with up to 32 characters, and uppercase
and lowercase letters are distinguished.
The preprocessor variables defined with the .ASSIGNA directive can be
redefined with the .ASSIGNA directive.
The value to be assigned has the following format:

• Constant (integer constant and character constant)

• Defined preprocessor variable

• Expression using the above as terms

 Defined preprocessor variables are valid in the source statements following
the directive.
Defined preprocessor variables can be referenced in the following locations:

• .ASSIGNA directive

• .ASSIGNC directive

• .AIF directive

• .AELIF directive

• .AREPEAT directive

• .AWHILE directive

• Macro body (source statements between .MACRO and .ENDM)

 When referencing integer preprocessor variables, insert a backslash (\) and an
ampersand (&) in front of them.
\&<preprocessor variable>[']
To clearly distinguish the preprocessor variable name from the rest of the
source statement, an apostrophe (') can be added.
When a preprocessor string literal is defined by a command line option,
the .ASSIGNA directive specifying the preprocessor variable having the
same name as the string literal is invalidated.

760

Example:

FLAG .ASSIGNA 1 ; FLAG is set to 1.

;

 .SECTION A,CODE,ALIGN=2

START

 .AIF \&FLAG EQ 1 ; Same as .AIF 1 EQ 1.

 MOV.W R0,R2

 .AENDI

 .AIF \&FLAG EQ 2 ; Same as .AIF 1 EQ 2.

 MOV.W R1,R2

 .AENDI

;

FLAG .ASSIGNA 2 ; FLAG is changed to 2.

;

 .AIF \&FLAG EQ 1 ; Same as .AIF 1 EQ 1.

 MOV.W R0,R2

 .AENDI

 .AIF \&FLAG EQ 2 ; Same as .AIF 1 EQ 2.

 MOV.W R1,R2

 .AENDI

Integer preprocessor variable FLAG is referenced by .AIF.

761

.ASSIGNC

Description Format: <preprocessor variable>[:]∆.ASSIGNC∆"<string literal>"

Description: .ASSIGNC defines a string literal for a character preprocessor variable. The
syntax of character preprocessor variables is the same as that for symbols. A
character preprocessor variable can be defined with up to 32 characters, and
uppercase and lowercase letters are distinguished.
The preprocessor variables defined with the .ASSIGNC directive can be
redefined with the .ASSIGNC directive.
String literals are specified by characters or preprocessor variables enclosed
with double quotation marks (").
Defined preprocessor variables are valid in the source statements following
the directive.
Defined preprocessor variables can be referenced in the following locations:

• .ASSIGNA directive

• .ASSIGNC directive

• .AIF directive

• .AELIF directive

• .AREPEAT directive

• .AWHILE directive

• Macro body (source statements between .MACRO and .ENDM)

 When referencing character preprocessor variables, insert a backslash (\) and
an ampersand (&) in front of them.
\&<preprocessor variable>[']
To clearly distinguish the preprocessor variable name from the rest of the
source statement, an apostrophe (') can be added.
When a preprocessor string literal is defined by a command line option,
the .ASSIGNC directive specifying the preprocessor variable having the
same name as the string literal is invalidated.

762

Example:

FLAG1 .ASSIGNC "ON" ; FLAG1 is set to ON.

;

 .SECTION A,CODE,ALIGN=2

START

 .AIF "\&FLAG1" EQ "ON" ; Same as .AIF “ON” EQ “ON”.

 MOV.W R0,R2

 .AENDI

 .AIF "\&FLAG1" EQ "OFF" ; Same as .AIF “ON” EQ “OFF”.

;

FLAG2 .ASSIGNC "OFF" ; FLAG is changed to string literal OFF.

;

 .AIF "\&FLAG2" EQ "ON" ; Same as .AIF “ON” EQ “ON”

 MOV.W R3,R5

 .AENDI

 .AIF "\&FLAG2" EQ "OFF" ; Same as .AIF “OFF” EQ “OFF”.

 MOV.W R4,R5

 .AENDI

FLAG .ASSIGNC "\&FLAG1' \&FLAG2" ; "" is used to distinguish between FLAG and AND.
 ; FLAG becomes "ON AND OFF" as a result.

Character preprocessor variable FLAG is referenced by .AIF.

763

.DEFINE

Description Format: <symbol>[:]∆.DEFINE∆"<replacement string literal>"

Description: .DEFINE specifies that the symbol is replaced with the corresponding string
literal.
The differences between the .DEFINE directive and the .ASSIGNC directive
are as follows.
• The symbol defined by the .ASSIGNC directive can only be used in the

preprocessor statement; the symbol defined by the .DEFINE directive can
be used in any statement.

• The symbols defined by the .ASSIGNA and the .ASSIGNC directives are
referenced by the "\&symbol" format; the symbol defined by
the .DEFINE directive is referenced by the "symbol" format.

• The .DEFINE symbol cannot be redefined.
• The .DEFINE directive specifying a symbol is invalidated when the same

replacement symbol has been defined by a command line option.

Example:

 SYM1: .DEFINE "R1"

 ∼

 MOV.W SYM1,R0 ; Replaced with MOV.W R1,R0.

 ∼

 A hexadecimal number starting with an alphabetical character a to f or A to F
will be replaced when the same string literal is specified as a replacement
symbol by the .DEFINE directive. Add 0 to the beginning of the number to
stop replacing such number.
A0: .DEFINE "0"
 MOV.W #H'A0,R0 ; Replaced with MOV.B #H'0,R0.
 MOV.W #H'0A0,R0 ; Not replaced.

 A radix indication (B', Q', D', or H') will also be replaced when the same
string literal is specified as a replacement symbol by .DEFINE directive.
When specifying a symbol having only one character, such as B, Q, D, H, b,
q, d, or h, make sure that the corresponding radix indication is not used.
B: .DEFINE "H"

 MOV.W #B'10,R0 ; Replaced with MOV.W #H'10,R0.

764

Remarks: The replacement is not applied to
the .AENDI, .AENDR, .AENDW, .AIFDEF, .END, .ENDM, .ENDF, .EN
DI, .ENDS, and .ENDW directives.

.AIF, .AELIF, .AELSE, .AENDI

Description Format: ∆.AIF∆<term1>∆<relational operator>∆<term2>
 <Source statements assembled if the AIF condition is satisfied>
[∆.AELIF∆<term1>∆<relational operator>∆<term2>
 <Source statements assembled if the AELIF condition is satisfied>]
[∆.AELSE
<Source statements assembled if all the conditions are not satisfied>]
 .AENDI

The label field is not used.

Description: .AIF, .AELIF, .AELSE, and .AENDI select whether or not to assemble
source statements according to the condition specified. The .AELIF
and .AELSE directives can be omitted.
.AELIF can be specified repeatedly between .AIF and .AELSE.
The operand must be specified as follows:
.AIF: Condition to be compared.
.AELIF: Condition to be compared.
.ALESE: Operand field cannot be used.
.AENDI: Operand field cannot be used.

 Terms are specified with numeric values or string literals. However, when a
numeric value and a string literal are compared, the condition always fails.
Numeric values are specified by constants or preprocessor variables.
String literals are specified by characters or preprocessor variables enclosed
with double quotation marks ("). When a double quotation mark is used as a
character, specify two double quotation marks.
The following relational operators can be used:
EQ: term1 = term2

 NE: term1 ≠ term2
 GT: term1 > term2

 LT: term1 < term2

 GE: term1 ≥ term2
 LE: term1 ≤ term2

Note: For string literals, only EQ and NE conditions can be used.

765

Example:

 ∼

 .AIF \&TYPE EQ 1

 MOV.W R0,R3 ; These statements

 MOV.W R1,R4 ; are assembled when TYPE is 1.

 .AELIF \&TYPE EQ 2

 MOV.W R0,R2 ; These statements

 MOV.W R1,R3 ; are assembled when TYPE is 2.

 .AELSE

 MOV.W R0,R4 ; These statements

 MOV.W R1,R5 ; are assembled when TYPE is not 1 nor 2.

 .AENDI

 ∼

766

.AIFDEF, .AELSE, .AENDI

Description Format: ∆.AIFDEF∆<replacement symbol>
 <statements to be assembled when the specified replacement symbol is
defined>
[∆.AELSE
 <statements to be assembled when the specified replacement symbol is not
defined>]
 .AENDI

The label field is not used.
Operation: Enter the .AIFDEF, .AELSE (can be omitted), or .AENDI.

Description: .AIFDEF, .AELSE, and .AENDI select whether or not to assemble source
statements according to the replacement symbol definition.
.AELSE can be omitted.
The operand must be specified as follows:
.AIFDEF: The condition to be defined.
.AELSE: The operand field cannot be used.
.AENDI: The operand field cannot be used.

 The replacement symbol can be defined by the .DEFINE directive or the
define option.
When the specified replacement symbol is defined by the command line
option or defined before being referenced by these directives, the condition is
regarded as satisfied. When the replacement symbol is defined after being
referenced by these directives or is not defined, the condition is regarded as
unsatisfied.

767

Example:

 ∼

 .AIFDEF FLAG

 MOV.W R0,R3 ; These statements are assembled when

 MOV.W R1,R4 ; FLAG is defined by the .DEFINE directive.

 .AELSE

 MOV.W R0,R2 ; These statements are assembled when

 MOV.W R1,R3 ; FLAG is not defined by the .DEFINE directive.

 .AENDI

 ∼

768

.AREPEAT, .AENDR

Description Format: ∆.AREPEAT∆<count> <source statements iteratively assembled>
∆.AENDR

The label field is not used.

Description: .AREPEAT and .AENDR assemble source statements by iteratively
expanding them the specified number of times.
The operand must be specified as follows.

 .AREPEAT: The number of iterations.
.AENDR: The operand field cannot be used.

 The source statements between the .AREPEAT and .AENDR directives are
iterated the number of times specified with the .AREPEAT directive. (Note
that the source statements are simply copied the specified number of times,
and therefore, the operation is not a loop at program execution.)
Counts are specified by constants or preprocessor variables.
Nothing is expanded if a value of 0 or smaller is specified.

Example:

 MOV.B @SP,R0L
 .AREPEAT 3

 SHAL.B R0L

 .AENDR

 MOV.B R0L,@SP

 Expanded results are as follows:

 MOV.B @SP,R0L
 SHAL.B R0L
 SHAL.B R0L
 SHAL.B R0L
 MOV.B R0L,@SP

769

.AWHILE, .AENDW

Description Format: ∆.AWHILE∆<term1>∆<relational operator>∆<term2>
<Source statements iteratively assembled>
∆.AENDW

The label field is not used.

Description: .AWHILE and .AENDW assemble source statements by iteratively
expanding them while the specified condition is satisfied.
The operand must be specified as follows.
.AWHILE: The condition to iteratively expand source statements.
.AENDW: The operand field cannot be used.

 The source statements between the .AWHILE and .AENDW directives are
iterated while the condition specified with the .AWHILE directive is
satisfied. Note that the source statements are simply copied iteratively, and
therefore, the operation is not a loop at program execution.

 Terms are specified with numeric values or string literals. However, when a
numeric value and a string literal are compared, the condition always fails.

 Numeric values are specified by constants or preprocessor variables.

 String literals are specified by characters or preprocessor variables enclosed
with double quotation marks ("). When a double quotation mark is used as a
character, specify two double quotation marks.

 Conditional iterated expansion terminates when the condition finally fails.

 If a condition which never fails is specified, source statements are iteratively
expanded for 65,535 times or until the maximum count of statement
expansion specified by the .ALIMIT directive is reached. Accordingly, the
condition for this directive must be carefully specified.

 The following relational operators can be used:

 EQ: term1 = term2

 NE: term1 ≠ term2
 GT: term1 > term2

 LT: term1 < term2

 GE: term1 ≥ term2
 LE: term1 ≤ term2

Note: For string literals, only EQ and NE conditions can be used.

770

Example:

; The source statements are iteratively expanded while COUNT is not zero.

COUNT .ASSIGNA 2
 .AWHILE \&COUNT NE 0 ; COUNT is set to 2.
 ADD.B R0L,R1L ; Condition is satisfied when COUNT is not zero.
 ADD.B R0L,R2L
 INC.B R0L
COUNT .ASSIGNA \&COUNT-1 ; COUNT minus 1.
 .AENDW

; The source statements are iteratively expanded while STOP is 10 or less.

STOP .ASSIGNA 0
 .AWHILE \&STOP LE 10 ; 0 is set to STOP.
 ADD.B R0L,R1L ; Condition is satisfied when STOP is 10 or less.
 ADD.B R0L,R2L
 INC.B R0L
STOP .ASSIGNA \&STOP+3 ; 3 is added to STOP.
 .AENDW

771

.EXITM

Description Format: ∆.EXITM

The label field is not used.

Description: .EXITM terminates an iterated expansion (.AREPEAT to .AENDR) or a
conditional iterated expansion (.AWHILE to .AENDW).

 Each expansion is terminated when this directive appears.

 This directive is also used to exit from macro expansions. The location of
this directive must be specified carefully when macro instructions and
iterated expansion are combined.

Example:

 ∼

COUNT .ASSIGNA 0 ; 0 is set to COUNT.

 .AWHILE 1 EQ 1 ; An infinite loop (condition is always satisfied) is

 ; specified.

 ADD.W R0,R1

 ADD.W R2,R3

COUNT .ASSIGNA \&COUNT+1 ; 1 is added to COUNT.

 .AIF \&COUNT EQ 2 ; Condition: COUNT = 2

 .EXITM ; When the condition is satisfied

 .AENDI ; .AWHILE expansion is terminated.

 .AENDW

 ∼

When COUNT is updated and satisfies the condition specified with the .AIF directive, .EXITM is
assembled. When .EXITM is assembled, .AWHILE expansion is terminated.

The expansion results are as follows:

 ADD.W R0,R1 When COUNT is 0

 ADD.W R2,R3

 ADD.W R0,R1 When COUNT is 1

 ADD.W R2,R3

After this, COUNT becomes 2 and expansion is terminated.

772

.AERROR

Description Format: ∆.AERROR

The label field is not used.

Description: When .AERROR is assembled, it generates error 670 and terminates the
assembler abnormally.

 This directive is also used to check the value of the preprocessor variable.

Example:

 ∼

 .AIF \&FLAG EQ 1

 ADD.W R0,R1

 INC.W R0

 .AELSE

 .AERROR ; When \&FLAG is not 1, an error occurs.

 .AENDI
 ∼

773

.ALIMIT

Description Format: ∆.ALIMIT∆<count>

The label field is not used.

Description: . ALIMIT determines the maximum count for the conditional iterated
expansion (.AWHILE to .AENDW).

 <count> must be specified in the following format:

• Constant (integer constant, character constant)

• Defined preprocessor variable

• Expression in which a constant or a defined preprocessor variable is used
 as the term

 During conditional iterated (.AWHILE to .AENDW) expansion, if the

statement expansion count exceeds the maximum value specified by
the .ALIMIT directive, warning 854 is generated and the expansion is
terminated.

 If the .ALIMIT directive is not specified, the maximum count is 65,535. The
maximum count of iteration expansion can be changed by respecifying this
directive. The respecification is valid for the source statements after this
directive.

Example:

COUNT .ASSIGNA 3 ; 3 is set to COUNT.

 .ALIMIT 10 ; 10 is specified as the maximum count.

 .AWHILE \&COUNT NE 4

 ADD.W R0,R1 ; [1]

 ADD.W R0,R1 ; [1]

 INC.W R0 ; [1]

COUNT .ASSIGNA \&COUNT-1 ; [1]

 .AENDW

[1] is expanded while COUNT is not 4. After expanding 10 times, the warning 854 is output, and
the iterative expansion is terminated.

774

11.6 Macro Function

11.6.1 Overview of the Macro Function

The macro function allows commonly used sequences of instructions to be named and defined as
one macro instruction. This is called a macro definition. Macro instructions are defined as follows:

 ∼

 .MACRO <macro name>

 <macro body>

 .ENDM

 ∼

A macro name is the name assigned to a macro instruction, and a macro body is the statements to
be expanded as the macro instruction.

Using a defined macro instruction by specifying the name is called a macro call. Macro call is as
follows:

 ∼

 <defined macro name>

 ∼

An example of macro definition and macro call is shown below.

Example:

 ∼
 .MACRO SUM ; Processing to obtain the sum of R1, R2,
 ADD.W R2,R1 ; and R3 is defined as macro instruction SUM.
 ADD.W R3,R1
 .ENDM
 ∼

 SUM ; This statement calls macro instruction SUM.
 ; Macro body ADD.W R2,R1
 ; ADD.W R3,R1
 ; is expanded from the macro instruction.

775

Parts of the macro body can be modified when expanded by the following procedure:

(1) Macro definition

Define arguments after the macro name in the .MACRO directive.

Use the arguments in the macro body. Arguments must be identified in the macro body by
placing a backslash (\) in front of them.

(2) Macro call

Specify macro parameters in the macro call.

When the macro instruction is expanded, the arguments are replaced with their corresponding
macro parameters.

Example:

 ∼

 .MACRO SUM ARG1 ; Argument ARG1 is defined.

 MOV.W R1,\ARG1 ; ARG1 is referenced in the macro body.

 ADD.W R2,\ARG1

 ADD.W R3,\ARG1

 .ENDM

 ∼

 SUM R0 ; This statement calls macro instruction SUM

 ; specifying macro parameter R0.

 ; The argument in the macro body is

 ; replaced with the macro parameter, and

 ; ADD.W R1,R0

 ; ADD.W R2,R0

 ; ADD.W R3,R0 is expanded.

776

11.6.2 Macro Function Directives

This assembler provides the following macro function directives.

Table 11.16 Macro Function Directives

Directive Description

.MACRO

.ENDM

Defines a macro instruction.

.EXITM Terminates macro instruction expansion. Refer to section 11.5.2, .EXITM.

777

.MACRO, .ENDM

Description Format: ∆.MACRO∆<macro name>[∆<argument>[,...]]
∆.ENDM

<argument>: <argument>[=<default argument>]

The label field is not used.

Description: .MACRO and .ENDM define a macro instruction (a sequence of source
statements that are collectively named and handled together).

 Naming as a macro instruction the source statements (macro body) between
the .MACRO and .ENDM directives is called a macro definition.

 The operand must be specified as follows:

 .MACRO: Macro instruction, argument, or default (can be omitted)

 .ENDM: Operand field cannot be used.

 (1) Macro name

 Macro names are the names assigned to macro instructions.

 Arguments are specified so that parts of the macro body can be replaced by
specific parameters at expansion. Arguments are replaced with the string
literals (macro parameters) specified at macro expansion (macro call).

 In the macro body, arguments are specified for replacement. The syntax of
argument is macro body is as follows:
\<argument name>[']

 To clearly distinguish the argument name from the rest of the source
statement, an apostrophe (') can be added.

 (2) Argument

 Defaults for arguments can be specified in macro definitions. The default
specifies the string literal to replace the argument when the corresponding
macro parameter is omitted in a macro call.

 The syntax of the argument is the same as that of symbol. The maximum
length of the argument is 32 characters, and uppercase and lowercase letters
are distinguished.

778

(3) Default argument

 The default must be enclosed with double quotation marks (") or angle
brackets (<>) if any of the following characters are included in the default.

• Space

• Tab

• Comma (,)

• Semicolon (;)

• Double quotation marks (")

• Angle brackets (< >)

 The assembler inserts defaults at macro expansion by removing the double
quotation marks or angle brackets that enclose the string literals.

 (4) Restrictions

 Macros cannot be defined in the following locations:

• Macro bodies (between .MACRO and .ENDM directives)

• Between .AREPEAT and .AENDR directives

• Between .AWHILE and .AENDW directives

 The .END directive cannot be used within a macro body.

 No symbol can be inserted in the label field of the .ENDM directive.
The .ENDM directive is ignored if a symbol is written in the label field, but
no error is generated in this case.

779

Example:

; Processing to obtain the sum of R3, R4, R5 is defined as macro instruction SUM.

 ∼

 .MACRO SUM

 MOV.W R3,R1

 ADD.W R4,R1

 ADD.W R5,R1

 .ENDM

 ∼

 SUM ; This statement calls macro instruction SUM

 ; Macro body MOV.W R3,R1

 ; ADD.W R4,R1

 ; ADD.W R5,R1 is expanded.

; Processing to output the sum of arguments P1, P2, and P3 is defined as macro
instruction TOTAL.

 ∼

 .MACRO TOTAL P1,P2,P3

 MOV.W \P1,R0

 ADD.W \P2,R0

 ADD.W \P3,R0

 .ENDM

 ∼

 TOTAL R1,R2,R3 ; This statement calls macro instruction TOTAL.

 ; Macro body MOV.W R1,R0

 ; ADD.W R2,R0

 ; ADD.W R3,R0 is expanded.

780

11.6.3 Macro Body

The source statements between the .MACRO and .ENDM directives are called a macro body. The
macro body is expanded and assembled by a macro call.

(1) Argument reference

Arguments are used to specify the parts to be replaced with macro parameters at macro
expansion.

The syntax of argument reference in macro bodies is as follows:

\<argument name>[']

To clearly distinguish the argument name from the rest of the source statement, add an
apostrophe (').

Example:

 .MACRO PLUS1 P,P1 ; P and P1 are arguments.

 ADD #1,\P1 ; Argument P1 is referenced.

 .SDATA "\P'1" ; Argument P is referenced.

 .ENDM

 PLUS1 R,R1 ; PLUS1 is expanded.

 ∼

Expanded results are as follows:

 ADD.W #1,R1 ; Argument P1 is referenced.

 .SDATA "R1" ; Argument P is referenced.

781

(2) Preprocessor variable reference (.ASSIGNA, .ASSIGNC)

Preprocessor variables can be referenced in a macro body.

The syntax for preprocessor variable reference is as follows:

\&<preprocessor variable name>[']

To clearly distinguish the preprocessor variable name from the rest of the source statement,
add an apostrophe (').

Example:

 .MACRO PLUS1

 ADD #1,R\&V1 ; Preprocessor variable V1 is referenced.

 .SDATA "\&V'1" ; Preprocessor variable V is referenced.

 .ENDM

V: .ASSIGNC "R" ; Preprocessor variable V is defined.

V1: .ASSIGNA 1 ; Preprocessor variable V1 is defined.

 PLUS1 ; PLUS1 is expanded.

Expanded results are as follows:

 ADD #1,R1 ; Preprocessor variable V1 is referenced.

 .SDATA "R1" ; Preprocessor variable V is referenced.

(3) Macro generation number

The macro generation number facility is used to avoid the problem that symbols used within a
macro body will be multiply defined if the macro is expanded multiple times. To avoid this
problem, specify the macro generation number marker as part of any symbol used in a macro.
This will result in symbols that are unique to each macro call.

The macro generation number marker is expanded as a 5-digit decimal number (between
00000 and 99999) unique to the macro expansion.

The syntax for specifying the macro generation number marker is as follows:

\@

Two or more macro generation number markers can be written in a macro body, and they will
be expanded to the same number in one macro call.

Because macro generation number markers are expanded to numbers, they must not be written
at the beginning of symbol names.

782

Example:

 .MACRO MCO,Rn

 MOV.W \Rn,\Rn

 BEQ LAB\@:8

 MOV.W #H’0,\Rn

LAB\@: INC.W \Rn

 .ENDM

 MCO R1

;

 MCO R2

Expanded results are as follows:

 MOV.W R1,R1

 BEQ LQB00000:8

 MOV.W #H’0,R1

LAB00000:

 INC.W R1

;

 MOV.W R2,R2

 BEQ LQB00001:8

 MOV.W #H’0,R2

LAB00001:

 INC.W R2

; Different symbols are created each time MCO is
; expanded.

783

(4) Macro replacement processing exclusion

When a backslash (\) appears in a macro body, it specifies macro replacement processing.
Therefore, a means for excluding this macro processing is required when it is necessary to use
the backslash as an ASCII character.

The syntax for macro replacement processing exclusion is as follows:

\(<macro replacement processing excluded string literal>)

The backslash and the parentheses will be removed in macro processing.

Example:

 .MACRO BACK_SLASH_SET

 \(MOV.W #"\",R0) ; \ is expanded as an ASCII character.

 .ENDM

 BACK_SLASH_SET

Expanded results are as follows:

 MOV.W #"\",R0 ; \ is expanded as an ASCII character.

(5) Comment in macro

Comments in macro bodies can be coded as normal comments or as macro internal comments.
When comments in the macro body are not required in the macro expansion code, those
comments can be coded as macro internal comments to suppress their expansion.

The syntax for macro internal comments is as follows:

\;<comment>

Example:

 .MACRO COMMENT_IGNORE Rn

 MOV.W \Rn,@-SP \; Saves the \Rn data

 .ENDM

 COMMENT IGNORE_R1

Expanded results are as follows (the comment is not expanded):

 MOV.W R1,@-SP

784

(6) String literal manipulation functions

String literal manipulation functions can be used in a macro body. The following string literal
manipulation functions are provided.

.LEN String literal length.

.INSTR String literal search.

.SUBSTR String literal extraction.

11.6.4 Macro Call

Expanding a defined macro instruction is called a macro call. The syntax for macro calls is as
follows:

Description Format:

[<symbol>[:]]•∆<macro name>[∆<macro parameter> [,...]]
<macro parameter>: [=<argument name>]=<string literal>

The macro name must be defined (.MACRO) before a macro call. String literals must be specified
as macro parameters to replace arguments at macro expansion. The arguments must be declared in
the macro definition with .MACRO.

Description:

1. Macro parameter specification

Macro parameters can be specified by either positional specification or keyword specification.

2. Positional specification

The macro parameters are specified in the same order as that of the arguments declared in the
macro definition with .MACRO.

3. Keyword specification

Each macro parameter is specified following its corresponding argument, separated by an
equal sign (=).

4. Macro parameter syntax

Macro parameters must be enclosed with double quotation marks (") or angle brackets (<>) if
any of the following characters are included in the macro parameters:

 Space

 Tab

 Comma (,)

 Semicolon (;)

 Double quotation marks (")

 Angle brackets (< >)

785

Macro parameters are inserted by removing the double quotation marks or angle brackets that
enclose string literals at macro expansion.

Example:

 .MACRO SUM FROM=0, TO=6 ; Macro instruction SUM and arguments
 ; FROM and TO are defined.
 MOV.W R\FROM,R0
 COUNT .ASSIGNA \FROM+1
 .AWHILE \&COUNT LE \TO
 AND.W R\&COUNT,R0 ; Macro body is coded using arguments
 COUNT .ASSIGNA \&COUNT+1
 .AENDW
 .ENDW

 SUM 0,3 ; Both will be expanded into same statements.
 SUM TO=3 ;

Expanded results are as follows (the arguments in the macro body are replaced with macro
parameters):

 MOV.W R0,R0

 AND.W R1,R0

 AND.W R2,R0

 AND.W R3,R0

786

11.6.5 String Literal Manipulation Functions

This assembler provides the string literal manipulation functions listed in table 11.17.

Table 11.17 String Literal Manipulation Functions

Function Description

.LEN Counts the length of a string literal.

.INSTR Searches for a string literal.

.SUBSTR Extracts a string literal.

787

.LEN

Description Format: .LEN[∆]("<string literal>")

Description: .LEN counts the number of characters in a string literal and replaces itself
with the number of characters in decimal with no radix.

 When specifying a string literal, enclose the character with double quotation
marks ("). When a double quotation mark is used as a character, specify two
double quotation marks.

 Macro arguments and preprocessor variables can be specified in the string
literal as shown below.

 .LEN("\<argument>")

 .LEN("\&<preprocessor variable>")

 This function can only be used within a macro body (between .MACRO
and .ENDM directives).

Example:

 ∼

 .MACRO RESERVE_LENGTH P1

 .SRES .LEN("\P1")

 .ENDM

 RESERVE_LENGTH ABCDEF

 RESERVE_LENGTH ABC

Expanded results are as follows:

 .SRES 6 ; “ABCDEF” has six characters.

 .SRES 3 ; “ABC” has three characters.

788

.INSTR

Description Format: .INSTR[∆]("<string literal 1>","<string literal 2>"
[,<start position>])

Description: .INSTR searches string literal 1 for string literal 2, and replaces itself with
the numerical value of the position (the top of character’s position of string is
0) of the found in decimal with no radix. .INSTR is replaced with –1 if string
literal 2 does not appear in string literal 1.

 When specifying a string literal, enclose the character with double quotation
marks ("). When a double quotation mark is used as a character, specify two
double quotation marks.

 The <start position> parameter specifies the search start position as a
numerical value, with 0 indicating the start of string literal 1. Zero is used as
default when this parameter is omitted.

 Macro arguments and preprocessor variables can be specified in the string
literals and as the start position as shown below.

 .INSTR("\<argument>", ...)

 .INSTR("\&<preprocessor variable>", ...)

 This function can only be used within a macro body (between the .MACRO
and .ENDM directives).

Example:

 .MACRO FIND_STR P1

 .DATA.W .INSTR("ABCDEFG","\P1",0)

 .ENDM

 FIND_STR CDE

 FIND_STR H

Expanded results are as follows:

 .DATA.W 2 ; The start position of “CDE” is 2 (0 indicating the

 ; beginning of the string) in “ABCDEFG”

 .DATA.W -1 ; “ABCDEFG” includes no “H”.

789

.SUBSTR

Description Format: .SUBSTR[∆]("<string literal>",<start position>,<extraction length>)

Description: .SUBSTR extracts from the specified string literal a substring starting at the
specified start position of the specified length. .SUBSTR is replaced with the
extracted string literal enclosed with double quotation marks (").
When specifying a string literal, enclose the character with double quotation
marks ("). When a double quotation mark is used as a character, specify two
double quotation marks.
The value of the extraction start position must be 0 or greater. The value of
the extraction length must be 1 or greater.
If illegal or inappropriate values are specified for the <start position> or
<extraction length> parameters, this function is replaced with a space (" ").
Macro arguments and preprocessor variables can be specified in the string
literal, and as the start position and extraction length parameters as shown
below.
.SUBSTR("\<argument>", ...)
.SUBSTR("\&<preprocessor variable>", ...)
This function can only be used within a macro body (between the .MACRO
and .ENDM directives).

Example:

 .MACRO RESERVE_STR P1=0,P2

 .SDATA .SUBSTR("ABCDEFG",\P1,\P2)

 .ENDM

 RESERVE_STR 2,2

 RESERVE_STR ,3 ; Macro parameter P1 is omitted.

Expanded results are as follows:

 .SDATA "CD"

 .SDATA "ABC"

790

11.7 Overview of Structured Assembly

The structured assembly functions provided by this assembler expand instructions which perform
testing and iteration.

Table 11.18 lists the conditions for the condition codes that are used for the structured assembly
directives.

Table 11.18 Condition Codes

Item

Condition
Codes

Comparison Type

Condition Code
Specification Type

1 <EQ> <term 1> = <term 2> Z=1

2 <NE> <term 1> ≠ <term 2> Z=0

3 <GT> <term 1> > <term 2> (signed comparison) Zv(N⊕ V)=0

4 <LT> <term 1> < <term 2> (signed comparison) N⊕ V=1

5 <GE> <term 1> ≥ <term 2> (signed comparison) N⊕ V=0

6 <LE> <term 1> ≤ <term 2> (signed comparison) Zv(N⊕ V)=1

7 <HI> <term 1> > <term 2> (unsigned comparison) CvZ=0

8 <LO> <CS> <term 1> < <term 2> (unsigned comparison) C=1

9 <HS> <CC> <term 1> ≥ <term 2> (unsigned comparison) C=0

10 <LS> <term 1> ≤ <term 2> (unsigned comparison) CvZ=1

11 <VC> V=0

12 <VS> V=1

13 <PL> N=0

14 <MI> N=1

15 <T> Always true

16 <F> Always false

Notes: N ... The CCR (condition code register) N (negative) flag
 Z The CCR Z (zero) flag
 V The CCR V (overflow) flag

 C ... The CCR C (carry) flag
 v Logical or
 ⊕ ... Logical exclusive or

791

11.7.1 Notes on Structured Assembly

The structured assembly function expands the structured assembly directives into predetermined
instructions and symbols, and performs no optimizations whatsoever. Thus the values that can be
specified as parameters to these directives are limited by the specifications of the instructions that
are generated. Furthermore, there are cases where inefficient code and/or unnecessary symbols
are generated.

1. Instruction Expansion

The forms of structured assembly directives that involve testing condition codes may be
restricted by the statement that results from expansion of the directive.

Example:

.IF B (R0L<LT>#10) ; Expanded instruction will cause an error

 MOV.W R1,R2

.ENDI

The .IF directive is expanded to CMP instruction.

However, this .IF directive results in CMP R0L,#10, and this causes an error. To avoid this,
the program must be written in the following way:

.IF B (#10<LT>R0L) ; Expanded to CMP #10,R0L

 MOV.W R1,R2

.ENDI

2. Symbol Expansion

Structured assembly statements generate symbols in the forms shown below.

.IF _$I00000 to _$I99999

.SWITCH _$S00000 to _$S99999

.FOR[U] _$F00000 to _$F99999

.WHILE _$W00000 to _$W99999

.REPEAT _$R00000 to _$R99999

Accordingly, such symbols are not available to the user.

792

11.7.2 Structured Assembly Directives

Table 11.19 lists the directives for structured assembly.

Table 11.19 List of Structured Assembly Directives

.IF

.SWITCH

Selective processing:

The instruction is selected and executed or is passed over according to the
result of a test or tests.

.FOR

.WHILE

.REPEAT

Iteration of processes:

Iteratively executes the processes while a condition is satisfied.

.BREAK Suspends iterative processing; processing is terminated.

.CONTINUE Suspends iterative processing; processing continues.

793

.IF

Description Format :

 ∆.IF[.<size>][:<branch size>]∆<condition>

 [∆.ELSE[:<branch size]]

 ∆.ENDI

 <size>:

<branch size>:

<condition>:

<CC>:

{B | W | L}

{8 | 16}

{term 1 <CC> term 2 | <CC>}

{EQ | NE | GT | LT | GE | LE | HI | LO | HS | LS | CC | CS | VC |
VS | PL | MI | T | F}

 The label field is not used.

Description : Source statements are selected and executed based on the result of testing the
condition specified in the .IF directive.

 When the condition is satisfied, the source statements between the .IF and the
.ELSE directives are executed, and when the condition fails, the source
statements between the .ELSE and the .ENDI directives are executed.

 The .ELSE directive may be omitted. When omitted, the source statements
between the .IF and the .ENDI directives are executed if the condition is
satisfied.

(1) Size

The size specifiers are interpreted as follows:
B: Byte (1 byte)
W: Word (2 bytes)
L: Longword (4 bytes)

Byte is taken as the default when the size specifier is omitted.

(2) Branch Size
The branch size can be specified on both the .IF and the .ELSE directives.
The .IF branch size specifies the branch size from the .IF directive to the
.ELSE or .ENDI directive.
The .ELSE branch size specifies the branch size from the .ELSE directive
to the .ENDI directive.
The following branch sizes can be specified.

Operation Branch Size

8 8 bits

16 16 bits

794

Refer to section 11.3, .DISPSIZE FBR, and section 3.3.2, br_relative, and
section 3.3.2, [no]optimize, for the setting used when the branch size
specification is omitted.

Refer to table 11.18, Condition Codes, for details on the condition code
conditions.

There are two types of conditions as follows:

 1. Comparison type

In the comparison type, a decision is made based on a condition code based
comparison of two terms.

The terms must have addressing modes that can be used with the CMP
instruction.

 2. Condition code specification type

In the condition code specification type, a decision is made based on the
specified CCR (condition code register) state.

Limitations: 1. “L” cannot be specified as the size with the H8/300 and H8/300L
microcomputers.

 2. The value 16 cannot be specified as the branch size with the H8/300 and
H8/300L microcomputers.

 3. The size of the code generated by the source statements between an .IF
directive and an .ELSE directive, between an .ELSE directive and an .ENDI
directive, or between an .IF directive and an .ENDI directive (when the
.ELSE directive is omitted) cannot exceed the range corresponding to the
specified branch size.

The maximum source code size for the different branch sizes are as follows:

8: About 100 bytes

16: About 32,700 bytes

4. When this directive is used, symbols from _$I00000 to _$I99999 may be
generated. Thus these symbols should not be used in programs which use
the .IF directive.

795

Examples : 1. .IF.W (R0L<EQ>R1)

 ADD.B #1,R0 ; [1]

 MOV.W R0,R2 ; [1]

 .ELSE

 ADD.W #1,R1 ; [2]

 MOV.W R1,R2 ; [2]

 .ENDI

 This is an example of the comparison type condition.

When R0 is equal to R1, statements [1] will be executed, and when R0 is not equal to R1,
statements [2] will be executed.

 2. .IF.B (#H'10<LT>R0L)

 SUB.W R1,R1 ; [3]

 MOV.W R1,R2 ; [3]

 .ENDI

 This is an example of the comparison type condition.

Statements [3] will be executed when H'10 is less than R0L (under a signed comparison).

 3. .IF (<NE>)

 ADD.B #5:8,R0L ; [4]

 . ELSE

 MOV.B R0L,R1L ; [5]

 . ENDI

 This is an example of the condition code specification type condition.

When the CCR (condition code register) Z (zero) flag is 0, statement [4] will be executed, and
when 1, statement [5] will be executed.

796

 4. .IF.B (#0<LE>R0L)

 .IF.B (#50<GE>R0L)

 MOV.W R2,R1 ; [6]

 MOV.W R3,R1 ; [6]

 .ENDI

 .ENDI

 This is an example of a nested .IF construction.

If the condition 0 ≤ R0L ≤ 50 is satisfied under signed comparison, then statements [6] will be
executed.

797

.SWITCH

Description Format : ∆.SWITCH[.<size>]∆<condition1>

 (∆.CASE[:<branch size>]∆ <condition2>

 [∆.BREAK[:<branch size>]∆])[,…]

 [∆.OTHERS]

 ∆.ENDS

 <Size>:

<branch size>:

<condition1>:

<condition2>:

<CC>:

{B | W | L}

{8 | 16}

{<register> | <CC>}

{<term> | <CC> }

{EQ | NE | GT | LT | GE | LE | HI | LO | HS | LS | CC | CS | VC | VS
 | PL | MI | T | F}

 The label field is not used.

Description : Source statements are selected and executed based on the result of testing the
conditions specified in the .SWITCH and .CASE directives.

 When the condition specified by a .SWITCH directive and a corresponding
.CASE directive are satisfied, the source statements between that .CASE
directive and its corresponding .BREAK directive are executed.

 The .SWITCH and .CASE conditions are tested in order.

 When a .BREAK directive is omitted, execution continues to the statements
between the next .CASE and .BREAK, or to the following statements between
.OTHERS and .ENDS.

798

(1) Size

The size specifies the size of the registers and terms compared in a
comparison type condition. When operation size is omitted, .SWITCH.B
(byte size) is taken as the default. It has no meaning with condition code
specification type conditions.

The size specifiers are interpreted as follows:

B: Byte (1 byte)

W: Word (2 bytes)

L: Longword (4 bytes)

(2) Branch size

The ranch size can be specified on both the .CASE and the .BREAK
directives.

The .CASE branch size specifies the branch size from the .CASE directive to
the next .CASE, .OTHERS, or .ENDS directive.

The .BREAK branch size specifies the branch size from the .BREAK
directive to the .ENDS directive.

 The following branch sizes can be specified.

Operation Branch Size

8 8 bits

16 16 bits

 Refer to section 11.3, .DISPSIZE FBR, section 3.2.2, br_relative, and section
3.2.2, [no]optimize, for the setting used when the branch size specifier is
omitted.

 Refer to table 11.18, Condition Codes, for details on the condition code
conditions.

799

There are two types of conditions as follows:

 1. Comparison type

In the comparison type, a register and a term are tested for equality.

The register is specified in the .SWITCH directive.

The term is specified in the .CASE directive using an addressing mode that
can be used as the source operand in the CMP instruction.

 2. Condition code specification type

In the condition code specification type, a decision is made based on the
specified CCR (condition code register) state.

CCR is specified in the .SWITCH directive.
The condition code(s) are specified in the .CASE directive(s).

Limitations: 1. “L” cannot be specified as the size with the H8/300 and H8/300L
microcomputers.

 2. The value 16 cannot be specified as the branch size with the H8/300 and
H8/300L microcomputers.

 3. The size of the code generated by the source directives corresponding to
each .CASE directive and the size of the code between a .BREAK directive
and the corresponding .ENDS directive cannot exceed the range
corresponding to the specified branch size.

 The maximum source code size for the different branch sizes are as follows:
8: About 100 bytes
16: About 32,700 bytes

 4. When this directive is used, symbols from _$S00000 to _$S99999 may be
generated. Thus these symbols should not be used in programs which use
the .SWITCH directive.

800

Examples : 1. .SWITCH.B (R0L)

 .CASE #0

 MOV.W R1,R4 ; [1]

 .BREAK

 .CASE #1

 MOV.W R2,R4 ; [2]

 .BREAK

 .OTHERS

 MOV.W R3,R4 ; [3]

 .ENDS

 This is an example of the comparison type condition.

 When R0L is equal to 0, statement [1] will be executed, and when R0L is equal
to 1, statement [2] will be executed, and in all other cases, statement [3] will be
executed.

 2. .SWITCH (CCR)

 .CASE <CS>

 MOV.W R0,R3 ; [4]

 .BREAK

 .CASE <MI>

 MOV.W R1,R3 ; [5]

 .ENDS

This is an example of the condition code type condition.

When the CCR (condition code register) C (carry) flag is 1, statement [4] will be
executed, and when the N (negative) flag is 1, statement [5] will be executed.

801

 3. .SWITCH.B (R0L)

 .CASE #0

 .CASE #1

 .CASE #2

 MOV.W R1,R3 ; [6]

 .BREAK

 .CASE #3

 MOV.W R2,R3 ; [7]

 .ENDS

 This is an example of omitting the .BREAK for the .CASE .

 When R0L is equal to 0, 1, or 2, statement [6] will be executed, and when R0L
is 3, statement [7] will be executed.

802

.FOR[U]

Description Format : ∆.FOR[U][.<size][:<branch size]∆<condition>

 ∆.ENDF

 <size>: {B | W | L}

<branch size>: {8 | 16}

<condition>: (<loop counter>=<initial value>,<end value>[,[{+ | –}]<increment
 value>]

The label field is not used.

Description : The condition specified by the loop counter and end value is tested, and the
source statements between the .FOR[U] and .ENDF directives are iterated while
that condition is satisfied.

 There are two forms of the .FOR[U] directive: the .FOR directive, which iterates
using a signed range test, and the .FORU directive, which iterates using an
unsigned range test.

(1) Size

 The size specification specifies the size of the loop counter, initial value, end
value and increment value.

 The size specifiers are interpreted as follows:

B: Byte (1 byte)

W: Word (2 bytes)

L: Longword (4 bytes)

(2) Branch Size

 Byte is taken as the default when the size specifier is omitted.

 The branch size specifies the branch size from the .FOR[U] directive to the
.ENDF directive.

803

 The following branch sizes can be specified.

Operation Branch Size

8 8 bits

16 16 bits

 Refer to section 11.3, .DISPSIZE FBR, section 3.2.2, br_relative, and section
3.2.2, [no]optimize, for the setting used when the branch size specifier is
omitted.

The operands are interpreted as follows:

 (1) <loop counter>=<initial value>

This specifies the loop counter’s initial value.

The loop counter must be a register.

The initial value must have an addressing mode that can be specified as the
source operand of the MOV instruction.

 (2) <end value>

The end value is the value which is compared with the loop counter.

There are two types of iteration conditions as follows:

Positive increment direction: <loop counter> ≤ <end value>

Negative increment direction: <loop counter> ≥ <end value>

The end value must have an addressing mode that can be specified as the
source operand of the CMP instruction.

 (3) <increment value>

The increment value is the amount the loop counter is incremented or
decremented on each loop iteration.

The increment direction is specified by a plus (+) to indicate a positive
increment direction and a minus (–) to indicate a negative decrement
direction.

Plus (+) is taken as the default when no increment direction is specified.

The increment value must have an addressing mode that can be specified as
the source operand for the ADD and SUB instructions.

The value +#1 is used as the default when no increment value is specified.

804

 The following table indicates the possible ranges of the loop counter value. Pay
careful attention to the loop counter range, since infinite loops can result from
inappropriate values.

Directive

Increment
Direction

Size

Loop Counter Range (Initial
Value to End Value)

.FOR + B –128 to 126

 W –32,768 to 32,766

 L –2,147,483,647 to 2,147,483,646

 – B 127 to –127

 W 32,767 to –32,767

 L 2,147,483,647 to –2,147,483,647

.FORU + B 0 to 254

 W 0 to 65,534

 L 0 to 4,294,967,294

 – B 255 to 1

 W 65,535 to 1

 L 4,294,967,295 to 1

Limitations: 1. “L” cannot be specified as the size with the H8/300 and H8/300L
microcomputers.

 2. The value 16 cannot be specified as the branch size with the H8/300 and
H8/300L microcomputers.

 3. The size of the code generated by the source statements between a .FOR[U]
directive and its corresponding .ENDF directive cannot exceed the range
corresponding to the specified branch size.

 The maximum source code size for the different branch sizes are as follows:

8: About 100 bytes

16: About 32,700 bytes

 4. When this directive is used, symbols from _$F00000 to _$F99999 may be
generated. Thus these symbols should not be used in programs which use
the .FOR[U] directive.

805

Examples : 1. .FOR.B (R0L=#1,#10,+#1) ; [1]

 ADD.B R0L,R1L

 .ENDF

 This is an example of a .FOR loop.

 The loop counter is R0L, the initial value is #1, the end value is #10, and the
increment value is +#1.

 Statement [1] will be iterated while R0L is less than or equal to 10 under a
signed comparison.

 2. .FOR.W (R0=R1,R2,–R3)

 ADD.B #1:8,R5L ; [2]

 .ENDF

 This is an example of a .FOR loop.

 The loop counter is R0, the initial value is R1, the end value is R2, and the
increment value is –R3.

 Statement [2] will be iterated while R0 is greater than or equal to R2 under a
signed comparison.

 3. .FORU.B (R0L=#1,#200,+#1)

 ADD.W R1,R2 ; [3]

 ADD.W R3,R4 ; [3]

 .ENDF

 This is an example of a .FORU loop.

 The loop counter is R0L, the initial value is #1, the end value is #200, and the
increment value is +#1.

 Statements [3] will be iterated while R0L is less than or equal to 200 under an
unsigned comparison.

806

 4. .FORU.L (ER0=#H'00000100,#H'000001FC,+#4)

 MOV.L @ER0,ER2 ; [4]

 MOV.L ER2,@(H'00001100:32,ER1) ; [4]

 ADDS.L #4,ER1 ; [4]

 .ENDF

 This is an example of a .FORU loop.

 The loop counter is ER0, the initial value is #H'00000100, the end value is
#H'000001FC, and the increment value is +#4.

 Statements [4] will be iterated while ER0 is less than or equal to #H'000001FC
under an unsigned comparison.

807

.WHILE

Description Format .WHILE[.size][:<branch size>]∆<condition>

 .ENDW

 <size>: {B | W | L}

<branch size>: {8 | 16}

<condition>: { (<term 1> <cc> <term 2>) | (<cc>) }

<CC>: {EQ | NE | GT | LT | GE | LE | HI | LO | HS | LS | CC | CS | VC |
 VS | PL | MI | T | F}

Description : The condition specified in the .WHILE directive is tested, and the source
statements between the .WHILE and .ENDW directives are iterated while that
condition is true.

 Size and branch size are as follows:

(1) Size

 The size specifies the size of the terms compared in a comparison type
condition. Byte is taken as the default when the size specifier is omitted. It has
no meaning with condition code specification type conditions.

 The size specifiers are interpreted as follows:

 B: Byte (1 byte)

 W: Word (2 bytes)

 L: Longword (4 bytes)

 (2) Branch Size

 The branch size specifies the branch size from the .WHILE directive to the
.ENDW directive.

 The following branch sizes can be specified.

Operation Branch Size

8 8 bits

16 16 bits

 Refer to section 11.3, .DISPSIZE FBR, section 3.2.2, br_relative, and section
3.2.2, [no]optimize, for the setting used when the branch size specification is
omitted.

 Refer to table 11.18, Condition Codes, for details on the condition code
conditions.

808

 There are two types of conditions as follows:

 1. Comparison type

In the comparison type, a decision is made based on a condition code based
comparison of two terms.

The terms must have addressing modes that can be used with the CMP
instruction.

 2. Condition code specification type

In the condition code specification type, a decision is made based on the
specified CCR (condition code register) state.

Limitations: 1. “L” cannot be specified as the size with the H8/300 and H8/300L
microcomputers.

 2. The value 16 cannot be specified as the branch size with the H8/300 and
H8/300L microcomputers.

 3. The size of the code generated by the source statements between a .WHILE
directive and its corresponding .ENDW directive cannot exceed the range
corresponding to the specified branch size.

The maximum source code size for the different branch sizes are as follows:

8: About 100 bytes
16: About 32,700 bytes

 4. When this directive is used, symbols from _$W00000 to _$W99999 may be
generated. Thus these symbols should not be used in programs which use
the .WHILE directive.

809

Examples : 1. .WHILE.B (#50<GT>R0L)
ADD.W R1,R2 ; [1]
ADD.B #1:8,R0L ; [1]

 .ENDW

 This is an example of the comparison type condition.

 Statements [1] will be iterated while 50 is greater than R0L under signed
comparison.

 2. .WHILE.W (R0<LS>R1)
SUB.B R2L,R3L ; [2]
SUB.W R5,R1 ; [2]

 .ENDW

 This is an example of the comparison type condition.

 Statements [2] will be iterated while R0 is less than or equal to R1 under
unsigned comparison.

 3. .WHILE (<NE>)
MOV.L @ER2,ER4 ; [3]
MOV.L ER4,@ER3 ; [3]
ADDS.L #4,ER2 ; [3]
ADDS.L #4,ER3 ; [3]
SUB.B R1L,R0L ; [3]

.ENDW

 This is an example of the condition code specification type condition.

 Statements [3] will be iterated while the CCR (condition code register) Z (zero)
flag is 0.

 4. .WHILE (<PL>)
MOV.L ER2,@ER1 ; [4]
ADDS.L #4,ER1 ; [4]
MOV.L ER3,@ER1 ; [4]
ADDS.L #4,ER1 ; [4]
ADD.W #–1,R0 ; [4]

. ENDW

 This is an example of the condition code specification type condition.

 Statements [4] will be iterated while the CCR (condition code register)
N (negative) flag is 0.

810

.REPEAT

Description Format : ∆.REPEAT

 ∆.UNTIL[.<size>]∆<condition>

 <size>: {B | W | L}

<condition>:{ (<term 1> <cc> <term 2>) | (<cc>) }

<CC>: {EQ | NE | GT | LT | GE | LE | HI | LO | HS | LS | CC | CS |
 VC | VS | PL | MI | T | F}

The label field is not used.

Description : The source statements between the .REPEAT and .UNTIL directives are iterated
until the condition specified in the .UNTIL directive is satisfied.

 The source statements between the .REPEAT and the .UNTIL directives are
executed at least once so that the .UNTIL condition can be tested.

 The size specifies the size of the terms compared in a comparison type
condition. .UNTIL.B (byte size) is taken as the default when the size specifier is
omitted. It has no meaning with condition code specification type conditions.

 The size specifiers are interpreted as follows:

B: Byte (1 byte)
W: Word (2 bytes)
L: Longword (4 bytes)

 Refer to table 11.18, Condition Codes, for details on the condition code
conditions.

 There are two types of conditions as follows:

 1. Comparison type

In the comparison type, a decision is made based on a condition code based
comparison of two terms.

The terms must have addressing modes that can be used with the CMP
instruction.

 2. Condition code specification type

811

In the condition code specification type, a decision is made based on the
specified CCR (condition code register) state.

Limitations: 1. “L” cannot be specified as the size with the H8/300 and H8/300L
microcomputers.

 2. The size of the code generated by the source statements between the
.REPEAT and .UNTIL directives is as follows.

H8/300 : About 100 bytes
H8/300L : About 100 bytes
Others : About 32,700 bytes

 3. When this directive is used, symbols from _$R00000 to _$R99999 may be
generated. Thus these symbols should not be used in programs which use
the .REPEAT directive.

Examples : 1. .REPEAT

 MOV.L @ER0,ER2 ; [1]

 MOV.L ER2,@ER1 ; [1]
 ADDS.L #4,ER0 ; [1]

 ADDS.L #4,ER1 ; [1]

 .UNTIL.L (#H'001000<LS>ER0)

 This is an example of the comparison type condition.

 Statements [1] will be iterated until H'001000 is less than or equal to ER0 under
unsigned comparison.

 2. .REPEAT

 ADD.W R2,R3 ; [2]

 ADD.W R2,R4 ; [2]

 SUB.B R1L,R0L ; [2]

 .UNTIL (<EQ>)

 This is an example of the condition code specification type condition.

 Statements [2] will be iterated until the CCR (condition code register) Z (zero)
flag is 1.

812

.BREAK

Description Format : ∆.BREAK[:<branch size>]

 <branch size>: {8 | 16}

 The label field is not used.

Description : The .BREAK directive terminates .FOR[U], .WHILE, and .REPEAT loops,
exiting the loop without executing the source statements following the .BREAK
directive. More specifically, the .BREAK directive executes an unconditional
jump to the .ENDF, .ENDW, or .UNTIL directive that closes the corresponding
.FOR[U], .WHILE, or .REPEAT loop, thus terminating the processing.

 The branch size specifies the branch size from the .BREAK directive to the
corresponding .ENDF, .ENDW, or .UNTIL directive.

 The following branch sizes can be specified.

Operation Branch Size

8 8 bits

16 16 bits

 Refer to section 11.3, .DISPSIZE FBR, section 3.2.2, br_relative, and section
3.2.2, [no]optimize, for the setting used when the branch size specification is
omitted.

 This directive can also be used with the .SWITCH directive.

 Refer to section 11.7, .SWITCH, for details on use of the .SWITCH directive.

Limitations: The value 16 cannot be specified as the branch size with the H8/300 and
H8/300L microcomputers.

Example : .WHILE (<T>)

 .IF.B (#10<LE>R0L)

 .BREAK

 .ENDI

 ADD.W R1,R2

 INC.B R0L

 .ENDW

 The iteration will terminate when 10 is less than or equal to R0L.

813

.CONTINUE

Description Format : ∆.CONTINUE[:<branch size>]

 <branch size>: {8 | 16}

The label field is not used.

Description : The .CONTINUE directive restarts loop processing without executing the
remaining source statements in the .FOR[U], .WHILE, and .REPEAT loops.
More specifically, the .CONTINUE directive branches unconditionally to the
loop test point in a .FOR[U], .WHILE, or .REPEAT loop.

 The branch size specifies the branch size from the .CONTINUE directive to the
corresponding .ENDF, .WHILE, or .UNTIL directive.

 The following branch sizes can be specified.

Operation Branch Size

8 8 bits

16 16 bits

 Refer to section 11.3, .DISPSIZE FBR, section 3.2.2, br_relative, and section
3.2.2, [no]optimize, for the setting used when the branch size specification is
omitted.

Limitations: The value 16 cannot be specified as the branch size with the H8/300 and
H8/300L microcomputers.

Example : .WHILE.B (#10<GT>R0L)

 INC.B R0L

 INC.B R1L

 .IF.B (#10<LT>R1L)

 .CONTINUE

 .ENDI

 ADD.W R2,R3 ; [1]

 .ENDW

 Statement [1] will not be executed when 10 is less than R1L.

814

815

Section 12 Compiler Error Messages

12.1 Error Format and Error Levels

In this section, error messages output in the following format and the details of errors are
explained.

Error number (Error level) Error message

Error details

There are five different error levels, corresponding to different degrees of seriousness.

Error Level Error Type Description

(I) Information Processing is continued and the object program is
output.

(W) Warning Processing is continued and the object program is
output.

(E) Error Processing is continued but the object program is not
output.

(F) Fatal Processing is interrupted and an error message is
output simultaneously.

(−) Internal Processing is interrupted and an error message is
output simultaneously.

12.2 Error Messages

C0002 (I) No declarator

A declaration without a declarator exists.

C0003 (I) Unreachable statement

A statement that will not be executed exists.

C0004 (I) Constant as condition

A constant expression is specified as the condition for an if or switch statement.

816

C0005 (I) Precision lost

Precision may be lost when assigning via type conversion from a right hand side value to the left
hand side value.

C0006 (I) Conversion in argument

A function parameter expression is converted into a parameter type specified in the prototype
declaration.

C0008 (I) Conversion in return

A return statement expression is converted into a value type that should be returned from a
function.

C0010 (I) Elimination of needless expression

A needless expression exists.

C0011 (I) Used before set symbol "variable name"

A local variable is used before setting its value.

C0015 (I) No return value

A return statement has no return value or a return statement does not exist in a function which
returns a value of other than the void type.

C0016 (I) Padding in structure

An empty space has been created between structure members by boundary alignment.

C0100 (I) Function "function name" not optimized

A function which is too large cannot be optimized.

C0101 (I) Optimizing range divided in function "function name"

The optimizing range of "function name" is divided into some blocks.

C0102 (I) Register is not allocated to "variable name" in "function name"

Any register cannot be allocated to the variable of the register storage class.

C0200 (I) No prototype function

There is no prototype declaration.

C0300 (I) #pragma interrupt has no effect

The function specified by #pragma interrupt is not found.

C0301 (I) #pragma abs8 has no effect

The variable specified by #pragma abs8 is not found.

817

C0302 (I) #pragma abs16 has no effect

The variable specified by #pragma abs16 is not found.

C0303 (I) #pragma indirect has no effect

The function specified by #pragma indirect is not found.

C0304 (I) #pragma regsave/noregsave has no effect

The function specified by #pragma regsave/noregsave is not found.

C0305 (I) #pragma inline/inline_asm has no effect

The function specified by #pragma inline/inline_asm is not found.

C0306 (I) #pragma global_register has no effect

The variable specified by #pragma global_register is not found.

C0307 (I) #pragma entry has no effect

The declaration specified by #pragma entry is not found.

C0308 (I) #pragma address has no effect

The variable specified by #pragma address is not found.

C1000 (W) Illegal pointer assignment

A pointer is assigned to a pointer with different type.

C1001 (W) Illegal comparison in "operator"

The operands of the binary operator = = or != are a pointer and an integer other than 0,
respectively.

C1002 (W) Illegal pointer for "operator"

The operands of the binary operator = =, !=, >, <, >=, or <= are pointers assigned to different
types.

C1005 (W) Undefined escape sequence

An undefined escape sequence (a backslash and the character following the backslash) is used in a
character constant or string literal.

C1007 (W) Long character constant

A character constant consists of two characters.

C1008 (W) Identifier too long

An identifier consists of more than 8189 characters. The 8190th and subsequent characters are
ignored.

818

C1010 (W) Character constant too long

A character constant consists of more than two characters. The third and subsequent characters are
ignored.

C1012 (W) Floating point constant overflow

The value of a floating-point constant exceeds the limit. Assumes the internally represented value
corresponding to +∞ or −∞ depending on the sign of the result.

C1013 (W) Integer constant overflow

The value of an unsigned long integer constant exceeds the limit. Assumes a value ignoring the
overflown upper bits.

C1014 (W) Escape sequence overflow

The value of an escape sequence indicating a bit pattern in a character constant or string literal
exceeds 255. The low order byte is valid.

C1015 (W) Floating point constant underflow

The absolute value of a floating-point constant is less than the lower limit. Assumes 0.0 as the
value of the constant.

C1016 (W) Argument mismatch

The data type assigned to a pointer specified as a formal parameter in a prototype declaration
differs from the data type assigned to a pointer used as the corresponding actual parameter in a
function call. Uses the internal representation of the pointer used for the function call actual
parameter.

C1017 (W) Return type mismatch

The function return type and the type of a return statement expression are pointers but the data
types assigned to these pointers are different. Uses the internal representation of the pointer
specified in the return statement expression.

C1019 (W) Illegal constant expression

The operands of the relational operator <, >, <=, or >= in a constant expression are pointers to
different data types. Assumes 0 as the result value.

C1020 (W) Illegal constant expression of "−"

The operands of the binary operator − in a constant expression are pointers to different data types.
Assumes 0 as the result value.

C1021 (W) Convert to sjis-space

Some Japanese codes cannot be converted into the specified output codes. Converts to shift-JIS
spaces.

819

C1022 (W) Convert to euc-space

Some Japanese codes cannot be converted into the specified output codes. Converts to EUC
spaces.

C1023 (W) Can not convert japanese code "character" to output type

Some Japanese codes cannot be converted into the specified output codes. Converts to spaces.

C1024 (W) First operand of "operator" is not lvalue

A value other than the left value is specified for the first operand of the operator.

C1025 (W) Out of float

The number of digits in a floating-point constant exceeds 17. The 18th and following digits are
invalid.

C1026 (W) Address of packed member

The address of a structure member with pack=1 specification is referred to.

C1200 (W) Division by floating point zero

Division by the floating-point number 0.0 is carried out in a constant expression. Assumes the
internal representation value corresponding to +∞ or −∞ depending on the sign of the operands.

C1201 (W) Ineffective floating point operation

Invalid floating-point operations such as ∞ − ∞ or 0.0/0.0 are carried out in a constant expression.
Assumes the internal representation value corresponding to a not-a-number indicating the result of
an ineffective operation.

C1300 (W) Command parameter specified twice

The same compiler option is specified more than once. Uses the last specified compiler option.

C1302 (W) 'frame' or 'noframe' option ignored

The frame option is specified when optimization is specified, or the noframe option is specified
when no optimization is specified. The 'frame' or 'noframe' option is ignored.

C1305 (W) 'show=object' option ignored

The show=object option is specified when assembly source program output is specified. The
show=object option is ignored.

C1306 (W) 'speed=inline' option ignored

The speed=inline option is specified when no optimization is specified. The speed=inline option
is ignored.

C1307 (W) Section name too long

The length of a section name exceeds 8192 characters. Uses the first 8192 characters and ignores
the rest.

820

C1308 (W) 'speed=loop' option ignored

The speed=loop option is specified when no optimization is specified. The speed=loop option is
ignored.

C1310 (W) 'goptimize' option ignored

The goptimize option is specified when assembly source program output is specified. The
goptimize option is ignored.

C1311 (W) 'cmncode' option ignored

The cmncode option is specified when no optimization is specified. The cmncode option is
ignored.

C1313 (W) Invalid SBR value

A value other than zero is specified for the lower eight bits in the sbr option. Ignores the
specification of the lower eight bits.

C1314 (W) 'ecpp' option ignored

The ecpp option is specified when the C++ exception processing functions are enabled. The ecpp
option is ignored.

C1315 (W) 'noregexpansion' option ignored

The noregexpansion option is specified when the CPU type is H8SX or H8S (withtout legacy=v4
option). The noregexpansion option is ignored.

C1316 (W) 'cmncode' option ignored

The cmncode option is specified when the CPU type is H8SX or H8S (withtout legacy=v4 option).
The cmncode option is ignored.

C1318 (W) 'align=4' option ignored

The align=4 option is specified when the CPU type is not H8SX. The align=4 option is ignored.

C1319 (W) 'speed=intrinsic' option ignored

The speed=intrinsic option is specified when the CPU type is not H8SX. The speed=intrinsic
option is ignored.

C1321 (W) 'sbr' option ignored

The sbr option is specified when the CPU type is not H8SX. The sbr option is ignored.

C1322 (W) 'volatile_loop' option ignored

The volatile_loop option is specified when the CPU type is not H8SX or H8S (withtout legacy=v4
option). The volatile_loop option is ignored.

821

C1323 (W) 'infinite_loop' option ignored

The infinite_loop option is specified when the CPU type is not H8SX or H8S (withtout legacy=v4
option). The infinite_loop option is ignored.

C1324 (W) 'ptr16' option ignored

The ptr16 option is specified when the CPU type is not H8SX or H8S (withtout legacy=v4
option). The ptr16 option is ignored.

C1325 (W) 'del_vacant_loop' option ignored

The del_vacant_loop option is specified when the CPU type is not H8SX or H8S (withtout
legacy=v4 option). The del_vacant_loop option is ignored.

C1326 (W) 'global_alloc' option ignored

The global_alloc option is specified when the CPU type is not H8SX or H8S (withtout legacy=v4
option). The global_alloc option is ignored.

C1327 (W) 'struct_alloc' option ignored

The struct_alloc option is specified when the CPU type is not H8SX or H8S (withtout legacy=v4
option).. The struct_alloc option is ignored.

C1328 (W) 'const_var_propagate' option ignored

The const_var_propagate option is specified when the CPU type is not H8SX or H8S (withtout
legacy=v4 option). The const_var_propagate option is ignored.

C1329 (W) 'opt_range' option ignored

The opt_range option is specified when the CPU type is not H8SX or H8S (withtout legacy=v4
option). The opt_range option is ignored.

C1330 (W) 'max_unroll' option ignored

The max_unroll option is specified when the CPU type is not H8SX or H8S (withtout legacy=v4
option). The max_unroll option is ignored.

C1331 (W) Section name "S" specified

The S is specified for the section name. The S may be identified with the section name of the stack
area that is generated by the compiler.

C1332 (W) 'indirect = extended' option ignored

The indirect=extended option is specified when the CPU type is not H8SX. The
indirect=extended option is ignored.

C1333 (W) 'enable_register' option ignored

300HN, 300HA, 300, 300L, or 300Reg was specified as the CPU type or the legacy=v4 option
was specified. The enable_register option is ignored.

822

C1334 (W) 'legacy=v4' option ignored

The CPU type is not H8S. The legacy=v4option is ignored.

C1335 (W) 'strict_ansi' option ignored
300HN, 300HA, 300, 300L, or 300Reg was specified as the CPU type or the legacy=v4 option
was specified. The strict_ansi option is ignored.

C1336 (W) 'cpuexpand=v6' option ignored

The cpuexpand=v6 option is specified when the CPU type is not H8SX or H8S (withtout
legacy=v4 option). The cpuexpand=v6 option is ignored

C1337 (W) 'noscope' option ignored

300HN, 300HA, 300, 300L, or 300Reg was specified as the CPU type or the legacy=v4 option
was specified. The noscope option is ignored.

C1338 (W) Invalid SBR value in H8SXM

H8SXM was specified as the CPU type, so the address specified for the SBR is outside the
possible range.

C1339 (W) 'file_inline' option ignored

300HN, 300HA, 300, 300L, or 300Reg was specified as the CPU type or the legacy=v4 option
was specified. The file_inline option is ignored.

C1341 (W) 'file_inline_path' option ignored

300HN, 300HA, 300, 300L, or 300Reg was specified as the CPU type or the legacy=v4 option
was specified. The file_inline_path option is ignored

C1342 (W) 'character string 1' is interpreted as 'character string 2'

'Character string 1' was specified as an option but no option was found. In compilation,
'character string 1' was interpreted as 'character string 2'.

C1400 (W) Function "function name" in #pragma inline is not expanded

A function specified using the #pragma inline could not be expanded where the function is
called. Ignores the #pragma inline specification.

C1401 (W) #pragma abs16 ignored

#pragma abs16 is specified when the CPU/operating mode is H8SXN, H8SXM, 2600n, 2000n,
300hn, or 300. Ignores the #pragma abs16 specification.

C1403 (W) #pragma asm ignored

#pragma asm is specified when the object format is a relocatable object program. Ignores the
#pragma asm specification.

C1404 (W) 'case=table' option ignored by switch

823

The switch statement cannot be expanded to the jump table method. Expands the switch
statement to the if_then method.

C1405 (W) Illegal #pragma syntax

An illegal #pragma is specified. Ignores the #pragma specification.

C1406 (W) Abs8 attribute ignored

Ignores the abs8 specification.

C1407 (W) #pragma address ignored

A #pragma address specification is invalid for an explicitly initialized variable.

C1510 (W) Illegal bit width

An illegal bit width is specified with the CPU option.

C1511 (W) Illegal value in operand

A value outside the range is specified to an operand.

C2000 (E) Illegal preprocessor keyword

An illegal keyword is used in a preprocessor directive.

C2001 (E) Illegal preprocessor syntax

There is an error in a preprocessor directive or in a macro call specification.

C2007 (E) Invalid include file name "file name"

The specification of the include file name is invalid.

C2016 (E) Preprocessor constant expression too complex

The total number of operators and operands in a constant expression specified by an #if or #elif
directive exceeds 512.

C2019 (E) File name too long

The length of a file name exceeds 4096 characters.

C2020 (E) System identifier "name" redefined

The name of the defined symbol is the same as that of the intrinsic function.

C2021 (E) System identifier "name" mismatch

An intrinsic function not corresponding to the specified CPU/operating mode is used.

C2100 (E) Multiple storage classes

Two or more storage class specifiers are used in a declaration.

824

C2101 (E) Address of register

A unary-operator & is used for a variable that has a register storage class.

C2102 (E) Illegal type combination
An illegal combination of type specifiers is used.

C2103 (E) Bad self reference structure

A structure or union member has the same data type as its parent.

C2104 (E) Illegal bit field width

A constant expression indicating the width of a bit field is not an integer or it is negative.

C2105 (E) Incomplete tag used in declaration

An incomplete tag name declared with a structure or union, or an undeclared tag name is used in a
typedef declaration or in the declaration of a data type not assigned to a pointer or to a function
return value.

C2106 (E) Extern variable initialized

A compound statement specifies an initial value for an extern storage class variable.

C2107 (E) Array of function

An array with a function type is specified.

C2108 (E) Function returning array

A function with an array return value type is specified.

C2109 (E) Illegal function declaration

A storage class other than extern is specified in the declaration of a function variable used in a
compound statement.

C2110 (E) Illegal storage class

The storage class in an external definition is specified as auto or register.

C2111 (E) Function as a member

A member of a structure or union is declared as a function.

C2112 (E) Illegal bit field

The type specifier for a bit field is illegal. char, unsigned char, short, unsigned short, int,
unsigned int, long, unsigned long, enum, bool, or a combination of const or volatile with one of
the above types is allowed as a type specifier for a bit field.

C2113 (E) Bit field too wide

The width of a bit field is greater than the size (8, 16, or 32 bits) indicated by its type specifier.

825

C2114 (E) Multiple variable declarations

A variable name is declared more than once in the same scope.

C2115 (E) Multiple tag declarations

A structure, union, or enum tag name is declared more than once in the same scope.

C2117 (E) Empty source program

There are no external definitions in the source program.

C2118 (E) Prototype mismatch "function name"

A function type differs from the one specified in the declaration.

C2119 (E) Not a parameter name "parameter name"

An identifier not in the function parameter list is declared as a parameter.

C2120 (E) Illegal parameter storage class

A storage class other than register is specified in a function parameter declaration.

C2121 (E) Illegal tag name

The combination of a structure, union, or enum with a tag name differs from the declared
combination.

C2122 (E) Bit field width 0

The width of a bit field specifying a member name is 0.

C2123 (E) Undefined tag name

An undefined tag name is specified in an enum declaration.

C2124 (E) Illegal enum value

A non-integral constant expression is specified as a value for an enum member.

C2125 (E) Function returning function

A function with a function type return value is specified.

826

C2126 (E) Illegal array size

The value that specifies the number of array elements exceeds the limit

C2127 (E) Missing array size

The number of elements in an array is not specified.

C2129 (E) Illegal initializer type

The initial value specified for a variable is not a type that can be assigned to a variable.

C2130 (E) Initializer should be constant

A value other than a constant expression is specified either as the initial value of a structure, union
or array variable, or as the initial value of a static variable.

C2131 (E) No type nor storage class

Storage class or type specifiers is not given in an external data definition.

C2132 (E) No parameter name

A parameter is declared even though the function parameter list is empty.

C2133 (E) Multiple parameter declarations

Either a parameter name is declared in a macro function definition parameter list more than once,
or a parameter is declared inside and outside the function declarator.

C2134 (E) Initializer for parameter

An initial value is specified in the declaration of a parameter.

C2135 (E) Multiple initialization

A variable is initialized more than once.

C2136 (E) Type mismatch

An extern or static storage class variable, or function is declared more than once with different
data types.

C2137 (E) NULL declaration for parameter

An identifier is not specified in the function parameter declaration.

C2138 (E) Too many initializers

The number of initial values specified for a structure, union, or array is greater than the number of
structure members or array elements. This error also occurs if two or more initial values are
specified when the first member of a union is scalar.

C2139 (E) No parameter type

A type is not specified in a function parameter declaration.

827

C2140 (E) Illegal bit field

A bit field is used in a union.

C2141 (E) Struct has no member name

An anonymous bit field is used as the first member of a structure.

C2142 (E) Illegal void type

void is used illegally. void can only be used in the following three cases:

(1) To specify a type assigned to a pointer

(2) To specify a function return value type

(3) To explicitly specify that a function whose prototype is declared does not have a parameter

C2143 (E) Illegal static function

There is a function declaration with a static storage class function that has no definition in the
source program.

C2150 (E) Multiple function qualifiers

Multiple function qualifiers are specified.

C2151 (E) "name" must be qualified for function type

"name" can qualify only the function type.

C2152 (E) Illegal attribute combination

An illegal attribute combination is specified. The following attribute combinations are allowed.

828

_
_n

ea
r8

_
_n

ea
r1

6

_
_a

b
s8

_
_a

b
s1

6

_
_p

tr
16

_
_i

n
te

rr
u

p
t

_
_i

n
lin

e

_
_

in
d

ir
ec

t

_
_i

n
d

ir
ec

t_
ex

_
_r

eg
sa

ve

_
_n

o
re

g
sa

ve

_ _near8 x x O O x x x x x x x

_ _near16 x x O O x x x x x x x

_ _abs8 O O x x x x x x x x x

_ _abs16 O O x x O x x x x x x

_ _ptr16 x x x O x x x x x x x

_ _interrupt x x x x x x x x x O O

_ _inline x x x x x x x O O x x

_ _indirect x x x x x x O x x O O

_ _indirect_ex x x x x x x O x x O O

_ _regsave x x x x x O x O O x x

_ _noregsave x x x x x O x O O x x

 Symbols: O: Allowed, x: Not allowed

C2153 (E) Illegal "name" specifier

There is an illegal attribute specifier.

C2154 (E) "name" must be specified for variables

This attribute specifier can be specified only for variables.

C2155 (E) "name" must be specified for functions

This attribute specifier can be specified only for functions.

C2157 (E) Attribute keyword and pragma cannot be specified for one symbol

An attribute keyword and #pragma declaration cannot be specified simultaneously.

C2158 (E) Attribute mismatch

Attributes are mismatched between declarations.

C2159 (E) Multiple entry functions

Multiple entry functions are specified.

C2160 (E) Illegal '_ _near8/_ _near16' variable size

The size of variable where _ _near8 or _ _near16 is specified exceeds the available range.

829

C2161 (E) Illegal '_ _abs8' variable type

A variable type specified for abs8 is illegal.

C2162 (E) Illegal '_ _global_register' variable type

A variable type specified for _ _global_register is illegal.

C2163 (E) Illegal '_ _interrupt' function type

An interrupt function type is illegal.

C2164 (E) Cannot specify "name" to local storage class

An illegal attribute is specified.

C2165 (E) Multiple pointer qualifiers

More than one _ _ptr16 is specified.

C2166 (E) '_ _ptr16' must be qualified for data pointer type

_ _ptr16 is specified to a type other than the data pointer type.

C2190 (E) Multiple functions on vector "vector number"

Multiple functions are specified for a vector number.

C2200 (E) Index not integer

An array index expression type is not integer type.

C2201 (E) Cannot convert parameter "n"

The n-th parameter of a function call cannot be converted to the type of parameter specified in the
prototype declaration.

C2202 (E) Number of parameters mismatch

The number of parameters for a function call is not equal to the number of parameters specified in
the prototype declaration.

C2203 (E) Illegal member reference for "."

The expression to the left-hand side of the (.) operator is not a structure or union.

C2204 (E) Illegal member reference for "−>"

The expression to the left of the −> operator is not a pointer to a structure or union.

C2205 (E) Undefined member name

An undeclared member name is used to reference a structure or union.

C2206 (E) Modifiable lvalue required for "operator"

The expression for a prefix or suffix operator ++ or − − has a left value that cannot be assigned (a
left value whose type is not array or const).

830

C2207 (E) Scalar required for "!"

The unary operator ! is used in an expression that is not scalar.

C2208 (E) Pointer required for "*"

The unary operator * is used in an expression that is not a pointer or in an expression of a pointer
for void.

C2209 (E) Arithmetic type required for "operator"

The unary operator + or − is used in a non-arithmetic expression.

C2210 (E) Integer required for "~"

The unary operator ~ is used in a non-integral expression.

C2211 (E) Illegal sizeof

A sizeof operator is used for a bit field member, function, void, or array with an undefined size.

C2212 (E) Illegal cast

Either because array, structure, or union is specified in a cast operator, or because the operand of a
cast operator is void, structure, or union, the operand cannot be converted.

C2213 (E) Arithmetic type required for "operator"

The binary operator *, /, *=, or /= is used in a non-arithmetic expression.

C2214 (E) Integer required for "operator"

The binary operator <<, >>, &, |, ^, %, <<=, >>=, &=, |=, ^=, or %= is used in a non-integral
expression.

C2215 (E) Illegal type for "+"

The combination of operand types used with the binary operator + is illegal. Only the following
type combinations are allowed for the binary operator +:

(1) Two arithmetic type operands

(2) Pointer type and integer type

C2216 (E) Illegal type for parameter

Type void is specified for a function call parameter type.

C2217 (E) Illegal type for "−"

The combination of operand types used with the binary operator – is not allowed. Only the
following three combinations are allowed for the binary operator:

(1) Two arithmetic type operands

(2) Two pointers assigned to the same data type

831

(3) The first operand is pointer type and the second operand is integral type.

C2218 (E) Scalar required in "?:"

The first operand of the conditional operator ?: is not scalar type.

C2219 (E) Type not compatible in "?:"

The types of the second and third operands of the conditional operator ?: do not match with each
other. Only the following six combinations are allowed for the second and third operands when
using the ?: operator:

(1) Two arithmetic type operands

(2) Two void type operands

(3) Two pointers to the same data type

(4) A pointer, and either an integer constant whose value is zero or another pointer to void that is
converted from an integer constant whose value is zero

(5) A pointer and another pointer to void

(6) Two structure or union variables with the same data type

C2220 (E) Modifiable lvalue required for "operator"

An expression whose left value cannot be assigned (a left value whose type is not array or const)
is used as an operand of a left assignment operator =, *=, /=, %=, +=, −=, <<=, >>=, &=, ^=, or
| =.

C2221 (E) Illegal type for "operator"

The operand of the postfix operator ++ or − − is a pointer to type other than scalar type, to
function type or to void type.

C2222 (E) Type not compatible for "="

The operand types for the assignment operator = do not match. Only the following five
combinations are allowed for the operands of the assignment operator =:

(1) Two arithmetic type operands

(2) Two pointers to the same data type

(3) The left operand is a pointer, and the right operand is either an integer constant whose value is
zero or another pointer to void that is converted from an integer constant whose value is zero.

(4) A pointer and another pointer to void

(5) Two structure or union variables with the same data type

C2223 (E) Incomplete tag used in expression

An incomplete tag name is used for a structure or union in an expression.

832

C2224 (E) Illegal type for assign

The operand types of the assignment operator += or −= are illegal.

C2225 (E) Undeclared name "name"

An undeclared name is used in an expression.

C2226 (E) Scalar required for "operator"

The binary operator && or || is used in a non-scalar expression.

C2227 (E) Illegal type for equality

The combination of operand types for the equality operator = = or != is not allowed. Only the
following three combinations of operand types are allowed for the equality operator = = or !=:

(1) Two arithmetic type operands

(2) Two pointers to the same data type

(3) A pointer, and either an integer constant whose value is zero or another pointer to void that is
converted from an integer constant whose value is zero.

C2228 (E) Illegal type for comparison

The combination of operand types for the relational operator >, <, >=, or <= is not allowed. Only
the following two combinations of operand types are allowed for a relational operator:

(1) Two arithmetic type operands

(2) Two pointers to the same data type

C2230 (E) Illegal function call

An expression which is not a function type or a pointer to a function type is used for a function
call.

C2231 (E) Address of bit field

The unary operator & is used in a bit field.

C2232 (E) Illegal type for "operator"

The operand of the prefix operator ++ or − − is a pointer to type other than scalar type, to function
type or to void type.

C2233 (E) Illegal array reference

An expression used as an array is type other than array type or a pointer to function type or to
void.

C2234 (E) Illegal typedef name reference

A typedef name is used as a variable in an expression.

833

C2235 (E) Illegal cast

An attempt is made to cast a pointer to a floating-point type.

C2237 (E) Illegal constant expression

In an expression, a pointer constant is cast to an integer, and the result is manipulated.

C2238 (E) Lvalue or function type required for "&"

The unary operator & is used against the lvalue or an expression other than function type.

C2239 (E) Illegal section name

A section name includes a character that cannot be used.

C2240 (E) Illegal section naming

The section is illegally named. The same name is assigned to different sections.

C2300 (E) Case not in switch

A case label is specified outside a switch statement.

C2301 (E) Default not in switch

A default label is specified outside a switch statement.

C2302 (E) Multiple labels

A label name is defined more than once in a function.

C2303 (E) Illegal continue

A continue statement is specified outside a while, for, or do statement.

C2304 (E) Illegal break

A break statement is specified outside a while, for, do, or switch statement.

C2305 (E) Void function returns value

A return statement specifies a return value for a function with a void return type.

C2306 (E) Case label not constant

A case label expression is not an integal type constant expression.

C2307 (E) Multiple case labels

Two or more case labels with the same value are specified for one switch statement.

C2308 (E) Multiple default labels

Two or more default labels are specified for one switch statement.

C2309 (E) No label for goto

There is no label corresponding to the destination specified by a goto statement.

834

C2310 (E) Scalar required "while, for, do"

The control expression (that determines statement execution) for a while, for, or do statement is
not a scalar.

C2311 (E) Integer required

The control expression (that determines statement execution) for a switch statement is not integal
type.

C2312 (E) Missing "("

The control expression (that determines statement execution) does not have a left parenthesis
"(" for an if, while, for, do, or switch statement.

C2313 (E) Missing ";"

A do statement is ended without a semicolon (;).

C2314 (E) Scalar required "if"

A control expression (that determines statement execution) of an if statement is not scalar type.

C2316 (E) Illegal type for return value

An expression in a return statement cannot be converted to the type of value expected to be
returned by the function.

C2320 (E) Illegal asm position

The position of #pragma asm is illegal.

C2330 (E) Illegal #pragma interrupt function declaration

The interrupt function declaration is illegal.

C2331 (E) Illegal interrupt function call

A function with an interrupt function declaration is called or referenced in the program.

C2332 (E) Function "function name" in #pragma interrupt already declared

The function specified by interrupt function declaration #pragma interrupt has already been
declared as a normal function.

C2333 (E) Multiple interrupt for one function

Interrupt function declaration #pragma interrupt has been declared more than once against the
same function.

C2334 (E) Illegal parameter in #pragma interrupt function

The parameter type used for an interrupt function is illegal. Only void can be specified for the
parameter.

835

C2335 (E) Missing parameter declaration in #pragma interrupt function

An undeclared variable or function is used in stack switching specification (sp) for interrupt
function declaration #pragma interrupt, or interrupt function termination specification (sy).

C2336 (E) Parameter out of range in #pragma interrupt function

The value of parameter tn for interrupt function declaration #pragma interrupt exceeds 3.

C2337 (E) Illegal #pragma interrupt function type

The interrupt function declaration is illegal.

C2340 (E) Illegal #pragma abs8 declaration

The short absolute address variable declaration is illegal.

C2341 (E) Variable "variable name" in #pragma abs8 already declared

The variable specified by short absolute address variable declaration #pragma abs8 has already
been declared as a variable.

C2342 (E) Illegal #pragma abs8 symbol type

The variable specified by short absolute address variable declaration #pragma abs8 has been
declared as a type other than a variable name.

C2345 (E) Illegal #pragma abs16 declaration

The short absolute address variable declaration is illegal.

C2346 (E) Variable "variable name" in #pragma abs16 already declared

The variable specified by short absolute address variable declaration #pragma abs16 has already
been declared as a variable.

C2347 (E) Illegal #pragma abs16 symbol type

The variable specified by short absolute address variable declaration #pragma abs16 has been
declared as a type other than a variable name.

C2350 (E) Illegal section name declaration

The #pragma section specification is illegal.

C2352 (E) Section name table overflow

The total number of sections exceeds 65280.

C2353 (E) Section size overflow regarding "section name"

The section size exceeds 32 kbytes.

C2360 (E) Illegal #pragma indirect function declaration

Indirect memory function declaration is illegal.

836

C2361 (E) Function "function name" in #pragma indirect function already declared

The function specified by indirect memory function declaration #pragma indirect has already
been declared as a function.

C2362 (E) Illegal #pragma indirect function type

The function specified by indirect memory function declaration #pragma indirect has been
declared or defined as a type other than a function.

C2363 (E) Too many indirect identifiers

The number of names that can be specified in a file of the indirect memory function exceeds the
limit of 256.

C2370 (E) Illegal #pragma regsave/noregsave declaration

The #pragma regsave or #pragma noregsave declaration is illegal.

C2371 (E) Function "function name" in #pragma regsave/noregsave function already
declared

The function specified by #pragma regsave or #pragma noregsave has already been declared as
a function.

C2372 (E) Illegal #pragma regsave/noregsave function type

The function specified by #pragma regsave or #pragma noregsave has been declared or defined
as a type other than a function.

C2380 (E) Illegal #pragma inline/inline_asm declaration

The #pragma inline or #pragma inline_asm declaration is illegal.

C2381 (E) Function "function name" in #pragma inline/inline_asm function already
declared

The function specified by #pragma inline or #pragma inline_asm has already been declared as a
function.

C2382 (E) Illegal #pragma inlne/inline_asm function type

The function specified by #pragma inline or #pragma inline_asm has been declared or defined
as a type other than a function.

C2383 (E) #pragma inline_asm ignored

#pragma inline_asm has been specified when the object is a relocatable object program.

C2390 (E) Illegal #pragma global_register declaration

The #pragma global_register declaration is illegal.

C2391 (E) Variable "variable name" in #pragma global_register already declared

The variable specified by #pragma global_register has already been declared as a variable.

837

C2392 (E) Illegal #pragma global_register symbol type

The variable specified by #pragma global_register has been declared as a type other than a
variable.

C2393 (E) Illegal register

The register name specified by #pragma global_register is illegal, or one register is specified
more than once.

C2400 (E) Illegal character "character"

An illegal character is found.

C2401 (E) Incomplete character constant

An end of line indicator is detected in the middle of a character constant.

C2402 (E) Incomplete string

An end of line indicator is detected in the middle of a string literal.

C2403 (E) EOF in comment

An end of file indicator is detected in the middle of a comment.

C2404 (E) Illegal character code "character code"

An illegal character code is found.

C2405 (E) Null character constant

There are no characters in a character constant (i.e., no characters are specified between two
quotation marks).

C2407 (E) Incomplete logical line

A backslash (\) or a backslash followed by an end of line indicator (\ (RET)) is specified as the
last character in a non-empty source file.

C2408 (E) Comment nest too deep

The nesting level of the comment exceeds 255.

C2410 (E) Illegal #pragma entry declaration

A syntax error has been found in the #pragma entry declaration.

C2411 (E) Function "function name" in #pragma entry already declared

Before the #pragma entry declaration, a symbol with the same name or a pragma is specified.

C2412 (E) Illegal #pragma entry function type

The specified symbol is not a function.

838

C2413 (E) Multiple #pragma entry declaration

Multiple #pragma entry declarations exist.

C2420 (E) Illegal #pragma pack/unpack declaration

A syntax error has been found in the #pragma pack or #pragma unpack declaration.

C2440 (E) Illegal #pragma stacksize declaration

A syntax error has been found in the #pragma stacksize declaration.

C2441 (E) Multiple #pragma stacksize declaration

Multiple #pragma stacksize declarations exist.

C2442 (E) Stack size overflow

The stack size specified by #pragma stacksize is too large.

C2450 (E) Illegal #pragma option declaration

An illegal #pragma option is declared.

C2460 (E) Pragma kind mismatch

A #pragma type mismatch is detected in declarations.

C2470 (E) Illegal #pragma bit_order declaration

An illegal #pragma bit_order is declared.

C2480 (E) Illegal #pragma address declaration

An illegal #pragma address is specified.

C2481 (E) Variable "variable name" in #pragma address already declared

Declaration preceded the #pragma address directive for "variable name".

C2482 (E) Illegal #pragma address symbol type

A symbolic name other than that of a variable was specified in a #pragma address directive.

C2483 (E) Illegal address in #pragma address

(1) An odd address was specified for a variable or structure that requires an even-address
boundary.

(2) The same address was specified for more than one variable or there is an overlap between
address ranges occupied by variables.

(3) There is an overlap between address ranges specified in two #pragma address directives.

C2500 (E) Illegal token "tokens"

An illegal token sequence is used.

839

C2501 (E) Division by zero

An integer is divided by zero in a constant expression.

C2510 (E) Missing {

"{" that starts the _ _asm block is not found.

C2511 (E) Illegal mnemonic

Illegal mnemonics are used.

C2512 (E) Member reference required for "offset"

An offset operator is used for a purpose other than referencing members.

C2513 (E) Number of operands mismatch

The number of operands is illegal.

C2514 (E) Illegal addressing mode

An illegal addressing mode is specified in an operand.

C2515 (E) Illegal register list

An illegal specification is made in the register list.

C2516 (E) Constant required

No constant is specified.

C2517 (E) Illegal value in operand

A value outside the range is specified in an operand.

C2518 (E) Invalid delay slot instruction

An illegal instruction is located in the delay slot.

C2600 (E) #error : "string literal"

An error message specified by the #error string literal is output to the list file if the nolist option
is not specified.

C2801 (E) Illegal parameter type in intrinsic function

There are different parameter types in an intrinsic function.

C2802 (E) Parameter out of range in intrinsic function

A parameter exceeds the range that can be specified in an intrinsic function.

C2803 (E) Usage for intrinsic function is wrong

An intrinsic function is erroneously used.

840

C3000 (F) Statement nest too deep

The nesting levels of an if, while, for, do, or switch statement exceeds 256.

C3006 (F) Too many parameters

The number of parameters in either a function declaration or a function call exceeds 63.

C3007 (F) Too many macro parameters

The number of parameters in a macro definition or a macro call exceeds 63.

C3008 (F) Line too long

After a macro expansion, the length of a line exceeds 16384 characters.

C3009 (F) String literal too long

The length of a string literal exceeds 32767 characters. The length of a string literal equals to the
number of bytes when linking string literals specified continuously. The length of the string literal
is not the length in the source program but the number of bytes included in the string literal data.
Escape sequence is counted as one character.

C3013 (F) Too many switches

The number of switch statements exceeds 2048.

C3014 (F) For nest too deep

The nesting level of a for statement exceeds 128.

C3017 (F) Too many case labels

The number of case labels in one switch statement exceeds 511.

C3018 (F) Too many goto labels

The number of goto labels defined in one function exceeds 511.

C3019 (F) Cannot open source file "file name"

A source file cannot be opened.

C3020 (F) Source file input error

A source or include file cannot be read.

C3021 (F) Memory overflow

The compiler cannot allocate sufficient memory to compile the program.

C3022 (F) Switch nest too deep

The nesting level of a switch statement exceeds 128.

841

C3023 (F) Type nest too deep

The number of types (pointer, array, and function) that qualify the basic type exceeds 16.

C3024 (F) Array dimension too deep

The number of dimensions in an array exceeds six.

C3025 (F) Source file not found

A source file name is not specified in the command line.

C3026 (F) Expression too complex

An expression is too complex.

C3027 (F) Source file too complex

The nesting level of statements in the program is too deep or an expression is too complex.

C3030 (F) Too many compound statements

The number of compound statements in one function exceeds 2048.

C3031 (F) Data size overflow

The size of an array or a structure exceeds the limit. The limit for each CPU/operating mode is as
follows:

• 65535 for H8SXN, 2600n, 2000n, 300hn, or 300

• 32767 for H8SXA with ptr16 option, H8SXX with ptr16 option, or H8SXM

• 1048575 for H8SXA:20, 2600a:20, 2000a:20, or 300ha:20

• 16777215 for H8SXA:24, 2600a:24, 2000a:24, or 300ha:24

• 268435455 for H8SXA:28, H8SXM:28, 2600a:28, or 2000a:28

• 4294967295 for H8SXA:32, H8SXM:32, 2600a:32, or 2000a:32

C3034 (F) Invalid file name "file name"

The specification of the file name is invalid.

C3200 (F) Object size overflow

The size of the object program exceeds the memory limit. The limit for each CPU/operating mode
is as follows:

• 65535 for H8SXN, 2600n, 2000n, 300hn, or 300

• 1048575 for H8SXA:20, H8SXM:20, 2600a:20, 2000a:20, or 300ha:20

• 16777215 for H8SXA:24, H8SXM:24, 2600a:24, 2000a:24, or 300ha:24

• 268435455 for H8SXA:28, H8SXM:28, 2600a:28, or 2000a:28

• 4294967295 for H8SXA:32, H8SXM:32, 2600a:32, or 2000a:32

842

C3201 (F) Object data size overflow

The data size exceeds the memory limit. The limit for each CPU/operating mode is as follows:

• 65535 for H8SXN, H8SXM, 2600n, 2000n, 300hn, or 300

• 65535 for H8SXA with ptr16 option, or H8SXX with ptr16 option

• 1048575 for H8SXA:20, 2600a:20, 2000a:20, or 300ha:20

• 16777215 for H8SXA:24, 2600a:24, 2000a:24, or 300ha:24

• 268435455 for H8SXA:28, H8SXM:28, 2600a:28, or 2000a:28

• 4294967295 for H8SXA:32, H8SXM:32, 2600a:32, or 2000a:32

C3202 (F) Illegal stack access

The local variable and temporary area, and the register save area are placed at an address that
exceeds the limit value for the stack pointer (SP) or frame pointer (FP), or the parameter area is
placed at an address that exceeds the limit value for the SP or FP. The offset limit from an SP or
FP for each CPU/operating mode is as follows:

• 32767 for H8SXN, H8SXM, 2600n, 2000n, 300hn, or 300

• 32767 for H8SXA with ptr16 option, or H8SXX with ptr16 option

• 524287 for H8SXA:20, 2600a:20, 2000a:20, or 300ha:20

• 8388607 for H8SXA:24, 2600a:24, 2000a:24, or 300ha:24

• 134217727 for H8SXA:28,H8SXM:28, 2600a:28, or 2000a:28

• 2147483647 for H8SXA:32, H8SXM:32, 2600a:32, or 2000a:32

C3300 (F) Cannot open internal file

An intermediate file internally used by the compiler cannot be opened.

C3301 (F) Cannot close internal file

An intermediate file internally generated by the compiler cannot be closed. Check that the
intermediate file generated by the compiler is not being used.

C3302 (F) Cannot input internal file

An intermediate file internally generated by the compiler cannot be read. Check that the
intermediate file generated by the compiler is not being used.

C3303 (F) Cannot output internal file

An intermediate file internally generated by the compiler cannot be written to. Increase the disk
size.

C3304 (F) Cannot delete internal file

An intermediate file internally generated by the compiler cannot be deleted. Check that the
intermediate file generated by the compiler is not being used.

843

C3305 (F) Invalid command parameter "option"

An invalid compiler option is specified.

C3306 (F) Interrupt in compilation

An interrupt generated by (cntl)+C keys (from a standard input terminal) is detected during
compilation.

C3307 (F) Compiler version mismatch in "file name"

The file version specified by the "file name" in the compiler does not match other file versions.
Refer to the Install Guide for the installation procedure, and reinstall the compiler.

C3320 (F) Command parameter buffer overflow

The command line specification exceeds 4096 characters.

C3322 (F) Lacking cpu specification

The CPU/operating mode is not specified. Specify the CPU/operating mode with the cpu option
or with environment variable H38CPU.

C3323 (F) Illegal environment specified "environment variable"

An error has been found in the specification of the environment variable (CH38TMP, H38CPU)
used by the compiler.

C3324 (F) Cannot open subcommand file "file name"

The subcommand file cannot be opened.

C3325 (F) Cannot close subcommand file

The subcommand file cannot be closed. Check that the subcommand file is not being used.

C3326 (F) Cannot input subcommand file

The subcommand file cannot be read.

C3327 (F) Cannot find "file name"

The cross-software executable file cannot be found. Check whether the file name or path name is
correct.

C4xxx (−) Internal error

An internal error occurred during compilation. Report the error to your sales agency.

C5003 (F) #include file "file name" includes itself

C5004 (F) Out of memory

C5005 (F) Could not open source file "name"

844

C5006 (E) Comment unclosed at end of file

C5007 (E) (I) Unrecognized token

C5008 (E) (I) Missing closing quote

C5009 (I) Nested comment is not allowed

C5010 (E) "#" not expected here

C5011 (E) Unrecognized preprocessing directive

C5012 (E) Parsing restarts here after previous syntax error

C5013 (F) (E) Expected a file name

C5014 (E) Extra text after expected end of preprocessing directive

C5016 (F) "name" is not a valid source file name

C5017 (E) Expected a "]"

C5018 (E) Expected a ")"

C5019 (E) Extra text after expected end of number

C5020 (E) Identifier "name" is undefined

C5021 (W) Type qualifiers are meaningless in this declaration

C5022 (E) Invalid hexadecimal number

C5024 (E) Invalid octal digit

C5025 (E) Quoted string should contain at least one character

845

C5026 (E) Too many characters in character constant

C5027 (W) Character value is out of range

C5028 (E) Expression must have a constant value

C5029 (E) Expected an expression

C5030 (E) Floating constant is out of range

C5031 (E) Expression must have integral type

C5032 (E) Expression must have arithmetic type

C5033 (E) Expected a line number

C5034 (E) Invalid line number

C5035 (F) #error directive: "line number"

C5036 (E) The #if for this directive is missing

C5037 (E) The #endif for this directive is missing

C5038 (W) Directive is not allowed -- an #else has already appeared

C5039 (E) Division by zero

C5040 (E) Expected an identifier

C5041 (E) Expression must have arithmetic or pointer type

C5042 (E) Operand types are incompatible ("type 1" and "type 2")

C5044 (E) Expression must have pointer type

C5045 (W) #undef may not be used on this predefined name

846

C5046 (W) This predefined name may not be redefined

C5047 (W) Incompatible redefinition of macro "name" (declared at line "line number")

C5049 (E) Duplicate macro parameter name

C5050 (E) "##" may not be first in a macro definition

C5051 (E) "##" may not be last in a macro definition

C5052 (E) Expected a macro parameter name

C5053 (E) Expected a ":"

C5054 (W) Too few arguments in macro invocation

C5055 (W) Too many arguments in macro invocation

C5056 (E) Operand of sizeof may not be a function

C5057 (E) This operator is not allowed in a constant expression

C5058 (E) This operator is not allowed in a preprocessing expression

C5059 (E) Function call is not allowed in a constant expression

C5060 (E) This operator is not allowed in an integral constant expression

C5061 (W) Integer operation result is out of range

C5062 (W) Shift count is negative

C5063 (W) Shift count is too large

C5064 (W) Declaration does not declare anything

847

C5065 (E) Expected a ";"

C5066 (E) Enumeration value is out of "int" range

C5067 (E) Expected a "}"

C5068 (W) Integer conversion resulted in a change of sign

C5069 (W) Integer conversion resulted in truncation

C5070 (E) Incomplete type is not allowed

C5071 (E) Operand of sizeof may not be a bit field

C5075 (E) Operand of "*" must be a pointer

C5077 (E) This declaration has no storage class or type specifier

C5079 (E) Expected a type specifier

C5080 (E) A storage class may not be specified here

C5081 (E) More than one storage class may not be specified

C5083 (W) Type qualifier specified more than once

C5084 (E) Invalid combination of type specifiers

C5085 (E) Invalid storage class for a parameter

C5086 (E) Invalid storage class for a function

C5087 (E) A type specifier may not be used here

C5088 (E) Array of functions is not allowed

C5089 (E) Array of void is not allowed

848

C5090 (E) Function returning function is not allowed

C5091 (E) Function returning array is not allowed

C5093 (E) Function type may not come from a typedef

C5094 (E) The size of an array must be greater than zero

C5095 (E) Array is too large

C5097 (E) A function may not return a value of this type

C5098 (E) An array may not have elements of this type

C5100 (E) Duplicate parameter name

C5101 (E) "name" has already been declared in the current scope

C5103 (E) Class is too large

C5105 (E) Invalid size for bit field

C5106 (E) Invalid type for a bit field

C5107 (E) Zero-length bit field must be unnamed

C5108 (W) Signed bit field of length 1

C5109 (E) Expression must have (pointer-to-) function type

C5110 (E) Expected either a definition or a tag name

C5111 (I) Statement is unreachable

C5112 (E) Expected "while"

849

C5114 (E) Entity-kind "name" was referenced but not defined

C5115 (E) A continue statement may only be used within a loop

C5116 (E) A break statement may only be used within a loop or switch

C5117 (W) non-void entity-kind "name" should return a value

C5118 (E) A void function may not return a value

C5119 (E) Cast to type "type" is not allowed

C5120 (E) Return value type does not match the function type

C5121 (E) A case label may only be used within a switch

C5122 (E) A default label may only be used within a switch

C5123 (E) Case label value has already appeared in this switch

C5124 (E) Default label has already appeared in this switch

C5125 (E) Expected a "("

C5126 (E) Expression must be an lvalue

C5127 (E) Expected a statement

C5128 (I) Loop is not reachable from preceding code

C5129 (E) A block-scope function may only have extern storage class

C5130 (E) Expected a "{"

C5131 (E) Expression must have pointer-to-class type

C5132 (E) Expression must have pointer-to-struct-or-union type

850

C5133 (E) Expected a member name

C5134 (E) Expected a field name

C5135 (E) Entity-kind "name" has no member "member name"

C5136 (E) Entity-kind "name" has no field "field name"

C5137 (E) Expression must be a modifiable lvalue

C5139 (E) Taking the address of a bit field is not allowed

C5140 (E) Too many arguments in function call

C5142 (E) Expression must have pointer-to-object type

C5143 (F) Program too large or complicated to compile

C5144 (E) A value of type "type 1" cannot be used to initialize an entity of type "type 2"

C5145 (E) Entity-kind "name" may not be initialized

C5146 (E) Too many initializer values

C5147 (E) Declaration is incompatible with "name" (declared at line "line number")

C5148 (E) Entity-kind "name" has already been initialized

C5149 (E) A global-scope declaration may not have this storage class

C5150 (E) A type name may not be redeclared as a parameter

C5151 (E) A typedef name may not be redeclared as a parameter

C5153 (E) Expression must have class type

851

C5154 (E) Expression must have struct or union type

C5157 (E) Expression must be an integral constant expression

C5158 (E) Expression must be an lvalue or a function designator

C5159 (E) Declaration is incompatible with previous "name" (declared at line "line
number")

C5160 (E) Name conflicts with previously used external name "name"

C5161 (I) Unrecognized #pragma

C5163 (F) Could not open temporary file "name"

C5164 (F) Name of directory for temporary files is too long ("name")

C5165 (E) Too few arguments in function call

C5166 (E) Invalid floating constant

C5167 (E) Argument of type "type 1" is incompatible with parameter of type "type 2"

C5168 (E) A function type is not allowed here

C5169 (E) Expected a declaration

C5170 (W) Pointer points outside of underlying object

C5171 (E) Invalid type conversion

C5172 (I) External/internal linkage conflict with previous declaration

C5173 (E) Floating-point value does not fit in required integral type

C5174 (I) Expression has no effect

852

C5175 (W) Subscript out of range

C5177 (W) Entity-kind "name" was declared but never referenced

C5179 (W) Right operand of "%" is zero

C5182 (F) Could not open source file "name" (no directories in search list)

C5183 (E) Type of cast must be integral

C5184 (E) Type of cast must be arithmetic or pointer

C5185 (I) Dynamic initialization in unreachable code

C5186 (W) Pointless comparison of unsigned integer with zero

C5187 (I) Use of "=" where "= =" may have been intended

C5189 (F) Error while writing "file name" file

C5191 (W) Type qualifier is meaningless on cast type

C5192 (W) Unrecognized character escape sequence

C5193 (I) Zero used for undefined preprocessing identifier

C5219 (F) Error while deleting file "file name"

C5221 (W) Floating-point value does not fit in required floating-point type

C5224 (W) The format string requires additional arguments

C5225 (W) The format string ends before this argument

C5226 (W) Invalid format string conversion

C5229 (W) Bit field cannot contain all values of the enumerated type

853

C5235 (E) Variable "name" was declared with a never-completed type

C5236 (W) (I) Controlling expression is constant

C5237 (I) Selector expression is constant

C5238 (E) Invalid specifier on a parameter

C5239 (E) Invalid specifier outside a class declaration

C5240 (E) Duplicate specifier in declaration

C5241 (E) A union is not allowed to have a base class

C5242 (E) Multiple access control specifiers are not allowed

C5243 (E) Class or struct definition is missing

C5244 (E) Qualified name is not a member of class "type" or its base classes

C5245 (E) A nonstatic member reference must be relative to a specific object

C5246 (E) A nonstatic data member may not be defined outside its class

C5247 (E) Entity-kind "name" has already been defined

C5248 (E) Pointer to reference is not allowed

C5249 (E) Reference to reference is not allowed

C5250 (E) Reference to void is not allowed

C5251 (E) Array of reference is not allowed

C5252 (E) Reference entity-kind "name" requires an initializer

854

C5253 (E) Expected a ","

C5254 (E) Type name is not allowed

C5255 (E) Type definition is not allowed

C5256 (E) Invalid redeclaration of type name "name" (declared at line "line number")

C5257 (E) Const entity-kind "name" requires an initializer

C5258 (E) "this" may only be used inside a nonstatic member function

C5259 (E) Constant value is not known

C5261 (I) Access control not specified ("name" by default)

C5262 (E) Not a class or struct name

C5263 (E) Duplicate base class name

C5264 (E) Invalid base class

C5265 (E) Entity-kind "name" is inaccessible

C5266 (E) "name" is ambiguous

C5269 (E) Implicit conversion to inaccessible base class "type" is not allowed

C5274 (E) Improperly terminated macro invocation

C5276 (E) Name followed by "::" must be a class or namespace name

C5277 (E) Invalid friend declaration

C5278 (E) A constructor or destructor may not return a value

C5279 (E) Invalid destructor declaration

855

C5280 (E) (W) Declaration of a member with the same name as its class

C5281 (E) Global-scope qualifier (leading "::") is not allowed

C5282 (E) The global scope has no "name"

C5283 (E) Qualified name is not allowed

C5284 (W) NULL reference is not allowed

C5285 (E) Initialization with "{...}" is not allowed for object of type "type"

C5286 (E) Base class "type" is ambiguous

C5287 (E) Derived class "type" contains more than one instance of class "type"

C5288 (E) Cannot convert pointer to base class "type 1" to pointer to derived class
"type 2" -- base class is virtual

C5289 (E) No instance of constructor "name" matches the argument list

C5290 (E) Copy constructor for class "type" is ambiguous

C5291 (E) No default constructor exists for class "type"

C5292 (E) "name" is not a nonstatic data member or base class of class "type"

C5293 (E) Indirect nonvirtual base class is not allowed

C5294 (E) Invalid union member -- class "type" has a disallowed member function

C5297 (E) Expected an operator

C5298 (E) Inherited member is not allowed

C5299 (E) Cannot determine which instance of entity-kind "name" is intended

856

C5300 (E) A pointer to a bound function may only be used to call the function

C5302 (E) Entity-kind "name" has already been defined

C5304 (E) No instance of entity-kind "name" matches the argument list

C5305 (E) Type definition is not allowed in function return type declaration

C5306 (E) Default argument not at end of parameter list

C5307 (E) Redefinition of default argument

C5308 (E) More than one instance of entity-kind "name" matches the argument list:

C5309 (E) More than one instance of constructor "name" matches the argument list:

C5310 (E) Default argument of type "type 1" is incompatible with parameter of type
"type 2"

C5311 (E) Cannot overload functions distinguished by return type alone

C5312 (E) No suitable user-defined conversion from "type 1" to "type 2" exists

C5313 (E) Type qualifier is not allowed on this function

C5314 (E) Only nonstatic member functions may be virtual

C5315 (E) The object has type qualifiers that are not compatible with the member
function

C5316 (E) Program too large to compile (too many virtual functions)

C5317 (E) Return type is not identical to nor covariant with return type "type" of
overridden virtual function entity-kind "name"

C5318 (E) Override of virtual entity-kind "name" is ambiguous

857

C5319 (E) Pure specifier ("= 0") allowed only on virtual functions

C5320 (E) Badly-formed pure specifier (only "= 0" is allowed)

C5321 (E) Data member initializer is not allowed

C5322 (E) Object of abstract class type "type" is not allowed:

C5323 (E) Function returning abstract class "type" is not allowed:

C5324 (I) Duplicate friend declaration

C5325 (E) Inline specifier allowed on function declarations only

C5326 (E) "inline" is not allowed

C5327 (E) Invalid storage class for an inline function

C5328 (E) Invalid storage class for a class member

C5329 (E) Local class member entity-kind "name" requires a definition

C5330 (E) Entity-kind "name" is inaccessible

C5332 (E) Class "type" has no copy constructor to copy a const object

C5333 (E) Defining an implicitly declared member function is not allowed

C5334 (E) Class "type" has no suitable copy constructor

C5335 (E) Linkage specification is not allowed

C5336 (E) Unknown external linkage specification

C5337 (E) Linkage specification is incompatible with previous "name" (declared at line
"line number")

858

C5338 (E) More than one instance of overloaded function "name" has "C" linkage

C5339 (E) Class "type" has more than one default constructor

C5341 (E) "operator" must be a member function

C5342 (E) Operator may not be a static member function

C5343 (E) No arguments allowed on user-defined conversion

C5344 (E) Too many parameters for this operator function

C5345 (E) Too few parameters for this operator function

C5346 (E) Nonmember operator requires a parameter with class type

C5347 (E) Default argument is not allowed

C5348 (E) More than one user-defined conversion from "type 1" to "type 2" applies:

C5349 (E) No operator "operator" matches these operands

C5350 (E) More than one operator "operator" matches these operands:

C5351 (E) First parameter of allocation function must be of type "size_t"

C5352 (E) Allocation function requires "void *" return type

C5353 (E) Deallocation function requires "void" return type

C5354 (E) First parameter of deallocation function must be of type "void *"

C5356 (E) Type must be an object type

C5357 (E) Base class "type" has already been initialized

C5359 (E) Entity-kind "name" has already been initialized

859

C5360 (E) Name of member or base class is missing

C5363 (E) Invalid anonymous union -- nonpublic member is not allowed

C5364 (E) Invalid anonymous union -- member function is not allowed

C5365 (E) Anonymous union at global or namespace scope must be declared static

C5366 (E) Entity-kind "name" provides no initializer for:

C5367 (E) Implicitly generated constructor for class "type" cannot initialize:

C5368 (W) Entity-kind "name" defines no constructor to initialize the following:

C5369 (E) Entity-kind "name" has an uninitialized const or reference member

C5370 (W) Entity-kind "name" has an uninitialized const field

C5371 (E) Class "type" has no assignment operator to copy a const object

C5372 (E) Class "type" has no suitable assignment operator

C5373 (E) Ambiguous assignment operator for class "type"

C5375 (E) Declaration requires a typedef name

C5377 (E) "virtual" is not allowed

C5378 (E) "static" is not allowed

C5380 (E) Expression must have pointer-to-member type

C5381 (I) Extra ";" ignored

C5382 (W) Nonstandard member constant declaration (standard form is a static const
integral member)

860

C5384 (E) No instance of overloaded "name" matches the argument list

C5386 (E) No instance of entity-kind "name" matches the required type

C5388 (E) "operator−>" for class "type 1" returns invalid type "type 2"

C5389 (E) A cast to abstract class "type" is not allowed:

C5391 (E) A new-initializer may not be specified for an array

C5392 (E) Member function "name" may not be redeclared outside its class

C5393 (E) Pointer to incomplete class type is not allowed

C5394 (E) Reference to local variable of enclosing function is not allowed

C5397 (E) Implicitly generated assignment operator cannot copy:

C5399 (I) Entity-kind "name" has an operator newxxxx () but no default operator
deletexxxx ()

C5400 (I) Entity-kind "name" has a default operator deletexxxx () but no operator
newxxxx ()

C5401 (E) Destructor for base class "type" is not virtual

C5403 (E) Entity-kind "name" has already been declared

C5404 (E) Function "main" may not be declared inline

C5405 (E) Member function with the same name as its class must be a constructor

C5407 (E) A destructor may not have parameters

C5408 (E) Copy constructor for class "type 1" may not have a parameter of type
"type2"

C5409 (E) Entity-kind "name" returns incomplete type "type"

861

C5410 (E) Protected entity-kind "name" is not accessible through a "type" pointer or
object

C5411 (E) A parameter is not allowed

C5412 (E) An "asm" declaration is not allowed here

C5413 (E) No suitable conversion function from "type 1" to "type 2" exists

C5414 (W) Delete of pointer to incomplete class

C5415 (E) No suitable constructor exists to convert from "type 1" to "type 2"

C5416 (E) More than one constructor applies to convert from "type 1" to "type 2":

C5417 (E) More than one conversion function from "type 1" to "type 2" applies:

C5418 (E) More than one conversion function from "type" to a built-in type applies:

C5424 (E) A constructor or destructor may not have its address taken

C5427 (E) Qualified name is not allowed in member declaration

C5429 (E) The size of an array in "new" must be non-negative

C5430 (W) Returning reference to local temporary

C5432 (E) "enum" declaration is not allowed

C5433 (E) Qualifiers dropped in binding reference of type "type 1" to initializer of type
"type 2"

C5434 (E) A reference of type "type 1" (not const-qualified) cannot be initialized with a
value of type "type 2"

C5435 (E) A pointer to function may not be deleted

862

C5436 (E) Conversion function must be a nonstatic member function

C5437 (E) Template declaration is not allowed here

C5438 (E) Expected a "<"

C5439 (E) Expected a ">"

C5440 (E) Template parameter declaration is missing

C5441 (E) Argument list for entity-kind "name" is missing

C5442 (E) Too few arguments for entity-kind "name"

C5443 (E) Too many arguments for entity-kind "name"

C5445 (E) Entity-kind "name 1" is not used in declaring the parameter types of entity-
kind "name 2"

C5449 More than one instance of entity-kind "name" matches the required type

C5452 (E) Return type may not be specified on a conversion function

C5456 (E) Excessive recursion at instantiation of entity-kind "name"

C5457 (E) "name" is not a function or static data member

C5458 (E) Argument of type "type 1" is incompatible with template parameter of type
"type 2"

C5459 (E) Initialization requiring a temporary or conversion is not allowed

C5461 (E) Initial value of reference to non-const must be an lvalue

C5463 (E) "template" is not allowed

C5464 (E) "type" is not a class template

863

C5466 (E) "main" is not a valid name for a function template

C5467 (E) Invalid reference to entity-kind "name" (union/nonunion mismatch)

C5468 (E) A template argument may not reference a local type

C5469 (E) Tag kind of "name 1" is incompatible with declaration of entity-kind "name 2"
(declared at line "line number")

C5470 (E) The global scope has no tag named "name"

C5471 (E) Entity-kind "name 1" has no tag member named "name 2"

C5473 (E) Entity-kind "name" may be used only in pointer-to-member declaration

C5475 (E) A template argument may not reference a non-external entity

C5476 (E) Name followed by "::~" must be a class name or a type name

C5477 (E) Destructor name does not match name of class "type"

C5478 (E) Type used as destructor name does not match type "type"

C5479 (I) Entity-kind "name" redeclared "inline" after being called

C5481 (E) Invalid storage class for a template declaration

C5484 (E) Invalid explicit instantiation declaration

C5485 (E) Entity-kind "name" is not an entity that can be instantiated

C5486 (E) Compiler generated entity-kind "name" cannot be explicitly instantiated

C5487 (E) Inline entity-kind "name" cannot be explicitly instantiated

C5488 (E) Pure virtual entity-kind "name" cannot be explicitly instantiated

864

C5489 (E) Entity-kind "name" cannot be instantiated -- no template definition was
supplied

C5490 (E) Entity-kind "name" cannot be instantiated -- it has been explicitly
specialized

C5493 (E) No instance of entity-kind "name" matches the specified type

C5496 (E) Template parameter "name" may not be redeclared in this scope

C5497 (W) Declaration of "name" hides template parameter

C5498 (E) Template argument list must match the parameter list

C5499 (E) Conversion function to convert from "type 1" to "type 2" is not allowed

C5500 (E) Extra parameter of postfix "operatorxxxx" must be of type "int"

C5501 (E) An operator name must be declared as a function

C5502 (E) Operator name is not allowed

C5503 (E) Entity-kind "name" cannot be specialized in the current scope

C5505 (E) Too few template parameters -- does not match previous declaration

C5506 (E) Too many template parameters -- does not match previous declaration

C5507 (E) Function template for operator delete (void *) is not allowed

C5508 (E) Class template and template parameter may not have the same name

C5510 (E) A template argument may not reference an unnamed type

C5511 (E) Enumerated type is not allowed

865

C5512 (W) Type qualifier on a reference type is not allowed

C5513 (E) A value of type "type 1" cannot be assigned to an entity of type "type 2"

C5514 (W) Pointless comparison of unsigned integer with a negative constant

C5515 (E) Cannot convert to incomplete class "type"

C5516 (E) Const object requires an initializer

C5517 (E) Object has an uninitialized const or reference member

C5519 (E) Entity-kind "name" may not have a template argument list

C5520 (E) Initialization with "{...}" expected for aggregate object

C5521 (E) Pointer-to-member selection class types are incompatible ("type 1" and
"type 2")

C5522 (W) Pointless friend declaration

C5526 (E) A parameter may not have void type

C5529 (E) This operator is not allowed in a template argument expression

C5530 (E) Try block requires at least one handler

C5531 (E) Handler requires an exception declaration

C5532 (E) Handler is masked by default handler

C5533 (E) Handler is potentially masked by previous handler for type "type"

C5534 (I) Use of a local type to specify an exception

C5535 (I) Redundant type in exception specification

866

C5536 (E) Exception specification is incompatible with that of previous entity-kind
"name" (declared at line "line number"):

C5540 (E) Support for exception handling is disabled

C5541 (W) Omission of exception specification is incompatible with previous entity-
kind "name" (declared at line "line number")

C5542 (F) Could not create instantiation request file "name"

C5543 (E) Non-arithmetic operation not allowed in nontype template argument

C5544 (E) Use of a local type to declare a nonlocal variable

C5545 (E) Use of a local type to declare a function

C5546 (E) Transfer of control bypasses initialization of:

C5548 (E) Transfer of control into an exception handler

C5549 (W) Entity-kind "name" is used before its value is set

C5550 (W) Entity-kind "name" was set but never used

C5551 (E) Entity-kind "name" cannot be defined in the current scope

C5552 (W) Exception specification is not allowed

C5553 (W) External/internal linkage conflict for entity-kind "name" (declared at line
"line number")

C5554 (W) Entity-kind "name" will not be called for implicit or explicit conversions

C5555 (E) Tag kind of "name" is incompatible with template parameter of type "type"

C5556 (E) Function template for operator new (size_t) is not allowed

C5558 (E) Pointer to member of type "type" is not allowed

867

C5559 (E) Ellipsis is not allowed in operator function parameter list

C5598 (E) A template parameter may not have void type

C5601 (E) A throw expression may not have void type

C5603 (E) Parameter of abstract class type "type" is not allowed:

C5604 (E) Array of abstract class "type" is not allowed:

C5610 (W) Entity-kind "name 1" does not match "name 2" -- virtual function override
intended?

C5611 (W) Overloaded virtual function "name 1" is only partially overridden in entity-
kind "name 2"

C5612 (E) Specific definition of inline template function must precede its first use

C5624 (E) "name" is not a type name

C5641 (F) "name" is not a valid directory

C5642 (F) Cannot build temporary file name

C5656 (E) Transfer of control into a try block

C5657 (W) Inline specification is incompatible with previous "name" (declared at line
"line number")

C5658 (E) Closing brace of template definition not found

C5660 (E) Invalid packing alignment value

C5662 (W) Call of pure virtual function

C5663 (E) Invalid source file identifier string

868

C5664 (E) A class template cannot be defined in a friend declaration

C5673 (E) A reference of type "type 1" cannot be initialized with a value of type
"type 2"

C5674 (E) Initial value of reference to const volatile must be an lvalue

C5678 (I) Call of entity-kind "name" (declared at line "line number") cannot be inlined

C5679 (I) Entity-kind "name" cannot be inlined

C5693 (E) <typeinfo> must be included before typeid is used

C5694 (E) "name" cannot cast away const or other type qualifiers

C5695 (E) The type in a dynamic_cast must be a pointer or reference to a complete class
type, or void *

C5696 (E) The operand of a pointer dynamic_cast must be a pointer to a complete class
type

C5697 (E) The operand of a reference dynamic_cast must be an lvalue of a complete
class type

C5698 (E) The operand of a runtime dynamic_cast must have a polymorphic class type

C5701 (E) An array type is not allowed here

C5702 (E) Expected an "="

C5703 (E) Expected a declarator in condition declaration

C5704 (E) "name", declared in condition, may not be redeclared in this scope

C5705 (E) Default template arguments are not allowed for function templates

C5706 (E) Expected a "," or ">"

869

C5707 (E) Expected a template parameter list

C5708 (W) Incrementing a bool value is deprecated

C5709 (E) bool type is not allowed

C5710 (E) Offset of base class "name 1" within class "name 2" is too large

C5711 (E) Expression must have bool type (or be convertible to bool)

C5717 (E) The type in a const_cast must be a pointer, reference, or pointer to member
to an object type

C5718 (E) A const_cast can only adjust type qualifiers; it cannot change the underlying
type

C5719 (E) mutable is not allowed

C5720 (W) Redeclaration of entity-kind "name" is not allowed to alter its access

C5722 (W) Use of alternative token "<:" appears to be unintended

C5723 (W) Use of alternative token "%:" appears to be unintended

C5724 (E) namespace definition is not allowed

C5725 (E) Name must be a namespace name

C5726 (E) Namespace alias definition is not allowed

C5727 (E) namespace-qualified name is required

C5728 (E) A namespace name is not allowed

C5730 (E) Entity-kind "name" is not a class template

C5732 (E) Allocation operator may not be declared in a namespace

870

C5733 (E) Deallocation operator may not be declared in a namespace

C5734 (E) Entity-kind "name 1" conflicts with using-declaration of entity-kind
"name 2"

C5735 (E) Using-declaration of entity-kind "name 1" conflicts with entity-kind
"name 2" (declared at line "line number")

C5737 (W) Using-declaration ignored -- it refers to the current namespace

C5738 (E) A class-qualified name is required

C5741 (W) Using-declaration of entity-kind "name" ignored

C5742 (E) Entity-kind "name 1" has no actual member "name 2"

C5750 (E) Entity-kind "name" (declared at line "line number") was used before its
template was declared

C5751 (E) Static and nonstatic member functions with same parameter types cannot be
overloaded

C5752 (E) No prior declaration of entity-kind "name"

C5753 (E) A template-id is not allowed

C5754 (E) A class-qualified name is not allowed

C5755 (E) Entity-kind "name" may not be redeclared in the current scope

C5756 (E) Qualified name is not allowed in namespace member declaration

C5757 (E) Entity-kind "name" is not a type name

C5761 (E) Typename may only be used within a template

871

C5766 (W) Exception specification for virtual entity-kind "name 1" is incompatible
with that of overridden entity-kind "name 2"

C5767 (W) Conversion from pointer to smaller integer

C5768 (W) Exception specification for implicitly declared virtual entity-kind "name 1"
is incompatible with that of overridden entity-kind "name 2"

C5771 (E) "explicit" is not allowed

C5772 (E) Declaration conflicts with "name" (reserved class name)

C5773 (E) Only "()" is allowed as initializer for array entity-kind "name"

C5774 (E) "virtual" is not allowed in a function template declaration

C5775 (E) Invalid anonymous union -- class member template is not allowed

C5776 (E) Template nesting depth does not match the previous declaration of entity-
kind "name"

C5777 (E) This declaration cannot have multiple "template <...>" clauses

C5779 (E) "name", declared in for-loop initialization, may not be redeclared in this
scope

C5782 (E) Definition of virtual entity-kind "name" is required here

C5784 (E) A storage class is not allowed in a friend declaration

C5785 (E) Template parameter list for "name" is not allowed in this declaration

C5786 (E) Entity-kind "name" is not a valid member class or function template

C5787 (E) Not a valid member class or function template declaration

C5788 (E) A template declaration containing a template parameter list may not be
followed by an explicit specialization declaration

872

C5789 (E) Explicit specialization of entity-kind "name 1" must precede the first use of
entity-kind "name 2"

C5790 (E) Explicit specialization is not allowed in the current scope

C5791 (E) Partial specialization of entity-kind "name" is not allowed

C5792 (E) Entity-kind "name" is not an entity that can be explicitly specialized

C5793 (E) Explicit specialization of entity-kind "name" must precede its first use

C5794 (W) Template parameter "template" may not be used in an elaborated type
specifier

C5795 (E) Specializing entity-kind "name" requires "template< >" syntax

C5800 (E) This declaration may not have extern "C" linkage

C5801 (E) "name" is not a class or function template name in the current scope

C5802 (W) Specifying a default argument when redeclaring an unreferenced function
template is nonstandard

C5803 (E) Specifying a default argument when redeclaring an already referenced
function template is not allowed

C5804 (E) Cannot convert pointer to member of base class "type 1" to pointer to
member of derived class "type 2" – base class is virtual

C5805 (E) Exception specification is incompatible with that of entity-kind "name"
(declared at line "line number"):

C5806 (W) Omission of exception specification is incompatible with entity-kind "name"
(declared at line "line number")

873

C5807 (E) The parse of this expression has changed between the point at which it
appeared in the program and the point at which the expression was evaluated --
"typename" may be required to resolve the ambiguity

C5808 (E) Default-initialization of reference is not allowed

C5809 (E) Uninitialized entity-kind "name" has a const member

C5810 (E) Uninitialized base class "type" has a const member

C5811 (E) Const entity-kind "name" requires an initializer -- class "type" has no
explicitly declared default constructor

C5812 (W) Const object requires an initializer -- class "type" has no explicitly declared
default constructor

C5815 (I) Type qualifier on return type is meaningless

C5817 (E) Static data member declaration is not allowed in this class

C5818 (E) Template instantiation resulted in an invalid function declaration

C5822 (E) Invalid destructor name for type "type"

C5824 (E) Destructor reference is ambiguous -- both entity-kind "name 1" and entity-
kind "name 2" could be used

C5825 (E) Virtual inline entity-kind "name" was never defined

C5826 (W) Entity-kind "name" was never referenced

C5827 (E) Only one member of a union may be specified in a constructor initializer list

C5831 (I) Support for placement delete is disabled

C5832 (E) No appropriate operator delete is visible

C5833 (E) Pointer or reference to incomplete type is not allowed

874

C5834 (E) Invalid partial specialization -- entity-kind "name" is already fully
specialized

C5835 (E) Incompatible exception specifications

C5836 (W) Returning reference to local variable

C5837 (W) Omission of explicit type is nonstandard ("int" assumed)

C5838 (E) More than one partial specialization matches the template argument list of
entity-kind "name"

C5840 (E) A template argument list is not allowed in a declaration of a primary
template

C5841 (E) Partial specializations may not have default template arguments

C5842 (E) Entity-kind "name 1" is not used in template argument list of entity-kind
"name 2"

C5843 (E) The type of partial specialization template parameter entity-kind "name"
depends on another template parameter

C5844 (E) The template argument list of the partial specialization includes a nontype
argument whose type depends on a template parameter

C5845 (E) This partial specialization would have been used to instantiate entity-kind
"name"

C5846 (E) This partial specialization would have been made the instantiation of entity-
kind "name" ambiguous

C5847 (E) Expression must have integral or enum type

C5848 (E) Expression must have arithmetic or enum type

C5849 (E) Expression must have arithmetic, enum, or pointer type

875

C5850 (E) Type of cast must be integral or enum

C5851 (E) Type of cast must be arithmetic, enum, or pointer

C5852 (E) Expression must be a pointer to a complete object type

C5853 (E) A partial specialization of a member class template must be declared in the
class of which it is a member

C5854 (E) A partial specialization nontype argument must be the name of a nontype
parameter or a constant

C5855 (E) Return type is not identical to return type "type" of overridden virtual
function entity-kind "name"

C5857 (E) A partial specialization of a class template must be declared in the namespace
of which it is a member

C5858 (E) Entity-kind "name" is a pure virtual function

C5859 (E) Pure virtual entity-kind "name" has no overrider

C5861 (E) Invalid character in input line

C5862 (E) Function returns incomplete type "type"

C5864 (E) "name" is not a template

C5865 (E) A friend declaration may not declare a partial specialization

C5867 (W) Declaration of "size_t" does not match the expected type "type"

C5868 (E) Space required between adjacent ">" delimiters of nested template argument
lists (">>" is the right shift operator)

C5870 (W) Invalid multibyte character sequence

876

C5871 (E) Template instantiation resulted in unexpected function type of "type 1" (the
meaning of a name may have changed since the template declaration -- the type
of the template is "type 2")

C5873 (E) Non-integral operation not allowed in nontype template argument

C5875 (W) Embedded C++ does not support templates

C5876 (W) Embedded C++ does not support exception handling

C5877 (W) Embedded C++ does not support namespaces

C5878 (W) Embedded C++ does not support run-time type information

C5879 (W) Embedded C++ does not support the new cast syntax

C5880 (W) Embedded C++ does not support using-declarations

C5881 (W) Embedded C++ does not support "mutable"

C5882 (W) Embedded C++ does not support multiple or virtual inheritance

C5885 (E) "type 1" cannot be used to designate constructor for "type 2"

C5891 (E) An explicit template argument list is not allowed on this declaration

C5894 (E) Entity-kind "name" is not a template

C5896 (E) Expected a template argument

C5898 (E) Nonmember operator requires a parameter with class or enum type

C5900 (E) Using-declaration of entity-kind "name" is not allowed

C5901 (E) Qualifier of destructor name "type 1" does not match type "type 2"

C5902 (W) Type qualifier ignored

877

C5916 (E) Cannot convert pointer to member of derived class "type 1" to pointer to
member of base class "type 2" – base class is virtual

C5919 (F) Invalid output file: "name"

C5920 (F) Cannot open output file: "name"

C5926 (F) Cannot open definition list file: "name"

C5928 (E) Incorrect use of va_start

C5929 (E) Incorrect use of va_arg

C5930 (E) Incorrect use of va_end

C5935 (E) "typedef" may not be specified here

C5936 (W) Redeclaration of entity-kind "name" alters its access

C5937 (E) A class or namespace qualified name is required

C5940 (W) Missing return statement at end of non-void entity-kind "name"

C5941 (W) Duplicate using-declaration of "name" ignored

C5946 (E) Name following "template" must be a member template

C5947 (E) Name following "template" must have a template argument list

C5952 (E) A template parameter may not have class type

C5953 (E) A default template argument cannot be specified on the declaration of a
member of a class template

C5954 (E) A return statement is not allowed in a handler of a function try block of a
constructor

878

C5959 (W) Declared size for bit field is larger than the size of the bit field type;
truncated to "size" bits

C5960 (E) Type used as constructor name does not match type "type"

C5961 (W) Use of a type with no linkage to declare a variable with linkage

C5962 (W) Use of a type with no linkage to declare a function

C5963 (E) Return type may not be specified on a constructor

C5964 (E) Return type may not be specified on a destructor

C5965 (E) Incorrectly formed universal character name

C5966 (E) Universal character name specifies an invalid character

C5967 (E) A universal character name cannot designate a character in the basic
character set

C5968 (E) This universal character is not allowed in an identifier

C5978 (E) A template friend declaration cannot be declared in a local class

C5979 (E) Ambiguous "?" operation: second operand of type "type 1" can be converted
to third operand type "type 2", and vice versa

C5980 (E) Call of an object of a class type without appropriate operator () or conversion
functions to pointer-to-function type

C5982 (E) There is more than one way an object of type "type" can be called for the
argument list

C5984 (W) Operator new and operator delete cannot be given internal linkage

C5985 (E) Storage class "mutable" is not allowed for anonymous unions

C5987 (E) Abstract class type "type" is not allowed as catch type:

879

C5988 (E) A qualified function type cannot be used to declare a nonmember function or a
static member function

C5989 (E) A qualified function type cannot be used to declare a parameter

C5990 (E) Cannot create a pointer or reference to qualified function type

C5991 (W) Extra braces are nonstandard

C5994 (E) An empty template parameter list is not allowed in a template template
parameter declaration

C5995 (E) Expected "class"

C5996 (E) The "class" keyword must be used when declaring a template template
parameter

C5998 (E) A qualified name is not allowed for a friend declaration that is a function
definition

C5999 (E) "type" is not compatible with "type"

C6000 (W) A storage class may not be specified here

C6006 (E) A template template parameter cannot have the same name as one of its
template parameters

C6007 (W) "function name 1" is hidden by "function name 2" -- virtual function override
intended?

C6008 (E) A parameter of a template template parameter cannot depend on the type of
another template parameter

C6009 (E) "instance name" is not an entity that can be defined

880

C6010 (E) Destructor name must be qualified

C6013 (E) A qualified friend template declaration must refer to a specific previously
declared template

C6018 (E) "class name" has no member class "member name"

C6019 (E) The global scope has no class named "class name"

C6020 (E) Recursive instantiation of template default argument

C6021 (E) Access declarations and using-declarations cannot appear in unions

C6022 (E) "name" is not a class member

C6028 (W) Invalid redeclarafion of nested class

C6035 (E) "template name" cannot be declared in this scope

C6057 (E) _ _evenaccess qualifier is applied to only integer type

C6058 (E) Expected a section name string

C6059 (E) Expected a section name

C6060 (E) Invalid pragma declaration

C6061 (E) "name" has already been specified by other pragma

C6062 (E) Pragma may not be specified after definition

C6063 (E) Invalid kind of pragma is specified to this symbol

C6064 (I) This pragma has no effect

C6065 (E) _ _regparam? must be qualified for function type

881

C6066 (E) Illegal attribute specifier

C6067 (E) Multiple pointer qualifiers

C6068 (E) _ _ptr16 must be qualified for data pointer type

882

12.3 C Library Function Error Messages

For some library functions, if an error is generated during the library function execution, an error
number is set in the macro errno defined in the header file <stddef.h> contained in the standard
library. Error messages are defined in the error numbers so that error messages can be output.
The following shows an example of an error message output program.

Example:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void main(void)

{

 FILE *fp;

 fp=fopen("file", "w");

 fp=NULL;

 fclose(fp); /* error occurred */

 printf("%s\n", strerror(errno)); /* print error message */

}

Description:

1. Since the file pointer of NULL is passed to the fclose function as an actual parameter, an error
will occur. In this case, an error number corresponding to errno is set.

2. The strerror function returns a pointer of the string literal of the corresponding error message
when the error number is passed as an actual parameter. An error message is output by
specifying the output of the string literal of the printf function.

883

Table 12.1 List of C Library Function Error Messages

Error No. Error Message/Explanation Functions to Set Error Numbers

1100
(ERANGE)

DATA OUT OF RANGE
An overflow occurred.

frexp, ldexp, modf, ceil, floor, fmod,
strtol, atoi, atol, perror, fprintf, fscanf,
printf, scanf, sprintf, sscanf, vfprintf,
vprintf, vsprintf, acos, acosf, asin,
asinf, atan, atan2, atan2f, atanf, ceilf,
cos, cosf, cosh, coshf, exp, expf,
floorf, fmodf, ldexpf, log, log10, log10f,
logf, modff, pow, powf, sin, sinf, sinh,
sinhf, sqrt, sqrtf, tan, tanf, tanh, tanhf,
fabs, fabsf, frexpf

1101
(EDOM)

DATA OUT OF DOMAIN
Results for mathematical parameters are
not defined.

acos, acosf, asin, asinf, atan, atan2,
atan2f, atanf, ceil, ceilf, cos, cosf,
cosh, coshf, exp, expf, floor, floorf,
fmod, fmodf, ldexp, ldexpf, log, log10,
log10f, logf, modf, modff, pow, powf,
sin, sinf, sinh, sinhf, sqrt, sqrtf, tan,
tanf, tanh, tanhf, fabs, fabsf, frexp,
frexpf

1102
(EDIV)

DIVISION BY ZERO
Division by zero was performed.

div, ldiv

1104
(ESTRN)

TOO LONG STRING
The length of string literal exceeds 32767
characters.

strtol, strtod, atof, atoi, atol

1106
(PTRERR)

INVALID FILE POINTER
The NULL pointer constant is specified as
the file pointer value

fclose, fflush, freopen, setbuf, setvbuf,
fprintf, fscanf, printf, scanf, sprintf,
sscanf, vfprintf, vprintf, vsprintf, fgetc,
fgets, fputc, fputs, ungetc, fread,
fwrite, fseek, ftell, rewind, perror

1200
(ECBASE)

INVALID RADIX
An invalid radix was specified.

strtol, atoi, atol

1202
(ETLN)

NUMBER TOO LONG
The specified number exceeds 17 digits.

strtod, fscanf, scanf, sscanf, atof

1204
(EEXP)

EXPONENT TOO LARGE
The specified exponent exceeds three
digits.

strtod, fscanf, scanf, sscanf, atof

1206
(EEXPN)

NORMALIZED EXPONENT TOO LARGE
The exponent exceeds three digits when
the string literal is normalized to the IEEE
standard decimal format.

strtod, fscanf, scanf, sscanf, atof

884

Table 12.1 List of C Library Function Error Messages (cont)

Error No. Error Message/Explanation Functions to Set Error Numbers

1210
(EFLOATO)

OVERFLOW OUT OF FLOAT
A float-type decimal value is out of range
(overflow).

strtod, fscanf, scanf, sscanf, atof

1220
(EFLOATU)

UNDERFLOW OUT OF FLOAT
A float-type decimal value is out of range
(underflow).

strtod, fscanf, scanf, sscanf, atof

1230
(EOVER)

FLOATING POINT OVERFLOW
A numerical constant exceeds the double
type range (overflow).

strtod, fscanf, scanf, sscanf, atof

1240
(EUNDER)

FLOATING POINT UNDERFLOW
A numerical constant exceeds the double
type range (underflow).

strtod, fscanf, scanf, sscanf, atof

1300
(NOTOPN)

FILE NOT OPEN
The file is not open.

fclose, fflush, setbuf, setvbuf, fprintf,
fscanf, printf, scanf, vfprintf, vprintf,
fgetc, fgets, fputc, fputs, gets, puts,
ungetc, fread, fwrite, fseek, ftell,
rewind, perror, freopen

1302
(EBADF)

BAD FILE NUMBER
An output function was issued for an input-
only file, or an input function was issued for
an output-only file.

fprintf, fscanf, printf, scanf, sprintf,
sscanf, vfprintf, vprintf, vsprintf, fgetc,
fgets, fputc, fputs, gets, puts, ungetc,
perror, fread, fwrite

1304
(ECSPEC)

ERROR IN FORMAT
An erroneous format was specified for an
input/output function using format.

fprintf, fscanf, printf, scanf, sprintf,
sscanf, vfprintf, vprintf, vsprintf, perror

885

Section 13 Assembler Error Messages

13.1 Error Message Format and Error Levels

This section gives lists of error messages in order of error code. A list of error messages are
provided for each level of errors in the format below:

Error code (Error Level: W, E, or F) Error Message

Meaning of the error message.

Error levels are classified into the following three types:

• (W): Warning error (Continues compiling processing and outputs the object program.)

• (E): Error (Continues compiling processing but does not output the object program.)

• (F): Fatal error (Aborts compiling processing.)

13.2 Error Messages

10 (E) NO INPUT FILE SPECIFIED

There is no input source file specified.
Specify an input source file.

20 (E) CANNOT OPEN FILE <file name>

The specified file cannot be opened.
Check and correct the file name and directory.

30 (E) INVALID COMMAND PARAMETER

The options are not correct.
Check and correct the options.

40 (E) CANNOT ALLOCATE MEMORY

All available memory is used up during processing.
This error only occurs when the amount of available user memory is extremely small. If there is
other processing occurring at the same time as assembly, interrupt that processing and restart the
assembler. If the error still occurs, check and correct the memory management employed on the
host computer.

886

50 (E) INVALID FILE NAME <file name>

The file name including the directory is too long or invalid file name.
Check and correct the file name.
It is possible that the object module output by the assembler after this error has occurred will not
be usable with the debugger.

60 (W) INVALID VALUE <file name>

A value other than 0 is specified for the lower 8 bits of the constant value of the SBR option.
Check the constant value.
The assembler changes the lower 8 bits of the constant value to 0.

101 (E) SYNTAX ERROR IN SOURCE STATEMENT

Syntax error in source statement.
Check and correct the whole source statement.

102 (E) SYNTAX ERROR IN DIRECTIVE

Syntax error in assembler directive source statement.
Check and correct the whole source statement.

103 (E) .END NOT FOUND

.END was not found in the program.
Insert .END in the program.

104 (E) LOCATION COUNTER OVERFLOW

The value of location counter exceeded its maximum value.
Reduce the size of the program.

105 (E) ILLEGAL INSTRUCTION IN STACK SECTION

An executable instruction or assembler directive that reserves data is in the stack section.
Remove, from the stack section, the executable instruction or assembler directive that reserves
data.

106 (E) TOO MANY ERRORS

Error display terminated due to too many errors.
Check and correct the whole source statement.

108 (E) ILLEGAL CONTINUATION LINE

Illegal continuation line.
Check and correct continuation line.

887

150 (E) INVALID DELAY SLOT INSTRUCTION

The current delay slot instruction, which is an instruction immediately after a delayed branch
instruction, is not allowed.
Check and correct the delay slot instruction by reordering instructions or by another way.

200 (E) UNDEFINED SYMBOL REFERENCE

Undefined symbol reference.
Define the symbol.

201 (E) ILLEGAL SYMBOL OR SECTION NAME

Reserved word (register name, operator, or location counter) specified as symbol or section name.
Correct the symbol or section name.

202 (E) ILLEGAL SYMBOL OR SECTION NAME

Illegal symbol or section name.
Correct the symbol or section name.

203 (E) ILLEGAL LOCAL LABEL

Illegal local label.
Correct the local label.

300 (E) ILLEGAL MNEMONIC

Illegal operation.
Correct the operation.

301 (E) TOO MANY OPERANDS OR ILLEGAL COMMENT

Too many operands of executable instruction, or illegal comment format.
Correct the operands and comment.

304 (E) LACKING OPERANDS

Too few operands.
Correct the operands.

306 (E) SYNTAX ERROR IN REGISTER LIST

Illegal syntax in the register list.
Correct the register list.

307 (E) ILLEGAL ADDRESSING MODE OR OBJECT CODE SIZE

Illegal addressing mode in operand, or illegal allocation size (:8, :16, :24, or :32).
Correct the operand or the allocation size.

888

308 (E) SYNTAX ERROR IN OPERAND

Syntax error in operand.
Correct the operand.

400 (E) CHARACTER CONSTANT TOO LONG

Character constant is longer than 4 characters.
Correct the character constant.

402 (E) ILLEGAL VALUE IN OPERAND

Operand value out of range for this instruction.
Change the value.

403 (E) ILLEGAL OPERATION FOR RELATIVE VALUE

Multiplication, division, or logic operation is specified for a relative-address value.
Correct the expression.

404 (E) ILLEGAL IMMEDIATE DATA

A relative value is specified as the operand for #1, #2, #4, #0 to #3, or #0 to #7.
Correct the value.

407 (E) MEMORY OVERFLOW

Memory overflow during expression calculation.
Simplify the expression.

408 (E) DIVISION BY ZERO

Division by 0 is specified.
Correct the expression.

409 (E) REGISTER IN EXPRESSION

Register name in expression.
Correct the expression.

411 (E) INVALID STARTOF/SIZEOF OPERAND

STARTOF or SIZEOF specifies illegal section name.
Correct the section name.

412 (E) ILLEGAL SYMBOL IN EXPRESSION

Relative-address value or relative symbol is specified as shift value.
Correct the expression.

413 (E) ILLEGAL DISPLACEMENT VALUE

The displacement value is illegal.
Make the displacement value even.

889

500 (E) SYMBOL NOT FOUND

Label not defined in directive that requires label.
Insert a label.

501 (E) ILLEGAL ADDRESS VALUE IN OPERAND

Illegal specification of the start address or the value of location counter in section.
Correct the start address or value of location counter.

502 (E) ILLEGAL SYMBOL IN OPERAND

Illegal value (forward reference symbol, import symbol, relative-address symbol, or undefined
symbol) specified in operand.
Correct the operand.

503 (E) UNDEFINED EXPORT SYMBOL

Symbol declared for export symbol not defined in the file.
Define the symbol. Alternatively, remove the export symbol declaration.

504 (E) INVALID RELATIVE SYMBOL IN OPERAND

Illegal value (forward reference symbol or import symbol) specified in operand.
Correct the operand.

505 (E) ILLEGAL OPERAND

Misspelled operand.
Correct the operand.

506 (E) ILLEGAL OPERAND

Illegal element specified in operand.
Correct the operand.

508 (E) ILLEGAL VALUE IN OPERAND

Operand value out of range for this directive.
Correct the operand.

510 (E) ILLEGAL BOUNDARY VALUE

Illegal boundary alignment value.
Correct the boundary alignment value.

511 (E) ILLEGAL DISPLACEMENT SIZE

Illegal number of bits for .DISPSIZE.
Correct the number of bits.

890

512 (E) ILLEGAL EXECUTION START ADDRESS

Illegal execution start address.
Correct the execution start address.

513 (E) ILLEGAL REGISTER NAME

Illegal register name.
Correct the register name.

514 (E) INVALID EXPORT SYMBOL

Symbol declared for export symbol that cannot be exported.
Remove the declaration for the export symbol.

516 (E) EXCLUSIVE DIRECTIVES

Inconsistent directive specification.
Check and correct all related directives.

517 (E) INVALID VALUE IN OPERAND

Illegal value (forward reference symbol, import symbol, or relative-address symbol in other
sections) specified in operand.
Correct the operand.

518 (E) INVALID IMPORT SYMBOL

Symbol declared for import symbol defined in the file.
Remove the declaration for the import symbol.

520 (E) ILLEGAL .CPU DIRECTIVE POSITION

.CPU is not specified at the beginning of the program, or specified more than once.
Specify .CPU at the beginning of the program once.

521 (E) ILLEGAL SYMBOL IN OPERAND

In the optimize option specification, a symbol that has an address as a value or a location counter
value is specified for the operand that requires a constant value.
Do not use the optimize option when specifying a symbol that has an address as a value or a
location counter value.

523 (E) ILLEGAL OPERAND

Illegal .LINE directive operand.
Correct the operand.

524 (E) ILLEGAL ADDRESSING SPACE SIZE

Illegal address-area bit width is specified as the operand of the .CPU directive.
Correct the address-area bit width.

891

525 (E) ILLEGAL .LINE DIRECTIVE POSITION

.LINE directive specified during macro expansion or conditional iterated expansion.
Change the specified position of the .LINE directive.

526 (E) STRING TOO LONG

The operand string literal has more than 255 characters.
The string literals to specify to the operand of .SDATA, .SDATAB, SDATAC, and SDATAZ
directives must have 255 or less characters.

527 (E) CANNOT SUPPORT COMMON SECTION SINCE VERSION 4

COMMON is specified for the section attribute.
Common section cannot be used.
More than one section can be allocated to the same address by using a colon (:) in the start option
of the optimizing linkage editor.

528 (E) SPECIFICATION OF THE ADDRESS OVERLAPS

Address allocation overlaps in a section.
Check the specified contents of .SECTION and .ORG directive.

529 (E) THE ADDRESS BETWEEN SECTIONS OVERLAPS

Address allocation overlaps between sections.
Check the specified contents of .SECTION and .ORG directive.

532 (E) ILLEGAL OPERAND

Error in the operand of .STACK.
Correct the stack value to be multiples of 2.

533 (E) ILLEGAL .STACK DIRECTIVE POSITION

.STACK is specified in macro expansion or conditional iterated expansion.
Correct the location of .STACK.

600 (E) INVALID CHARACTER

Illegal character.
Correct it.

601 (E) INVALID DELIMITER

Illegal delimiter character.
Correct it.

602 (E) INVALID CHARACTER STRING FORMAT

String literal error.
Correct it.

892

603 (E) SYNTAX ERROR IN SOURCE STATEMENT

Source statement syntax error.
Reexamine the whole source statement.

604 (E) ILLEGAL SYMBOL IN OPERAND

Illegal operand specified in a directive.
No symbol or location counter ($) can be specified as an operand of this directive.

610 (E) MULTIPLE MACRO NAMES

Macro name reused in macro definition (.MACRO directive).
Correct the macro name.

611 (E) MACRO NAME NOT FOUND

Macro name not specified (.MACRO directive).
Specify a macro name.

612 (E) ILLEGAL MACRO NAME

Macro name error (.MACRO directive).
A macro name cannot be a mnemonic of an executable instruction, directive (excluding a period
(.)), or directive statement (excluding a period (.)).
Correct the macro name.

613 (E) ILLEGAL .MACRO DIRECTIVE POSITION

.MACRO directive appears in macro body (between .MACRO and .ENDM directives),
between .AREPEAT and .AENDR directives, or between .AWHILE and .AENDW directives.
Remove the .MACRO directive.

614 (E) MULTIPLE MACRO PARAMETERS

Identical arguments repeated in argument declaration in macro definition (.MACRO directive).
Correct the arguments.

615 (E) ILLEGAL .END DIRECTIVE POSITION

.END directive appears in macro body (between .MACRO and .ENDM directives).
Remove the .END directive.

616 (E) MACRO DIRECTIVES MISMATCH

An .ENDM directive appears without a preceding .MACRO directive, or an .EXITM directive
appears outside of a macro body (between .MACRO and .ENDM directives), outside
of .AREPEAT and .AENDR directives, or outside of .AWHILE and .AENDW directives.
Remove the .ENDM or .EXITM directive.

893

618 (E) MACRO EXPANSION TOO LONG

Line with over 8,192 characters generated by macro expansion.
Correct the definition or call so that the line is less than or equal to 8,192 characters.

619 (E) ILLEGAL MACRO PARAMETER

Macro parameter name error in macro call, or error in argument in a macro body
(between .MACRO and .ENDM directives).
Correct the argument.
When there is an error in a argument in a macro body, the error will be detected and flagged
during macro expansion.

620 (E) UNDEFINED PREPROCESSOR VARIABLE

Reference to an undefined preprocessor variable.
Define the preprocessor variable.

621 (E) ILLEGAL .END DIRECTIVE POSITION

.END directive in macro expansion.
Remove the .END directive.

622 (E) ')' NOT FOUND

Matching parenthesis missing in macro processing exclusion.
Add the macro processing exclusion parenthesis.

623 (E) SYNTAX ERROR IN STRING FUNCTION

Syntax error in string literal manipulation function.
Correct the string literal manipulation function.

624 (E) MACRO PARAMETERS MISMATCH

Too many macro parameters for positional specification in macro call.
Correct the number of macro parameters.

630 (E) SYNTAX ERROR IN OPERAND

Syntax error in the operand of the structured assembly directive statement.
Reexamine the whole source statement.

631 (E) END DIRECTIVE MISMATCH

Terminating preprocessor directive does not agree with matching directive.
Reexamine the preprocessor directives.

632 (E) SYNTAX ERROR IN OPERAND

Syntax error in the operand condition code of a structured assembly directive statement.
Correct the condition code.

894

633 (E) ILLEGAL .BREAK OR .CONTINUE DIRECTIVE POSITION

.BREAK or .CONTINUE is outside the .FOR[U] and .ENDF, .WHILE and .ENDW, or .REPEAT
and .UNTIL.
Remove .BREAK or .CONTINUE.

634 (E) EXPANSION TOO LONG

The number of characters in one line of a structured assembly expansion exceeds 8,192 characters.
Correct the program so that the number of characters in one line is 8,192 or less.

640 (E) SYNTAX ERROR IN OPERAND

Syntax error in conditional assembly directive statement operand.
Reexamine the entire source statement.

641 (E) INVALID RELATIONAL OPERATOR

Error in conditional assembly directive statement relational operator.
Correct the relational operator.

642 (E) ILLEGAL .END DIRECTIVE POSITION

.END directive appears between .AREPEAT and .AENDR directives or between .AWHILE
and .AENDW directives.
Remove the .END directive.

643 (E) DIRECTIVE MISMATCH

.AENDR or .AENDW directive does not form a proper pair with .AREPEAT or .AWHILE
directive.
Reexamine the preprocessor directives.

644 (E) ILLEGAL .AENDW OR .AENDR DIRECTIVE POSITION

.AENDW or .AENDR directive appears between .AIF and .AENDI directives.
Remove the .AENDW or .AENDR directive.

645 (E) EXPANSION TOO LONG

Line with over 8,192 characters generated by .AREPEAT or .AWHILE expansion.
Correct the .AREPEAT or .AWHILE to generate lines of less than or equal to 8,192 characters.

650 (E) INVALID INCLUDE FILE

Error in .INCLUDE file name.
Correct the file name.

651 (E) CANNOT OPEN INCLUDE FILE

Cannot open .INCLUDE file name.
Correct the file name.

895

652 (E) INCLUDE NEST TOO DEEP

File inclusion nesting exceeded 30 levels.
Limit the nesting to 30 or fewer levels.

653 (E) SYNTAX ERROR IN OPERAND

Syntax error in .INCLUDE operand.
Correct the operand.

660 (E) .ENDM NOT FOUND

Missing .ENDM directive following .MACRO.
Insert an .ENDM directive.

661 (E) .END DIRECTIVE NOT FOUND

A .END directive was not found in the structured assembly directive statement.
Insert a .END directive.

662 (E) ILLEGAL .END DIRECTIVE POSITION

.END directive appears between .AIF and .AENDI.
Remove the .END directive.

663 (E) ILLEGAL .END DIRECTIVE POSITION

.END directive appears in included file.
Remove the .END directive.

664 (E) ILLEGAL .END DIRECTIVE POSITION

.END directive appears between .AIF and .AENDI directives.
Remove the .END directive.

665 (E) ILLEGAL SYMBOL IN OPERAND

A symbol other than the preprocessor variable is specified for the preprocessor directive in the
optimize option specification. Correct the symbol.
Do not use the optimize option when specifying a symbol other than the preprocessor variable.

667 (E) EXPANSION TOO LONG

Lines with over 8,192 characters are generated by the .DEFINE directive.
Correct the .DEFINE directive to generate lines of less than or equal to 8,192 characters.

668 (E) ILLEGAL VALUE IN OPERAND

Error in the operand of the .AIFDEF directive.
Specify, as the operand of this directive, a symbol defined by .DEFINE directive.

896

669 (E) STRING TOO LONG

The operand string literal has more than 255 characters.
The string literals to specify to the operand of .ASSIGNC directive, .DEFINE directive, and
character manipulating functions (.LEN, .INSTR, .SUBSTR) must have 255 or less characters.

670 (E) SUCCESSFUL CONDITION .AERROR

A statement including the .AERROR directive has been processed by the condition of .AIF.
Check the condition statement to avoid .AERROR processing.

800 (W) SYMBOL NAME TOO LONG

A preprocessor variable or the define replacement symbol exceeded 33 characters.
Correct the symbol.
The assembler ignores the characters starting at the 33rd character.

801 (W) MULTIPLE SYMBOLS

Symbol already defined.
Remove the symbol redefinition.
The assembler ignores the second and later definitions.

805 (W) ILLEGAL OPERATION SIZE

An illegal branch size (:8 or :16) was set for a structured assembly directive statement.
Correct the branch size.

807 (W) ILLEGAL OPERATION SIZE

Illegal operation size.
Correct the operation size.
The assembler ignores the incorrect operation size specification.

808 (W) ILLEGAL CONSTANT SIZE

Illegal notation for an integer constant.
Correct the notation.
The size is either byte (.B) or word (.W), which is signed one and two byte values, respectively.

810 (W) TOO MANY OPERANDS

Too many operands or illegal comment format.
Correct the operand or the comment.
The assembler ignores the extra operands.

811 (W) ILLEGAL SYMBOL DEFINITION

A label specified in assembler directive that cannot have a label is written.
Remove the label specification.
The assembler ignores the label.

897

813 (W) SECTION ATTRIBUTE MISMATCH

A different section type is specified on section restart (reentry), or a section start address is
respecified at the restart of absolute-address section.
Do not respecify the section type or start address on section reentry.
The specification of starting section remains valid.

814 (W) ILLEGAL OBJECT CODE SIZE

Illegal allocation size (:8, :16, :24, or :32).
Correct the size.
#xx:2 and #xx:3 are symbols used in the manual, and cannot be used in the actual assembly
language.

815 (W) MULTIPLE MODULE NAMES

Respecification of object module name.
Specify the object module name once in a program.
The assembler ignores the second and later object module name specifications.

816 (W) START ODD ADDRESS

An even number of bytes or area of data start at an odd address.
Correct the address to an even address.

817 (W) OPERATION SIZE MISMATCH

@−SP or @SP+ is specified for a byte-sized (.B) operand.
Object code is still output, but this specification should be avoided since the SP (stack pointer)
will then have an odd value.

818 (W) ILLEGAL ACCESS SIZE

Illegal access size (:8 or :16).
Correct the access size.

819 (W) @Rn+, @−−−−Rn, @+Rn, @Rn−−−−, @(d,Rn) OR @Rn USED

Use ERn instead of Rn in @Rn+, @−Rn, @+Rn, @Rn−, @(d,Rn), or @Rn with the H8/300H,
H8S or H8SX CPU.

825 (W) ILLEGAL INSTRUCTION IN DUMMY SECTION

An executable instruction or assembler directive that reserves data is in dummy section.
Remove, from the dummy section, the executable instruction or assembler directive that reserves
data.
The assembler ignores the executable instruction or assembler directive that reserves data in
dummy section.

898

830 (W) OPERATION SIZE MISMATCH

ERn or Rn is specified for a byte-sized (.B) operand, or ERn is specified for a word-sized (.W)
operand.
Correct the register specification.
Object code is generated assuming RnL for byte size operand and Rn for word size operand.

832 (W) MULTIPLE ‘P’ DEFINITIONS

Symbol P already defined when a default section is used.
Do not define P as a symbol if a default section is used.
The assembler regards P as the name of the default section, and ignores other definitions of the
symbol P.

835 (W) ILLEGAL VALUE IN OPERAND

Operand value out of range for an executable instruction.
Correct the value.
The assembler generates object code with a value corrected to be within range.

836 (W) CONSTANT SIZE OVERFLOW

An integer constant value is outside the range of possible sizes (.B or .W).
Correct the integer constant value.
The assembler interprets the size as a byte (.B) or word (.W), 1- or 2-byte signed values,
respectively.

837 (W) SOURCE STATEMENT TOO LONG

The length of a source statement exceeded 8,192 bytes.
Rewrite the source statement to be within 8,192 bytes by, for example, rewriting the comment.
Alternatively, rewrite the statement as a multi-line statement.

838 (W) ILLEGAL CHARACTER CODE

The shift JIS code, EUC code, or LATIN1 code is specified outside string literals and comments,
or the sjis, euc, or latin1 option is not specified.
Specify the shift JIS code or EUC code in string literals or comments, or specify the sjis, euc, or
latin1 option.

850 (W) ILLEGAL SYMBOL DEFINITION

Symbol specified in label field.
Remove the symbol.

851 (W) MACRO SERIAL NUMBER OVERFLOW

Macro generation counter exceeded 99,999.
Reduce the number of macro calls.

899

852 (W) UNNECESSARY CHARACTER

Characters appear after the operands.
Correct the operand(s).

853 (W) NEGATIVE IMMEDIATE VALUE

#−−−−xx is specified for the increased value of .FOR[U].
Correct #−−−−xx to −−−−#xx.
The assembler will expand .FOR[U] as is.

854 (W) .AWHILE ABORTED BY .ALIMIT

Expansion count has reached the maximum value specified by .ALIMIT directive, and expansion
has been terminated.
Check the condition for iterated expansion.

855 (W) ILLEGAL VALUE IN OPERAND

A value other than 0 is specified for the lower 8 bits of the constant value of the SBR directive.
Check the constant value.
The assembler changes the lower 8 bits of the constant value to 0.

856 (W) MULTIPLE SYMBOLS

A stack value is defined for the same symbol again.
Remove the stack value redefinition.
The assembler ignores the second and later definitions.

870 (W) ILLEGAL DISPLACEMENT VALUE

The displacement value is illegal.
Make the displacement value even.
The assembler generates the object code as it was written.

871 (W) MISSING DELAY SLOT INSTRUCTION

The delay slot instruction, which would be an instruction immediately after a delayed branch
instruction, is missing.
Check and add the delay slot instruction by reordering instructions or by another way.
The assembler generates the object code as it was written.

901 (F) SOURCE FILE INPUT ERROR

Source file input error.
Check the hard disk for adequate free space. Create the required free space by deleting
unnecessary files.

902 (F) MEMORY OVERFLOW

Insufficient memory. (Unable to process the temporary information.)
Subdivide the program.

900

903 (F) LISTING FILE OUTPUT ERROR

Output error on the list file.
Check the hard disk for adequate free space. Create the required free space by deleting
unnecessary files.

904 (F) OBJECT FILE OUTPUT ERROR

Output error on the object file.
Check the hard disk for adequate free space. Create the required free space by deleting
unnecessary files.

905 (F) MEMORY OVERFLOW

Insufficient memory. (Unable to process the line information.)
Subdivide the program.

906 (F) MEMORY OVERFLOW

Insufficient memory. (Unable to process the symbol information.)
Subdivide the program.

907 (F) MEMORY OVERFLOW

Insufficient memory. (Unable to process the section information.)
Subdivide the program.

908 (F) SECTION OVERFLOW

Too much number of sections.
When debugging information is output, up to 32,633 sections is enabled.
When debugging information is not output, up to 32,638 sections is enabled.
Subdivide the program.

933 (F) LACKING CPU SPECIFICATION

The CPU type was not specified.
Specify the CPU type using the cpu option, a .CPU directive, or the H38CPU environment
variable.

935 (F) SUBCOMMAND FILE INPUT ERROR

Subcommand file input error.
Check the hard disk for adequate free space. Create the required free space by deleting
unnecessary files.

954 (F) MEMORY OVERFLOW

Insufficient memory.
Subdivide the source program.

901

955 (F) LOCAL BLOCK NUMBER OVERFLOW

The number of local blocks that are valid in the local label exceeded 100,000.
Subdivide the source program.

956 (F) EXPAND FILE INPUT/OUTPUT ERROR

File output error for preprocessor expansion.
Check the hard disk for adequate free space. Create the required free space by deleting
unnecessary files.

957 (F) MEMORY OVERFLOW

Insufficient memory.
Subdivide the source program.

964 (F) MEMORY OVERFLOW

Insufficient memory.
Information on symbols cannot be processed.
Subdivide the source program.

970 (F) MEMORY OVERFLOW

Insufficient memory.
Section size is too large. A large offset may have been given to the location counter using a .ORG
directive, or a large data area may have been reserved by using directives such as .DATAB.
Subdivide the section or reduce the data area.

902

903

Section 14 Error Messages for the Optimizing Linkage Editor

14.1 Error Format and Error Levels

In this section, error messages output in the following format and the details of errors are
explained.

Error number (Error level) Error message

Error details

There are five different error levels, corresponding to different degrees of seriousness.

Error Number

Error
Level

Error Type

Description

L0000–L0999
P0000–P0999

(I) Information Processing is continued.

L1000–L1999
P1000–P1999

(W) Warning Processing is continued.

L2000–L2999
P2000–P2999

(E) Error Option analysis processing is continued;
processing is interrupted.

L3000–L3999
P3000–P3999

(F) Fatal Processing is interrupted.

L4000–
P4000–

(–) Internal Processing is interrupted.

Error numbers beginning with an L are optimizing linkage editor output messages.

Error numbers beginning with a P are prelinker output messages. Output of errors with numbers
beginning with a P cannot be controlled using the nomessage or change_message options.

14.2 List of Messages

L0001 (I) Section “section” created by optimization “optimization”

The section named section was created as a result of the optimization.

L0002 (I) Symbol “symbol” created by optimization “optimization”

The symbol named symbol was created as a result of the optimization.

904

L0003 (I) “file”-“symbol” moved to “section” by optimization

As a result of variable_access optimization, the symbol named symbol in file was moved.

L0004 (I) “file”-“symbol” deleted by optimization

As a result of symbol_delete optimization, the symbol named symbol in file was deleted.

L0005 (I) The offset value from the symbol location has been changed by optimization :
“file”-“section”-“symbol ±±±± offset”

As a result of the size being changed by optimization within the range of symbol ±±±± offset, the
offset value was changed. Check that this does not cause a problem. To disable changing of the
offset value, cancel the specification of the goptimize option on assembly of file.

L0100 (I) No inter-module optimization information in “file”

No inter-module optimization information was found in file. Inter-module optimization is not
performed on file. To perform inter-module optimization, specify the goptimize option on
compiling and assembly. Note however that the goptimize option is not available in asmsh.

L0101 (I) No stack information in “file”

No stack information was found in file. file may be an assembler output file or a SYSROF-> ELF
converted file. The contents of the file will not be in the stack information file output by the
optimizing linkage editor.

L0102 (I) Stack size “size” specified to the undefined symbol “symbol” in “file”

Stack size size is specified for the undefined symbol named symbol in file

L0103 (I) Multiple stack sizes specified to the symbol “symbol”

Multiple stack sizes are specified for the symbol named symbol.

P0200 (I) “instance” no longer needed in “file”

An unused instance named instance exists in file.

P0201 (I) “instance” assigned to file “file”

The instance named instance was assigned to file.

P0202 (I) Executing : “command”

The command command is being executed in order to generate an instance.

P0203 (I) “instance” adopted by file “file”

The instance named instance was assigned to file.

L0300 (I) Mode type “mode type 1” in “file” differ from “mode type 2”

A file with a different mode type was input.

905

L0400 (I) Unused symbol “file”-“symbol”

The symbol named symbol in file is not used.

L1000 (W) Option “option” ignored

The option named option is invalid, and is ignored.

L1001 (W) Option “option 1” is ineffective without option “option 2”

option 1 needs specifying option 2. option 1 is ignored.

L1002 (W) Option “option 1” cannot be combined with option “option 2”

option 1 and option 2 cannot be specified simultaneously. option 1 is ignored.

L1003 (W) Divided output file cannot be combined with option “option”

option and the option to divide the output file cannot be specified simaltaneously. option is
ignored. The first input file name is used as the output file name.

L1004 (W) Fatal level message cannot be changed to other level : “number”

The level of a fatal error type message cannot be changed. The specification of number is
ignored. Only errors at the information/warning/error level can be changed with the
change_message option.

L1005 (W) Subcommand file terminated with end option instead of exit option

There is no processing specification following the end option. Processing is done with the exit
option assumed.

L1006 (W) Options following exit option ignored

All options following the exit option is ignored.

L1007 (W) Duplicate option : “option”

Duplicate specifications of option were found. Only the last specification is effective.

L1008 (W) Option “option” is effective only in cpu type “CPU type”

option is effective only in CPU type. option is ignored.

L1011 (W) Duplicate module specified in option “option” : “module”

option was used to specify the same module twice. The second specification is ignored.

L1012 (W) Duplicate symbol/section specified in option “option” : “name”

option was used to specify the same symbol name or section name twice. The second
specification is ignored.

L1013 (W) Duplicate number specified in option “option” : “number”

option was used to specify the same error number. Only the last specification is effective.

906

L1100 (W) Cannot find “name” specified in option “option”

The symbol name or section name specified in option cannot be found. The name specification is
ignored.

L1101 (W) “name” in rename option conflicts between symbol and section

name specified by the rename option exists as both a section name and as a symbol name.
Rename is performed for the symbol name only in this case.

L1102 (W) Symbol “symbol” redefined in option “option”

The symbol specified by option has already been defined. Processing is continued without any
change.

L1103 (W) Invalid address value specified in option “option” : “address”
address specified by option is invalid. The address specification is ignored.

L1104 (W) Invalid section specified in option “option” : “section”
A section without an initial value cannot be specified by option. The section specification is
ignored.

L1110 (W) Entry symbol “symbol” in entry option conflicts

A symbol other than symbol specified by the entry option is specified as the entry symbol on
compiling or assembling. The option specification is given priority.

L1120 (W) Section address is not assigned to “section”

There is no specification of the address to section. section is placed at the end.

L1121 (W) Address cannot be assigned to absolute section “section” in start option

section is an absolute address section. An address assigned to an absolute address section is
ignored.

L1122 (W) Section address in start option is incompatible with alignment : “section”

The address of section specified by the start option conflicts with memory boundary alignment
requirements. The section address is modified to conform to boundary alignment.

L1130 (W) Section attribute mismatch in rom option : “section 1, section 2”

The attributes and boundary alignment of section 1 and section 2 specified by the rom option are
different. The larger value is effective as the boundary alignment of section 2.

L1140 (W) Load address overflowed out of record-type in option “option”

A record type smaller than the address value was specified. The range exceeding the specified
record type has been output as different record type.

907

L1141 (W) Cannot fill unused area from “address” with the specified value

Specified data cannot be output to addresses higher than address because the unused area size is
not a multiple of the value specified by the space option.

L1150 (W) Sections in fsymbol option have no symbol

Sections specified by the fsymbol option have no externally defined symbols. The fsymbol option
has been ignored.

L1160 (W) Undefined external symbol “symbol”

An undefined external symbol symbol was referenced.

L1170 (W) Specified SBR addresses conflict

Different SBR addresses have been specified. Processing is done with SBR=USER assumed.

L1171 (W) Least significant byte in SBR=“constant” ignored

The least significant 8 bits in address constant specified by the SBR option are ignored.

L1200 (W) Backed up file “file 1” into “file 2”

The file file 1 was backed up to the file file 2.

L1300 (W) No debug information in input files

There is no debugging information in the input files. The debug, sdebug, or compress option has
been ignored. Check whether the relevant option was specified at compilation or assembly.

L1301 (W) No inter-module optimization information in input files

No inter-module optimization information is present in the input files. The optimize option has
been ignored. Check whether the goptimize option was specified at compilation or assembly.

L1302 (W) No stack information in input files

No stack information is present in the input files. The stack option is ignored. If all input files are
assembler output files or SYSROF->ELF converted files, the stack option is ignored.

L1310 (W) “section” in “file” is not supported in this tool

An unsupported section was present in file. section has been ignored.

L1311 (W) Invalid debug information format in “file”

Debugging information in file is not dwarf2. The debugging information has been deleted.

L1320 (W) Duplicate symbol “symbol” in “file”

The symbol named symbol is duplicated. The symbol in the first file input is given priority.

L1321 (W) Entry symbol “symbol” in “file” conflicts

Multiple object files containing more than one entry symbol definition were input. Only the entry
symbol in the first file input is effective.

908

L1322 (W) Section alignment mismatch : “section”

Sections with the same name but different boundary alignments were input. Only the largest
boundary alignment specification is effective.

L1323 (W) Section attribute mismatch : “section”

Sections with the same name but different attributes were input. If they are an absolute section and
relative section, the section is treated as an absolute section. If the read/write attributes mismatch,
both are allowed.

L1324 (W) Symbol size mismatch : “symbol” in “file”

Common symbols or defined symbols with different sizes were input. A defined symbol is given
priority. In the case of two common symbols, the symbol in the first file input is given priority.

L1330 (W) Cpu type “CPU type 1” in “file” differ from “CPU type 2”

Files with different CPU types were input. Processing is continued with the CPU type assumed as
H8SX.

L1400 (W) Stack size overflow in register optimization

During register optimization, the stack access code exceeded the stack size limit of the compiler.
The register optimization specification has been ignored.

L1401 (W) Function call nest too deep

The number of function call nesting levels is so deep that register optimization cannot be
performed.

L1410 (W) Cannot optimize “file”-“section” due to multi label relocation operation

A section having multiple label relocation operations cannot be optimized. Section section in file
file has not been optimized.

L1420 (W) “file” is newer than “profile”

file was updated after profile. The profile information has been ignored.

L1500 (W) Cannot check stack size

There is no stack section, and so consistency of the stack size specified by the stack option on
compiling cannot be checked. To check the consistency of the stack size on compiling, the
goptimize option needs to be specified on compiling and assembling.

L1501 (W) Stack size overflow : “stack size”

The stack section size exceeded the stack size specified by the stack option on compiling. Either
change the option used on compiling, or change the program so as to reduce the use of the stack.

909

L1502 (W) Stack size in “file” conflicts with that in another file

Different values for stack size are specified for multiple files. Check the options used on
compiling.

P1600 (W) An error occurred during name decoding of “instance”

instance could not be decoded. The message is output using the encoding name.

L2000 (E) Invalid option : “option”

option is not supported.

L2001 (E) Option “option” cannot be specified on command line

option cannot be specified on the command line. Specify this option in a subcommand file.

L2002 (E) Input option cannot be specified on command line

The input option was specified on the command line. Input file specification on the command line
should be made without the input option.

L2003 (E) Subcommand option cannot be specified in subcommand file

The subcommand option was specified in a subcommand file. The subcommand option cannot be
nested.

L2004 (E) Option “option 1” cannot be combined with option “option 2”

option 1 and option 2 cannot be specified simultaneously.

L2005 (E) Option “option” cannot be specified while processing “process”

option cannot be specified to process.

L2006 (E) Option “option 1” is ineffective without option “option 2”

option 1 requires option 2 be specified.

L2010 (E) Option “option” requires parameter

option requires a parameter to be specified.

L2011 (E) Invalid parameter specified in option “option” : “parameter”

An invalid parameter was specified for option.

L2012 (E) Invalid number specified in option “option” : “value”

An invalid value was specified for option. Check the range of valid values.

L2013 (E) Invalid address value specified in option “option” : “address”

The address address specified in option is invalid. A hexadecimal address between 0 and
FFFFFFFF should be specified.

910

L2014 (E) Illegal symbol/section name specified in “option” : “name”

The section or symbol name specified in option uses an illegal character. Only alphanumerics, the
underscore (_), and the dollar sign ($) may be used in section/symbol names (the leading character
cannot be a number).

L2016 (E) Invalid alignment value specified in option “option” : ”alignment value”

The alignment value specified in option is invalid. A power of 2(1, 2, 4, 8, 16, or 32) should be
specified in decimal.

L2020 (E) Duplicate file specified in option “option” : “file”

The same file was specified twice in option.

L2021 (E) Duplicate symbol/section specified in option “option” : “name”

The same symbol name or section name was specified twice in option.

L2022 (E) Address ranges overlap in option “option” : “address range”

Address ranges address range specified in option overlap.

L2100 (E) Invalid address specified in cpu option : “address”

An invalid address was specified in the cpu option.

L2101 (E) Invalid address specified in option “option” : “address”

The address specified in option exceeds the address range that can be specified by the cpu or the
range specified by the cpu option.

L2110 (E) Section size of second parameter in rom option is not 0 : “section”

A section whose size is not zero was specified in the second parameter of the rom option.

L2111 (E) Absolute section cannot be specified in rom option : “section”

An absolute address section was specified in the rom option.

L2120 (E) Library “file” without module name specified as input file

A library file without a module name was specified as the input file.

L2121 (E) Input file is not library file : “file (module)”

The file specified by file (module) as the input file is not a library file.

L2130 (E) Cannot find file specified in option “option” : “file”

The file specified in option could not be found.

L2131 (E) Cannot find module specified in option “option” : “module”

The module specified in option could not be found.

911

L2132 (E) Cannot find “name” specified in option “option”

The symbol or section specified in option does not exist.

L2133 (E) Cannot find defined symbol “name” in option “option”

The externally defined symbol specified in option does not exist.

L2140 (E) Symbol/section “name” redefined in option “option”

The symbol or section specified in option has already been defined.

L2141 (E) Module “module” redefined in option “option”

The module specified in option has already been defined.

L2200 (E) Illegal object file : “file”
P2200

A format other than ELF format was input.

L2201 (E) Illegal library file : “file”

file is not a library file.

L2202 (E) Illegal cpu information file : “file”

file is not a cpu information file.

L2203 (E) Illegal profile information file : “file”

file is not a profile information file.

L2210 (E) Invalid input file type specified for option “option” : “file (type)”

When specifying option, a file (type) that cannot be processed was input.

L2211 (E) Invalid input file type specified while processing “process” : “file (type)”

A file (type) that cannot be processed was input during processing process.

L2220 (E) Illegal mode type “mode type” in “file”

A file with a different mode type was input.

L2221 (E) Section type mismatch : “section”

Sections with the same name but different attributes (whether initial values present or not) were
input.

L2300 (E) Duplicate symbol “symbol” in “file”

There are duplicate occurrences of symbol.

L2301 (E) Duplicate module “module” in “file”

There are duplicate occurrences of module.

912

L2310 (E) Undefined external symbol “symbol” referenced in “file”

An undefined symbol symbol was referenced in file.

L2311 (E) Section “section 1” cannot refer to overlaid section : “section 2”-“symbol”

A symbol defined in section 1 was referenced in section 2 that is allocated to the same address as
section 1 overlaid. section 1 and section 2 must not be allocated to the same address.

L2320 (E) Section address overflowed out of range : “section”

The address of section exceeds the usable address range.

L2321 (E) Section “section 1” overlaps section “section 2”

The addresses of section 1 and section 2 overlap. Change the address specified by the start option.

L2322 (E) Section size too large: “section”

The size of section is too large. The size of a $TBR section must be 1024 bytes or less.

L2330 (E) Relocation size overflow : “file”-“section”-“offset”

The result of the relocation operation exceeded the relocation size. Possible causes include
inaccessibility of a branch destination, and referencing of a symbol which must be located at a
specific address. Ensure that the referenced symbol at the offset position of section in the compile
or assembly list is placed at the correct position.

L2331 (E) Division by zero in relocation value calculation : “file”-“section”-“offset”

Division by zero occurred during a relocation operation. Check for problems in calculation of the
position at offset in section in the compile or assembly list.

L2332 (E) Relocation value is odd number : “file”-“section”-“offset”

The result of the relocation operation is an odd number. Check for problems in calculation of the
position at offset in section in the compile or assembly list.

L2340 (E) Symbol name in section “section” is too long

The number of characters in symbols in section specified by fsymbol exceeded 8174.

L2400 (E) Global register in “file” conflicts : “symbol”, “register”

Another symbol has already been allocated to a global register specified in file.

L2401 (E) _ _near8, _ _near16 symbol “symbol” is outside near memory area

symbol is not allocated in the _ _near8 or _ _near16 range. Either change the start specification, or
remove the _ _near specifier at compilation, so that correct address calculations can be made.

L2402 (E) Number of register parameter conflicts with that in another file : “function”

Different numbers of register parameters are specified for function in multiple files.

913

L2410 (E) Address value specified by map file differs from one after linkage as to “symbol”

The address of symbol is different between the address within the external symbol allocation
information file used at compilation and the address after linkage.
Check whether the program has not been changed before and after specification of the map option
at compilation. optlnk optimization may cause the sequence of the symbols to differ before and
after specification of the map option at compilation. Disable the map option at compilation or
disable the optlnk option for optimization.

L2411 (E) Map file in “file” conflicts with that in another file

Different external symbol allocation information files were used by the input files at compilation.

L2412 (E) Cannot open file : “file”

file (external symbol allocation information file) cannot be opened. Check whether the file name
and access rights are correct.

L2413 (E) Cannot close file : “file”

file (external symbol allocation information file) cannot be closed. There may be insufficient disk
space.

L2414 (E) Cannot read file : “file”

file (external symbol allocation information file) cannot be read. An empty file may have been
input, or there may be insufficient disk space.

L2415 (E) Illegal map file : “file”

file (external symbol allocation information file) has an illegal format. Check whether the file
name is correct.

L2416 (E) Order of functions specified by map file differs from one after linkage as to
“function name”

The sequential position of the function "function name" in the functions differs between the
position in the information of the external symbol allocation information file used at compilation
and the position after linkage. The address of a static variable within the function may differ
between the external symbol allocation information file and the result after linkage.

P2500 (E) Cannot find library file : “file”

file specified as a library file cannot be found.

P2501 (E) “instance” has been referenced as both an explicit specialization and a generated
instantiation

Instantiation has been requested of an instance already defined. For the file using instance,
confirm that form=relocate has not been used to generate a relocatable object file.

914

P2502 (E) “instance” assigned to “file 1” and “file 2”

The definition of instance is duplicated in file 1 and file 2. For the file using instance, confirm
that form=relocate has not been used to generate a relocatable object file.

L3000 (F) No input file

There is no input file.

L3001 (F) No module in library

There are no modules in the library.

L3002 (F) Option “option 1” is ineffective without option “option 2”

The option option 1 requires that the option option 2 be specified.

L3100 (F) Section address overflow out of range : “section”

The address of section exceeded FFFFFFFF. Change the address specified by the start option.

L3101 (F) Section “section 1” overlaps section “section 2”

The addresses of section 1 and section 2 overlap. Change the address specified by the start option.

L3102 (F) Section contents overlap in absolute section “section”

Data addresses overlap within an absolute address section. Modify the source program.

L3110 (F) Illegal cpu type “cpu type” in “file”

A file with a different cpu type was input.

L3111 (F) Illegal encode type “endian type” in “file”

A file with a different endian type was input.

L3112 (F) Invalid relocation type in “file”

There is an unsupported relocation type in file. Ensure the compiler and assembler versions are
correct.

L3200 (F) Too many sections

The number of sections exceeded the limit. It may be possible to eliminate this problem by
specifying multiple file output.

L3201 (F) Too many symbols

The number of symbols exceeded the limit. It may be possible to eliminate this problem by
specifying multiple file output.

L3202 (F) Too many modules

The number of modules exceeded the limit. Divide the library.

915

L3300 (F) Cannot open file : “file”
P3300

file cannot be opened. Check whether the file name and access rights are correct.

L3301 (F) Cannot close file : “file”

file cannot be closed. There may be insufficient disk space.

L3302 (F) Cannot write file : “file”

Writing to file is not possible. There may be insufficient disk space.

L3303 (F) Cannot read file : “file”
P3303

file cannot be read. An empty file may have been input, or there may be insufficient disk space.

L3310 (F) Cannot open temporary file
P3310

A temporary file cannot be opened. Check to ensure the HLNK_TMP specification is correct, or
there may be insufficient disk space.

L3311 (F) Cannot close temporary file

A temporary file cannot be closed. There may be insufficient disk space.

L3312 (F) Cannot write temporary file

Writing to a temporary file is not possible. There may be insufficient disk space.

L3313 (F) Cannot read temporary file

A temporary file cannot be read. There may be insufficient disk space.

L3314 (F) Cannot delete temporary file

A temporary file cannot be deleted. There may be insufficient disk space.

L3320 (F) Memory overflow
P3320

There is no more space in the usable memory within the linkage editor. Increase the amount of
memory available.

L3400 (F) Cannot execute “load module”

load module cannot be executed. Check whether the path for load module is set correctly.

L3410 (F) Interrupt by user

An interrupt generated by (cntl) + C keys from a standard input terminal was detected.

L3420 (F) Error occurred in “load module”.

An error occurred while executing the load module.

916

P3500 (F) Bad instantiation request file -- instantiation assigned to more than one file

There was an error in the instantiation request file. Recompile the linked files.

P3501 (F) Instantiation loop

There is a loop in the instantiation processing. An input file name may coincide with an
instantiation request file in another file. Change the file names so that when the extension is
removed they do not coincide.

P3502 (F) Cannot create instantiation request file “file”

The instantiation request file cannot be created. Check whether access rights for the object
creation directory are correct.

P3503 (F) Cannot change to directory “directory”

The current directory cannot be changed to directory. Check to ensure that directory exists.

P3504 (F) File “file” is read-only

file is a read-only file. Change the access rights.

L4000 (–) Internal error : (“internal error code”) “file line number” / “comment”
P4000

An internal error occurred during processing by the optimizing linkage editor. Make a note of the
internal error number, file name, line number, and comment in the message, and contact the
support department of the vendor.

917

Section 15 Error Messages for the Standard Library
Generator and Format Converter

15.1 Error Format and Error Levels

In this section, error messages output in the following format and the details of errors are
explained.

Error number (Error level) Error message

Error details

There are three different error levels, corresponding to different degrees of seriousness.

Error Number

Error
Level

Error Type

Description

G1000–G1999 (W) Warning Processing is continued.

G2000–G2999 (E) Error Option analysis processing is continued;
processing is interrupted.

G3000–G3999 (F) Fatal Processing is interrupted.

15.2 List of Messages

G1001 (W) Debug information ignored

Functions both with and without optimization as specified by #pragma option exist in the file to
be converted. Conversion will take place without including the debugging information.

G1002 (W) Command parameter specified twice

An option has been specified more than once. Only the last of the specifications is effective.
Check the specifications of the options.

G2001 (W) Cannot open file “file”

Cannot open file. Check the file name and access rights.

G2002 (E) Illegal file type “file”

A file other than an object file or a library file has been specified for conversion from SYSROF to
ELF. A file other than a load module file has been specified for conversion from ELF to SYSROF.
Check the file type and re-execute.

G2003 (E) Illegal file format “file”

The file format is invalid. Check the file’s contents and re-execute.

918

G3001 (F) Invalid command parameter “parameter”

An invalid command parameter has been specified. Check the command parameter, and re-
execute.

G3002 (F) No input file

No input file was found.

G3003 (F) Command parameter buffer overflow

The command line exceeds 32767 characters.

G3101 (F) Cannot open file “file”

Cannot open file. Check the file name and access rights.

G3102 (F) Cannot input file “file”

Cannot input from the specified file. Check whether a file to be converted is accessed or not.

G3103 (F) Cannot create file “file”

Cannot create a file. Check the available disk space.

G3104 (F) Cannot output file “file”

Cannot write to a file. Clear the write prohibition.

G3105 (F) Cannot open internal file

Cannot open the temporary file which has been generated internally. Check that the temporary
file is not being accessed.

G3106 (F) Cannot output internal file

Cannot output to the temporary file which has been generated internally. Check the disk space, or
check the disk for a physical error.

G3107 (F) Memory overflow

The required memory area for internal use cannot be allocated. Reserve the necessary amount of
memory and re-execute.

G3108 (F) Illegal format in archive “file”

The specified file is not in an archive format.

G3109 (F) Cannot find “file name”

Cannot find the file. Check the settings of the environment variable PATH.

919

G3201 (F) Cannot execute compiler

Cannot initiate the compiler. Check the path name and the environment variables of the compiler.

G3202 (F) Cannot execute optlinker

Cannot initiate the optimizing linkage editor. Check the path name of the optimizing linkage
editor.

G3203 (F) Interrupt by user

An interrupt has been detected during execution.

G3204 (F) Cannot execute assembler

Cannot initiate the assembler. Check the path name of the assembler.

G3300 (F) Already existent file “file”

The file already exists.

920

921

Section 16 Limitations

16.1 Limitations of the Compiler

Table 16.1 shows the limits of the compiler.

Source programs must fall within these limits.

Table 16.1 Limitations of the Compiler

Classification Item Limit

Total number of macro names that can be specified
using the define option

None Invoking the
compiler

Length of file name (characters) None (depends on
the OS)

Length of one line (characters) 32,768
(H8SX/H8S) or
16,384 (300H/300)

Number of source program lines in one file None

Source
programs

Number of source program lines that can be compiled None

Nesting levels of files in an #include directive None

Total number of macro names in a #define directive None

Number of parameters that can be specified using a
macro definition or a macro call operation

None

Number of macros that can be replaced None

Nesting levels of an #if, #ifdef, #ifndef, #else, or #elif
directive

None

Preprocessing

Total number of operators and operands that can be
specified in an #if or #elif directive

None

Number of function definitions None

Number of external identifiers used for external linkage None

Number of valid internal identifiers used in one function None

Total number of pointers, arrays, and functions that
qualify the basic type

16

Declarations

Array dimensions 6

922

Table 16.1 Limitations of the Compiler (cont)

Classification Item Limit

Size of arrays and structures*1

• H8SX: Normal mode

H8S/2600: Normal mode
H8S/2000: Normal mode
H8/300H: Normal mode

H8/300

65,535 bytes

• H8SX: Middle mode
H8SX: Advanced mode (with ptr16 option)
H8SX: Maximum mode (with ptr16 option)

32,767 bytes

• H8/300H: Advanced mode 16,777,215 bytes

Declarations

• H8SX: Advanced mode (without ptr16 option)

H8SX: Maximum mode (without ptr16 option)
H8S/2600: Advanced mode
H8S/2000: Advanced mode

2,147,483,647 or
4,294,967,295 (if
legacy=v4 is
specified) bytes

Nesting levels of compound statements None

Nesting levels of combinations of iterative statement
(while, do, or for statement) and selective statement (if
or switch statement)

4,096 (H8SX/H8S)
or 256 (300H/300)

Number of goto labels that can be specified in one
function

2,147,483,646
(H8SX/H8S) or 511
(300H/300)

Number of switch statements 2,048*4

Nesting levels of switch statements 2,048 (H8SX/H8S)
or 128 (300H/300)

Number of case labels in a single switch statement 2,147,483,646
(H8SX/H8S) or 511
(300H/300)

Statements

Nesting levels of for statements 2,048 (H8SX/H8S)
or 128 (300H/300)

Length of string literal 32,766

Number of parameters that can be specified using a
function definition or a function call operation

2,147,483,646
(H8SX/H8S) or 63
(300H/300)*2

Expressions

Total number of operators and operands that can be
specified in one expression

About 500

Standard library Number of files that can be opened simultaneously in an
open function

Variable*3

923

Notes: If the legacy=v4 option is specified, the limits will be the same as those of 300H/300.
 1. When the bit width of the address space is specified in advanced, middle or maximum

mode, the address space size corresponding to the specified bit width is given priority.
The ptr16 option changes the limit of H8SX advanced or maximum mode.

 2. For nonstatic function members, 62.
 3. For details, refer to section 9.2.2 (5), C/C++ library function initial settings (_INITLIB).

4. The items in which the limitation is changed by this version.

924

16.2 Limitations of the Assembler

Table 16.2 shows the limits of the assembler.

Table 16.2 Limitations of the Assembler

Item Limit

Length of one line (characters) 8192

Character constants Up to 4

Length of symbol None*1

Number of symbols None

Number of externally referenced symbols None

Number of externally defined symbols None

H8SX in maximum mode Up to H’FFFFFFFF bytes

H8SX in advanced mode Up to H’FFFFFFFF bytes

H8SX in middle mode Up to H’00FFFFFF bytes

H8SX in normal mode Up to H’0000FFFF bytes

H8S/2600 in advanced mode Up to H’FFFFFFFF bytes

H8S/2600 in normal mode Up to H’0000FFFF bytes

H8S/2000 in advanced mode Up to H’FFFFFFFF bytes

H8S/2000 in normal mode Up to H’0000FFFF bytes

H8/300H in advanced mode Up to H’00FFFFFF bytes

H8/300H in normal mode Up to H’0000FFFF bytes

H8/300 Up to H’0000FFFF bytes

Maximum size for a section*2

H8/300L Up to H’0000FFFF bytes

With debug: H'FEF1 When gooptimize is specified:

Without debug: H'FEFA

With debug: H'FEF2

Number of sections

When gooptimize is not
specified: Without debug: H'FEFB

File include Up to 30 levels of nesting

Length of string literal (characters) Up to 255

Length of file name (characters) None (depends on the OS)

Notes: 1. For a preprocessor variable name, macro name, and macro parameter name, it is
limited to 32 characters.
There is no limitation on the number of characters in a replacement symbol specified
in -DEFINE or .DEFINE. However, the replacement string literal is limited to 255
characters, and up to 8192 characters can be specified in one line.

 2. The maximum size of a section differs according to the specified address space.

925

Section 17 Supporting AE5 Features

17.1 Compiler Functions

17.1.1 Overview

This section shows the usage of the functions supporting AE5.

In order to use the intrinsic functions supported by the compiler to access the EEPROM with the
EEPMOV.B or EEPMOV/P.W instruction, include the header file <machine.h> or <eeprom.h>
and specify the EEPROM option. Also, specify the EEPROM option if the EEPMOV/P.W
instruction is written in the _ _asm{ } block (except for specification of -cpu=ae5). To specify the
EEPROM option in HEW, write “-EEPROM” or “-eeprom” in the edit box of [User specified
options :] in the <Other> category of the option window’s C/C++ tab.

17.1.2 Compiler Options

The following describes options added for V6.01. In addition, the compiler can use other options
and expanded functions that are available when the CPU type is H8SXA (except for the intrinsic
function set_vbr).

Table 17.1 Special Options

Item Command Line Format Dialog Menu Specification

CPU type cpu=ae5 C/C++ <CPU> Specifies the CPU.

Use of
EEPMOV/P.W

eeprom C/C++ <Other>
[User defined options :]

Allows use of EEPMOV/P.W.

926

CPu: CPU Type

C/C++ <CPU>

Description Format: CPu = AE5

Description: Specifies the CPU type of the object program to be generated.
When AE5 is specified for the suboption, it is impossible to specify a
multiplier and/or a divider.
The address space size is fixed to 24 bits.
If this option is specified, the eeprom option is always valid.

EEPROM: Access to EEPROM

C/C++ <Other>[User defined options :]

Description Format: EEPROM

Description: Allows the use of the intrinsic functions using the EEPMOV.B or
EEPMOV/P.W instruction to access the EEPROM. If this option is specified
and if the header file <eeprom.h> is included, the following intrinsic
functions are expanded to the EEPMOV.B or EEPMOV/P.W instruction with
update of ECR or EPR.
 eepromb
 eepromw
 eepromb_epr
 eepromw_epr
Also, this option allows use of the EEPMOV/P.W instruction in the
_ _asm{ } block.

Remarks: 1. For the details of the intrinsic functions, refer to the description of each
 function.
2. Refer to the hardware manual for the details of ECR and EPR.

927

17.1.3 Intrinsic Functions

Table 17.2 Intrinsic Functions

Item Specification Function

unsigned char eepromb(
 void *dst,
 const void *src,
 unsigned char size,
 volatile unsigned char *ecr,
 unsigned char ecrval)

EEPMOV.B transfers a memory
block, whose byte amount is
specified by size, from the address
specified by src to the address
specified by dst after updating ECR.

unsigned int eepromw(
 void *dst,
 const void *src,
 unsigned int size,
 volatile unsigned char *ecr,
 unsigned char ecrval)

EEPMOV/P.W transfers a memory
block, whose byte amount is
specified by size, from the address
specified by src to the address
specified by dst after updating ECR.

unsigned char eepromb_epr(
 void *dst,
 const void *src,
 unsigned char size,
 volatile unsigned char *ecr,
 unsigned char ecrval,
 volatile unsigned char *epr,
 unsigned char eprval)

EEPMOV.B transfers a memory
block, whose byte amount is
specified by size, from the address
specified by src to the address
specified by dst after updating EPR
and ECR.

Special
instructions

unsigned int eepromw_epr(
 void *dst,
 const void *src,
 unsigned int size,
 volatile unsigned char *ecr,
 unsigned char ecrval,
 volatile unsigned char *epr,
 unsigned char eprval)

EEPMOV/P.W transfers a memory
block, whose byte amount is
specified by size, from the address
specified by src to the address
specified by dst after updating EPR
and ECR.

928

unsigned char eepromb (void *dst, const void *src, unsigned char size,
 volatile unsigned char *ecr, unsigned char ecrval)
unsigned int eepromw (void *dst, const void *src, unsigned int size,
 volatile unsigned char *ecr, unsigned int ecrval)
 : Block Transfer Instructions (with ECR Setting)

Description: A memory block, whose size is shown by size, is transferred from the
address specified by src to the address specified by dst. The eepromb
intrinsic function transfers a memory block with the EEPMOV.B instruction,
and eepromw with the EEPMOV/P.W instruction.
These intrinsic functions sets dst, src and size to the registers, sets ecrval to
the address pointed by ecr, and then transfers the memory block.
If transfer completes successfully, 0 is returned. If transfer fails, the
remaining size of the memory block left is returned. size of eepromb can
take 0 to 255, and size of eepromw can take 0 to 65535. However, if size is 0,
no transfer occurs.

Header: <machine.h>/<eeprom.h>

Return Values: Size of data that was left without transfer (0 to size)

Parameters: dst Pointer to the destination
src Pointer to the source
size Transfer size
ecr Address of hardware register ECR
ecrval Value to be set to hardware register ECR

Example: #include <eeprom.h>
#define ecr_ptr ((volatile unsigned char *)(0xZZZZZZ))
char a[10], b[10];
unsigned char x;
void f(void)
{
 x = eepromb(b, a, 10, ecr_ptr, 1);
}

Remarks: 1. This intrinsic function is valid only when the CPU type is AE5 or
 H8SX and the -eeprom option is specified.
2. To use these intrinsic functions by specifying the CPU type other than
 AE5, the eeprom option must be specified at compilation.
3. Refer to the hardware manual for the details of ECR, EPR, and other
 related issues.

929

unsigned char eepromb_epr (void *dst, const void *src, unsigned char size,
 volatile unsigned char *ecr, unsigned char ecrval,
 volatile unsigned char *epr, unsigned char eprval)
unsigned int eepromw_epr (void *dst, const void *src, unsigned int size,
 volatile unsigned char *ecr, unsigned char ecrval,
 volatile unsigned char *epr, unsigned char eprval)
 : Block Transfer Instructions (with EPR and ECR Setting)

Description: A memory block, whose size is shown by size, is transferred from the
address specified by src to the address specified by dst. The eepromb_epr
intrinsic function transfers a memory block with the EEPMOV.B instruction,
and eepromw_epr with the EEPMOV/P.W instruction.
These intrinsic functions set dst, src and size to the registers, set eprval to
the address pointed by epr, set ecrval to the address pointed by ecr, and then
transfer the memory block. If transfer completes successfully, 0 is returned.
If transfer fails, the remaining size of the memory block left is returned. size
of eepromb_epr can take 0 to 255, and size of eepromw_epr can take 0 to
65535. However, if size is 0, no transfer occurs.

Header: <machine.h>/<eeprom.h>

Return Values: Size of data that was left without transfer (0 to size)

Parameters: dst Pointer to the destination
src Pointer to the source
size Transfer size
ecr Address of hardware register ECR
ecrval Value to be set to hardware register ECR
epr Address of hardware register EPR
eprval Value to be set to hardware register EPR

Example: #include <eeprom.h>
#define ecr_ptr ((volatile unsigned char *)(0xZZZZZZ))
#define epr_ptr ((volatile unsigned char *)(0xWWWWWW))
char a[10], b[10];
unsigned char x;
void f(void)
{
 x = eepromb_epr(b, a, 10, ecr_ptr, 1, epr_ptr, 1);
}

Remarks: 1. This intrinsic function is valid only when the CPU type is AE5 or
 H8SX and the -eeprom option is specified.
2. To use these intrinsic functions by specifying the CPU type other than

930

 AE5, the eeprom option must be specified at compilation.
3. Refer to the hardware manual for the details of ECR, EPR, and other
 related issues.

17.2 Assembler Functions

The following describes options added for V6.01. In addition, the compiler can use other options
and expanded functions that are available when the CPU type is H8SXA. However, instructions
with SBR and VBR cannot be used.

Table 17.3 Special Options

Item Command Line Format Dialog Menu Specification

CPU type -CPu = AE5 Assembly <CPU> Specifies the CPU.

Use of
EEPMOV/P.W

-EEPROM Assembly <Other>
[User defined options :]

Allows use of EEPMOV/P.W.

CPu: CPU Type

Assembly <CPU>

Description Format: CPu = AE5

Description: Specifies the CPU type of the object program to be generated.
When AE5 is specified for the suboption, it is impossible to specify a
multiplier and/or a divider.
The address space size is fixed to 24 bits.
If this option is specified, the eeprom option is always valid.

931

EEPROM: Access to EEPROM

Assembly <Other>[User defined options :]

Description Format: EEPROM

Description: Allows the use of the EEPMOV/P.W instruction.

Remark: This option is valid only when the CPU type is H8SX.

932

933

Section 18 Notes on Version Upgrade

18.1 Notes on Version Upgrade

This section contains notes that apply when the version is upgraded from an earlier version (H8S,
H8/300 Series C/C++ Compiler Package: Ver. 3.x or earlier).

18.1.1 Guaranteed Program Operation

When a program is developed with an upgraded compiler version, operation of the program may
change. When creating the program, note the following and sufficiently test your program.

1. Programs Depending on Execution Time and Timing

C/C++ language specifications do not specify the program execution time. Therefore, a
version difference in the compiler may cause operation changes due to timing lag of the
program execution time with peripherals such as the I/O, or may cause processing time
differences in asynchronous processing such as in interrupts.

2. Programs Including an Expression with Two or More Side Effects

Operations may change depending on the compiler version when two or more side effects are
included in one expression.

Example

a[i++]=b[i++]; /* Increment order of i is undefined. */

f(i++, i++); /* Parameter value changes according to increment order. */

 /* This results in f(3, 4) or f(4, 3) when the value of i is 3. */

3. Programs with Overflow Results or an Illegal Operation

The value of the result is not guaranteed when an overflow occurs or an illegal operation is
performed. Operation of the program may change depending on the compiler version.

Example

int a, b;

x=(a*b)/10; /* This may cause an overflow depending on the value range of

 a and b. */

934

4. No Initialization of Variables and Type Inequality

When a variable is not initialized or the parameter and return value types do not match
between the calling and called functions, an illegal value is accessed. Operation of the program
may change depending on the compiler version.

Example

file 1:

int f(double d)

{

 :

}

file 2:

int g(void)

{

 f(1);

}

The parameter of the caller file is the int type, but the parameter of the function-defining file is
the double type. Therefore, a value cannot be correctly referenced.

The information provided here does not include all cases that may occur. Please use this compiler
prudently, and sufficiently test your programs keeping the differences between the compiler
versions in mind.

18.1.2 Compatibility with the Earlier Version

The following notes cover situations in which the compiler is used to generate a file that is to be
linked with object or library files generated by the Ver. 4.0 or earlier compiler and the
accompanying assembler or linkage editor, or in case the debugger created for the version 3.x or
earlier is used as it is.

1. strict_ansi (from Ver. 6.01)

When strict_ansi is specified, the results of floating-point operations may differ from those
produced by earlier versions of the compiler (Ver. 4.x or earlier). To obtain uniform results,
omit the strict_ansi option from the compilation command, or recompile all files with the
strict_ansi option.

935

2. cpuexpand (from Ver. 6.01)

If cpuexpand is specified, the result of some operations may differ from those produced by
earlier versions of the compiler (Ver.4.x or earlier). To obtain uniform results, specify
legacy=v4 for compilation when the CPU type setting is 2600A, 2600N, 2000A, or 2000N, or
specify cpuexpand for all files and recompile them when the CPU type setting is any of the
H8SX variants. For the expressions that produce variable results, refer to the description of
cpuexpand=v6 in section 2.2.2, Object Options.

3. code=asmcode (from Ver. 6.01)

From this version (Ver.6.01), the compiler outputs a .STACK directive within the assembly-
source program if code=asmcode is specified. Thus the assembler for use must be Ver.6.01,
which supports .STACK.

4. Changed Section for Explicitly Initialized Variables (from Ver. 6.01)

In Ver.6.00.00, explicitly initialized variables for which H8/300, H8/300H, H8S/2000, or
H8S/2600 had been specified as the CPU type were output to section D.

In Ver.6.00.01, if the CPU type is H8S/2000 or H8S/2600, explicitly initialized variables are
output to section C. If the CPU type is H8/300 or H8/300H, explicitly initialized variables are
still output to section D. With the H8SX setting, however, explicitly initialized variables are
always output to section C, regardless of the compiler version.

5. Object Format (from Ver. 4.0)

The object file format has been changed from SYSROF to the standard format ELF. The
debugging information format has also been changed to the standard format DWARF2.

Before an object file (SYSROF) output by Ver. 3.x or earlier of the compiler or assembler is to
input to the latest optimizing linkage editor, use a file converter to convert it to the ELF format.
However, relocatable files output by the linkage editor (extension: rel) and library files that
include one or more relocatable files cannot be converted.

When a debugger which supports the SYSROF or ELF/DWARF1format load modules is used,
use the file converter to convert the load module from the ELF/DWARF2 format to the
SYSROF or ELF/DWARF1 format. However, the debugging information will not be
converted and only the object part will be valid if #pragma option (new feature of Ver. 4.0
compiler) has created a file in which a function with optimization and that without
optimization coexist.

6. Added an Option to Modify the Function Interface (from Ver. 4.0)

Options structreg and longreg have been added to modify the function interface rules.
Recompile all files after you have specified either option. Modify the interfaces of assembly
routines, too.

936

7. Stack Area (from Ver. 4.0)

Option stack can be used to specify the size used in calculation of the stack area size.

When this option is omitted, stack=medium (stack calculation will be performed only in least
significant 2 bytes) will be assumed. To change this, specify another size by using option stack.

8. const Data Output Section (from Ver. 4.0)

In Ver. 3.x, variables in a const declaration were output to section D. In Ver. 4.0 and later
those variables are output to section C.

9. Data Allocation (from Ver. 4.0)

The options align/noalign can be used to rearrange data according to boundary alignment.

When this option is omitted, align is assumed, and data is grouped by boundary alignment. To
inhibit rearrangement, specify noalign.

10. Boundary Alignment of Sections $ABS8C, $ABS8D, and $ABS8B (from Ver. 4.0)

The boundary alignment value for sections $ABS8C, $ABS8D, and $ABS8B that are output
when #pragma abs8, _ _abs8, or option abs8 are specified has been changed from 2 to 1.

Accordingly, variables that are affected by #pragma abs8, _ _abs8 or option abs8 have been
changed from:

 Variables or arrays that have char or unsigned char type or

 Structures or classes that have char or unsigned char type variables or arrays as members

to:

 Variables, arrays, structures, or classes whose the boundary alignment value is 1.

11. Point of Origin for Locating Include Files (from Ver. 4.0)

In the new version, option chgincpath has been abolished. When an include file that has been
specified with a relative path is searched for, the search starts from the directory that contains
the source file.

12. C++ Program (from Ver. 4.0)

Since the encoding rule and execution method were changed, C++ object files created by the
earlier version of the compiler cannot be linked. Be sure to recompile such files.

The names of the library functions for initial/post processing of the global class object, which
are used to set the execution environment, have also been changed. Refer to section 9.2.2,
Execution Environment Settings, and modify the name.

13. Abolition of Common Section (Assembly Program, from Ver. 4.0)

With the change of the object format, support for of common section has been abolished.

14. Specification of Entry via .END Directive (Assembly Program, from Ver. 4.0)

Only an externally defined symbol can be specified as entry to the .END directive.

937

15. Inter-module Optimization (from Ver. 4.0)

Object files output by the old version of the compiler or the assembler are not targeted for
inter-module optimization. Be sure to recompile and reassemble such files so that they are
targeted for inter-module optimization as required.

16. Objects Supported by the Optimizing Linkage Editor

The optimizing linkage editor supports different compiler or assembler depending on the
version. The following shows the version of the supported tool. Linkage processing for the
object file that is not described is not guaranteed.

 Optimizing linkage editor Ver. 7: Ver. 4.0 or lower of the compiler, Ver. 4.0 or lower of
the assembler

 Optimizing linkage editor Ver. 8: Ver. 6.00 or lower of the compiler, Ver. 6.00 or lower of
the assembler

 Optimizing linkage editor Ver. 9.00: Ver. 6.01 or lower of the compiler, Ver. 6.01 or lower
of the assembler

17. Option Consistency

The following compiler options should be the same among the earlier versions and Ver. 6.01.

cpu, regparam, pack, structreg/nostructreg, longreg/nolongreg, stack, double=float, rtti,
exception

However, to link object files generated by earlier versions than Ver. 6.01, the following
options newly added to Ver. 6.01 should not be used.

structreg, longreg, stack=small/medium, double=float, rtti, exception

Also, to link object files generated by earlier versions than Ver. 4.0, the following options
newly added to Ver. 4.0 should not be used.

structreg, longreg, stack=small/medium, double=float, rtti, exception

Also, to link object files generated by earlier versions than Ver. 3.0, the following options
newly added to Ver. 3.0 should not be used.

regparam=3, pack=1

18.1.3 Command-line Interface

1. How to Specify Assembler (Ver. 4.0) and Optimizing Linkage Editor (Ver. 7.0)
Command Lines

Spaces must be inserted between file names and options.

There are no limitations on the order in which options and their associated file names are
specified.

938

2. Optimizing Linkage Editor Option (from Ver. 7.0)

Support for the interactive specification of options has been abolished.

The inter-module optimizing tool (optlnk38), linkage editor (lnk), librarian (lbr), and object
converter (cnvs) of earlier versions have been integrated into optimizing linkage editor (optlnk).
Accordingly, specifications have changed significantly. Tables 18.1 and 18.2 list the changed
commands.

Table 18.1 Changed Linkage Commands

No. Command Name Ver. 6.0 Ver. 7.0 Note

1 start start = section
(address)

start =
section/address

 Abbreviation: st Abbreviation: star

2 rom rom = (rom section,
ram section)

rom = rom section/
ram section

3 define define = external
name (defined value)

define = external
name = defined
value

4 rename rename =
ed = before change
(after change),
er = before change
(after change),
un = before change
(after change)

rename =
(before change =
after change),
(before change =
after change),

The conception of
unit has been
abolished due to the
change in the object
format.

 Abbreviation: re Abbreviation: ren

5 delete delete =
ed = unit.symbol
un = unit

delete = (symbol)

The conception of
unit has been
abolished due to the
change in the object
format.

6 print/noprint print
noprint

list

File name can be
omitted.

7 mlist mlist list

8 information information message

9 directory directory HLNK_DIR
(environment
variable)

10 form Abbreviation: f Abbreviation: fo

11 output/nooutput Abbreviation: o;
nooutput can be
specified.

Abbreviation: ou;
nooutput cannot be
specified.

Only output can be
specified.

939

Table 18.1 Changed Linkage Commands (cont)

No. Command Name Ver. 6.0 Ver. 7.0 Note

12 cpu Abbreviation: c Abbreviation: cp Ranges range can
be directly.

13 elf/sysrof/sysrofplus elf/sysrof/sysrofplus Abolished Always ELF

14 exclude/noexclude exclude/noexclude Abolished Always exclude

15 align_section align_section Abolished Always valid*

16 check_section check_section Abolished Always valid*

17 cpucheck cpucheck Abolished Always valid*

18 udf/noudf udf/noudf Abolished Always output*

19 udfcheck udfcheck Abolished Always valid*

20 echo/noecho echo/noecho Abolished Always restricted

21 exchange exchange Abolished The conception of
unit has been
abolished due to the
change in the object
format.

22 autopage autopage Abolished No target cpu

23 abort abort Abolished Interactive mode has
been abolished.

24 list list Abolished Different from the list
option of V7.

25 library/nolibrary nolibrary can be
specified.

nolibrary cannot be
specified.

Only library can be
specified.

26 exit Cannot be omitted. Can be omitted.

27 debug/nodebug At default: nodebug At default: Depends
on the debugging
information in the
input file

Note: Can be invalidated by the change_message option.

940

Table 18.2 Changed Librarian Commands

No. Command Name Ver. 2.0 Ver. 7.0 Note

1 add add input

2 directory directory HLNK_DIR
(environment
variable)

3 slist slist list
show

4 list list (s) list
show

5 delete Abbreviation: d Abbreviation: del

6 create create (s | u) library
form = library (s | u)

7 output output (s | u) output
form = library (s | u)

 Abbreviation: o Abbreviation: ou

8 replace Abbreviation: r Abbreviation: rep

9 abort abort Abolished Interactive mode has
been abolished.

10 exit Cannot be omitted. Can be omitted.

18.1.4 Provided Contents

In the H8S, H8/300 Series C/C++ Compiler Package, the following files have been changed from
Ver. 4.0 package.

1. CPU Information Analyzer

In the new version, an address range can be specified directly with the cpu option of optlink.

An old-version cpu information file can also be used in the new version. To modify or create
CPU information, specify the address range directly with the cpu option.

2. Standard Library File

In order to choose a function interface and optimizing options, a standard library generator is
provided instead of the conventional standard library file.

3. Header File

defbool.h has been abolished because the bool type has been supported in the new version.

941

18.1.5 List File Specification

1. Compile Listing (from Ver. 4.0)

The layout of the columns is changed to look better. Also, the number of columns of a tab can
be selected.

2. Optimizing Linkage Editor (from Ver. 7.0)

The formats of the conventional linkage map and library list have been renewed.

18.2 Additions and Improvements

18.2.1 Common Additions and Improvements

1. Added and Improved Features in Compiler Ver. 4.0, Assembler Ver. 4.0 and Optimizing
Linkage Editor Ver. 7.0

a. Loosening Limits on Values

Limitations on source programs and command lines have been greatly loosened:

 Length of file name: 251 bytes -> unlimited

 Length of symbol: 251 bytes -> unlimited

 Number of symbols: 65,535 -> unlimited

 Number of source program lines: C/C++: 32,767, ASM: 65,535 -> unlimited

 Length of C program line: 8,192 characters -> 16,384 characters

 Length of C program string literal: 512 characters -> 16,384 characters

 Length of subcommand file lines: ASM: 300 bytes, optlnk: 512 bytes -> unlimited

 Number of parameters of the optimizing linkage editor rom option: 64 -> unlimited

b. Hyphens for Directory and File Names

A hyphen (-) can be specified for directory or file names.

c. Specification of Copyright Display

Specifying the logo/nologo option can specify whether or not the copyright banner is displayed.

d. Prefix to Error Messages

To support the error-help function in the HEW, a prefix has been added to error messages for
the compiler and optimizing linkage editor.

942

18.2.2 Added and Improved Compiler Features

1. Added and Improved Features in Ver. 4.0

a. Use of Keyword

Attributes can be specified in declarations or definitions of functions or variables by using
keywords (_ _interrupt, _ _indirect, _ _entry, _ _abs8, _ _abs16, _ _regsave, _ _noregsave,
_ _inline, or _ _global_register).

b. Creation of Vector Table

The vector table of functions can be created automatically when vect is specified by #pragma
interrupt, #pragma indirect, #pragma entry, _ _interrupt, _ _indirect, or _ _entry.

c. Support of _ _evenaccess

Memory access of a variable at even-numbered byte boundary is guaranteed with
_ _evenaccess specified.

d. Expanded Register Parameter Specification

_ _regparam2 and _ _regparam3 can be used to specify the number of register parameters in
a function.

e. Specifying Options in Function Units

Options can be specified on function by function basis by using #pragma option.

f. Confining address calculation rang of aggregates.

Optimizes address calculation code of arrays or structures by using _ _near8 or _ _near16.

However, the pointer size is not changed.

g. Confining address calculation rang of the stack

Optimizes stack address calculation code of stack areas by using stack.

h. Added Intrinsic Functions

The following intrinsic functions were added.

 Unsigned overflow operations

i. Supporting double=float

In the new version, double=float can be specified so that data declared as double-precision
type and floating-point constants are both regarded as float type.

j. Strengthening noregsave Feature

When a function declared with #pragma noregsave or _ _noregsave is called, the contents of
the registers are guaranteed by the calling function.

943

k. Specifying Multiple Sets of Include Directory by Using Environment Variables

Multiple include directories can be specified by using the include directory environment
variable (CH38).

l. Allocating Structure Parameter or Return Value to Register

Option structreg is used to allocate a small-size structure parameter or return value to a
register.

m. Allocating 4-Byte Parameter or Return Value to Register (cpu=300)

Option longreg is used to allocate a 4-byte parameter or return value to a pair of registers.

n. Conditions for Moving a Non-volatile Variable Outside a Loop

A non-volatile external variable in an iteration condition inhibits external variable optimization
from moving the non-volatile external variable out of the loop even though there are no side
effects (function calls or assignment expressions) in an iteration condition.

o. Support of speed=loop=1|2

Option speed=loop=1|2 controls optimization of loop expansion.

p. Modifying Data Allocation by Boundary Alignment

Data can be reallocated for each boundary alignment so that gaps that are generated by the
boundary alignment are minimized.

q. Added Implicit Declarations

_ _ HITACHI_ _ and _ _ HITACHI_VERSION_ _, are implicitly declared by #define.

r. static Label Name

The specification of label names as references to static labels, which has file scope, #pragma
asm and #pragma endasm, and #pragma inline_asm has been changed to _ _$ (name).

However, in a linkage list, the name is displayed as _ (name).

s. Extension and Change of Language Specifications

 Inhibits errors in initializing unions.

Example:

union{

 char c[4];

}uu={ {'a','b','c'} };

944

 enum can be used as bit fields.

Example:

struct{

 enum E1{a,b,c}m1:2;

 enum E1 m2:2;

};

 Inhibits the output of an error message when a comma “,” is written after the last
enumeration member.

Example:

enum E1{a,b,c,}m1;

 A union can be declared with an initial value in a single declaration.

Example:

union U{

 int a,b;

}u1;

void test(){

 union U u2 = u1;

 Loosened the level of checking for errors in casting of symbol address expressions at C
compilation.

Example:

int x;

short addr1=(short)&x;

 Loosened the restrictions on the order of writing declaration of functions and variables, and
#pragma declarations in C programs.

Example:

void f(void);

#pragma interrupt f

void f(void){} //#pragma declaration following function declaration is valid.
 //(In Ver. 3.0, an error would have occurred.)

945

 Modifies the restrictions on the order of writing declarations of functions and variables, and
#pragma declarations in C++ programs.

Example:

void f(void){}

#pragma interrupt f //#pragma declaration following function definition is ineffective.

void f(void); //An error will occur when a #pragma declaration modifying the
 //following function declaration follows a function definition.

 Supports exception and template according to the C++ language specifications.

2. Added and Improved Features in Upgrade from Ver. 4.0 to Ver. 6.0

 (Note: Ver. 5.0 does not exist and is a missing number.)

a. Support for New CPU

Creation of an object file with a CPU type of H8SX is supported.

b. Support for 2-byte Pointer (only in H8SX)

The _ _ptr16 keyword or option ptr16 can be used to specify use of a 2-byte pointer.
They are valid in H8SX advanced mode or H8SX maximum mode.

c. Specifying Bit Field Order

#pragma bit_order or the bit_order option can be used to specify the order to store bit field
members in a field.

d. Function Call in Extended Memory Indirect Addressing Mode (only in H8SX)

The _ _indirect_ex keyword or the indirect=extended option can be used to declare functions
to be called in extended memory indirect addressing mode. Also, #pragma indirect section can
modify the section name of not only $INDIRECT, the function address area for memory
indirect addressing mode (@@aa:8), but also $EXINDIRECT, the function address area for
extended memory indirect addressing mode (@@aa:7).

e. Assembly Capability (only in H8SX)

The _ _asm keyword can be used to allow the assembly language to be used in a C/C++ source
program.

f. Disabling #line Output

The noline option can be used to disable the #line output at preprocessor expansion.

g. Specifying Inline Expansion for Functions memcpy and strcpy (only in H8SX)

The library option can be used to specify inline expansion of two library functions, memcpy
and strcpy.

h. Changing Error Level

946

The change_message option can be used to individually change the error level of information-
level and warning-level error messages.

i. Specifying 8-bit Absolute Area Address (only in H8SX)

Option sbr can be used to specify the address to locate the 8-bit absolute area.

j. Strengthening Optimizing Feature (only in H8SX)

The optimization details can be further specified by the following added options:

opt_range, del_vacant_loop, max_unroll, infinite_loop, global_alloc, struct_alloc,
const_var_propagate, and volatile_loop

k. Added Intrinsic Functions

The following intrinsic functions are added.

 64-bit multiplication of H8SX (mulsu and muluu)

 Block transfer instructions of H8SX (movmdb, movmdw, movmdl, and movsd)

 Block transfer instructions (eepmovb, eepmovw, eepmovi)

 Revised instrinsic function for MOVFPE instruction (_movfpe)

l. Support for Wild Cards

An input file can be specified with a wild card.

m. Change in Compiler Limitation

The limitation in the number of switch statements is changed from 256 to 2048.

n. Change in specification of information message display

In Ver. 4.0, only the last specification of all the message and nomessage options was effective
in a command line. In Ver. 6.0, the union of all the numbers specified by each nomessage
option in a command line is suppressed to display the message.

o. Type of enum instance

If the byteenum option is specified and if all the numbers in an enum are in the range from 0
to 255, the compiler handles the data as unsigned char.

p. Inline expansion

In H8SX, <numeric value> in the speed=inline=<numeric value> option means the
percentage of increase in program size allowed by inline expansion. In the other CPU,
<numeric value> means the maximum number of nodes in a function allowed to perform inline
expansion.

q. 1-byte-aligned Data Section and 4-byte-aligned Data Section (only in H8SX)

Specifying the align=4 option places data whose size is odd to 1-byte-aligned data section and
data whose size is a multiple of 4 to 4byte-aligned data section.

947

r. Section Name

Changing the section name of P, C, B or D into S by the section option causes a warning error.
S is the reserved name for the stack area.

s. Added Implicit Declarations

_ _ H8SXN_ _, _ _ H8SXM_ _, _ _ H8SXA_ _, _ _ H8SXX_ _,
_ _ HAS_MULTIPLIER_ _, _ _HAS_DIVIDER_ _, _ _INTRINSIC_LIB_ _,
_ _ DATA_ADDRESS_SIZE_ _, _ _ H8_ _, _ _RENESAS_VERSION_ _, and
_ _ RENESAS_ _ are implicitly declared using #define directive by the compiler.

t. Reentrant library

If the reent option is specified to the library generator, a reentrant library is created.

u. Support of Little-endian Space (only in H8SX)

A little-endian space is supported depending on a chip of H8SX. A 2 -or 4--byte datum in a
little-endian space should be written and read with its own data size. In order to do so, the
feature of the _ _evenaccess keyword is enhandced.

3. Added and Improved Features in Upgrade from Ver. 6.0 to Ver. 6.1

a. Support for AE5

AE5 is supported.

b. Enhanced Conformance with the ANSI Standard

strict_ansi brings the associative rule of floating-point operations into conformance with the
ANSI standard.

c. Compatibility of Output Object Code with Object Code Produced by Ver. 4.0

With H8S CPUs, legacy=v4 supports the output of object code which is compatible with that
produced by earlier versions of the compiler (Ver.4.0).

d. Expanded Specifications of cpuexpand=v6 Specified with legacy=v4

When cpuexpand=v6 is specified with legacy=v4, output object code is compatible with
object code produced by Ver. 6.00 and the cpuexpand option.

e. Preferential Allocation of Register Storage Class Variables

enable_register preferentially allocates the variables with register storage class specification
to registers.

f. Division of Optimizing Ranges

scope/noscope can be specified to select whether or not to divide up ranges for optimization
within functions.

948

g. Inter-file Inline Expansion

file_inline is used to specify inline expansion for functions that extend across files and
file_inline_path is used to specify the path name of a file for inline expansion.

h. Added Intrinsic Function

Intrinsic function set_vbr is used to set the VBR.

i. #pragma address

#pragma address can be used to allocate variables to specific absolute addresses.

j. Support for .stack Directive

When code=asmcode has been specified, the compiler outputs a .stack directive within the
assembly-source program.

k. Added Environment Variable

Environment variable CH38SBR can be used to set initial values for the SBR.

l. Added Implicit Declarations

Implicit declaration of _ _AE5_ _ and _ _ABS16_ _ have been added.

4. Notes on Optimizing Features of the Compiler Ver. 6.01

Notes below about optimization apply in a case where an H8SX and H8S (without the
legacy=v4 option) object program is created with Ver. 6.01 optimization. For the other cases,
optimization is similar to that of Ver. 4.0 or earlier.

Adopting the newest compiler optimization technology allows the optimization processing in
Ver. 6.01 to analyze aliases for pointers or external variables and analyze data live ranges
including the control flow, which were not possible so far (in Ver. 4.0 or ealier). This provides
a wider range of optimization than Ver. 4.0 within the limits of the language specifications.

However, a program that was previously running because it was not optimized enough may not
run because it has become a target of optimization.

Examples of programs that were not optimized so far but will become targets of optimization
in Ver. 6.01 are shown below.

a. Access to External Variables or Pointer Variables without volatile Declaration

A volatile declaration guarantees that the volatile-qualified variable is accessed whenever it is
used because the variable may be updated outside the program sequence. For example, data
values are changed by interrupt processing or hardware processing.

The compiler assumes that variables without a volatile declaration are changed only by
successive processing of the program sequence or function calls.

In Ver. 4.0 or earlier, external variables without a volatile declaration were optimized as
shown in the example below:

949

Example:

int a;

f() {

 int *ptr=&a;

 *ptr=1; //<- Only this assignment expression is eliminated.

 *ptr=2;

}

In Ver. 6.01, optimization is further performed in the cases below.

To disable the optimization, declare the relevant variable with volatile.

Example 1:

int a;

f() {

 int *ptr=&a;

 *ptr &= ~((0x0080)); //<- (1)

 while(!(*ptr & (0x0080))) //<- (2)

 }

 :

 }

}

In this example, while statement (2) has become an infinite loop as a result of optimization.

 Due to alias analysis of the pointer, *ptr in (1) and *ptr in (2) are handled as the same value.

 Expression (1) is propagated to expression (2). Accordingly, expression (2) is converted as
follows:

 while(!((*ptr & ~((0x0080))) & (0x0080))) //<- (2)

-> while(!(*ptr & 0))

-> while(!(0))

-> while(1)

Therefore, the expression in question is judged as true, the judge statement is eliminated,
and the above while statement becomes an infinite loop.

950

Example 2:

int a,b;

f() {

 a=1; //<- (1)

 if(a); //<- (2)

 {

 b=1; //<- (3)

 }

}

In this example, if statement (2) has been eliminated and (3) is always executed at all times as
a result of optimization.

 Due to alias analysis of external variables, a in (1) and a in (2) are handled as the same
value.

 Constant value (1) is propagated to expression (2). Accordingly, expression (2) is
converted as follows:

-> if(1)

Therefore, the expression in question is judged as true, the conditional statement is
eliminated, and the above expression (3) is always executed at all times.

Example 3:

int a,b,c;

f() {

 a=1; //<- (1)

 if(c); //<- (2)

 {

 b=1; //<- (3)

 }

 a=2; //<- (4)

}

In this example, expression (1) has been eliminated as a result of optimization.

 Obtains the control flow including the conditional of the if statement expression.

 Due to analyzing the control flow analysis and alias analysis of external variables, it is
proved that the value set in a in (1) is not used. Therefore, the above expression (1) is a
redundant expression that is not referenced, and thus it is eliminated.

951

Example 4:

int a;

int b[10];

f() {

 int i; //<- (1)

 for(i=0; i<10; i++) //<- (2)

 {

 b[i]=a; //<- (3)

 }

}

In this example, a in expression (3) is referenced once before the loop and is always handled as
a constant value in the loop as a result of optimization.

 Obtains the control flow including the for loop control expression.

 Due to analyzing the control flow analysis and alias analysis of external variables, a in (3)
is handled as a constant value in the loop.

 (3) which is the reference expression to a is moved outside the for loop (2) as follows:

 temp=a;

 for(i=0; i<10; i++) //<- (2)

 {

 b[i]=temp; //<- (3)

 }

Therefore, the variable a in expression (3) is unchanged in the loop.

Example 5:

int a;

f() {

 a=0; //<- (1)

 while(1); //<- (2)

}

In this example, the statement (1) is assumed as unnecessary and eliminated as a result of
optimization.

 Since (2) is an infinite loop, this function is judged to have no exit.

 Since a is not referenced in the infinite loop, specification (1) is assumed as unnecessary
coding and is eliminated.

952

b. volatile_loop Option

If the loop control variable is a non-volatile external variable and also the conditional
expression is simple, the volatile_loop option regards the loop control variable as volatile-
qualified to prevent an infinite loop from being created. However, if the loop control variable
is not loop-invariant, it cannot be treated as volatile-qualified.

In Ver.6.01, declare the relevant variable with volatile.

An example program is given below.

Example:

struct{

 unsigned char a:1;

} ST;

int a;

extern void f();

void func() {

 while (ST.a) { //<- (1)

 if (a) { //<- (2)

 f(); //<- (3)

 }

 }

}

In this example, because ST.a may be updated in f(), ST.a is not assumed as loop-invariant
value in the loop. Therefore, ST cannot be treated as volatile even though specified so with the
volatile_loop option.

 If the condition in (2) is satisfied, (3) is executed and the ST.a value may be updated.
Accordingly, after the function call, ST.a is to be reloaded.

 If the condition in (2) is not satisfied, the ST.a value is not updated so the ST.a value used
in the previous conditional at (1) can be directly used.

953

5. Compatibility between Ver. 4.0 and Ver. 6.01

To link an object program created by Ver. 4.0 with an object program created by Ver. 6.01, the
following conditions need to be satisfied.

(1) C source program

The following options that affect function interface must be specified equally.

• regparam

• longreg/nolongreg

• double=float

• structreg/nostructreg

• stack

• byteenum

• pack/unpack

(2) Assembly program

An assembly program must conform to the rules concerning function call, which are
described in section 9.3.2, Function Calling Interface.

Notes: 1. For information not mentioned in the manual, the compatibility with an upgraded

version is not guaranteed. An object program created by Ver. 4.0 cannot be linked with
an object program created by Ver. 6.01 if one or both of the object programs contain
assembly coding which depends on the compiler output coding, such as the order to
save and restore register contents.

 2. For details on linkage with an OS, middleware, and so on, contact your sales agency.

18.2.3 Added and Improved Features for the Assembler

1. Added and Improved Features in Ver. 4.0

a. External Definition and Reference of BEQU

The .BEQU symbol can be externally defined and referenced by using .BIMPORT
and .BEXPORT.

2. Added and Improved Features in Upgrade from Ver. 4.0 to Ver. 6.0

 (Note: Ver. 5.0 does not exist and is a missing number.)

a. Support for the New CPU

Creation of an object file with a CPU type of H8SX is supported.

b. Adding Check on Use of a Register

The following warning will be detected if @Rn+, @-Rn, @+Rn, @Rn-, @(d,Rn) or @Rn is
described on the program with H8SX, H8S, or H8/300H CPU.
 819 (W) @Rn+, @-Rn, @+Rn, @Rn-, @(d,Rn) OR @Rn USED
Change Rn into ERn in the above addressing modes.

954

3. Added and Improved Features in Upgrade from Ver. 6.0 to Ver. 6.01

a. Support for the New CPU

AE5 is supported.

b. Loosening Limits on Values

The limitation on the number of characters in a replacement symbol specified in the DEFINE
option or directive is loosened from 32 characters to unlimited. (However, the replacement
string literal is still limited to 255 characters.)

c. Exemptions from Replacement by the DEFINE Option or Directive

DEFINE options and directives do not replace .AENDI, .AENDR, .AENDW,

.AIFDEF, .END, .ENDF, .ENDM, .ENDI, .ENDS, and .ENDW directives.

d. Support for .STACK Directive

The .STACK directive enables specification of a stack size for use with a specific symbol.

18.2.4 Added and Improved Features for the Optimizing Linkage Editor

1. Added and Improved Features in Ver. 7.0 and Ver. 7.1

a. Support for Wild Cards

A wild card can be specified with a section name of an input file or for file names in start
options.

b. Search Path

An environment variable (HLNK_DIR) can be used to specify several search paths for input
files or library files.

c. Subdividing the Output of Load Modules

The output of an absolute load module file can be subdivided.

d. Changing the Error Level

For information, warning, and error level messages, the error level or disabling/enabling the
output can be individually changed.

e. Support for Binary and HEX

Binary files can be input and output.

Intel® HEX-type output can be selected.

f. Output of the Stack Consumption Information

The stack option can output an information file for the stack consumption analysis tool.

955

g. Optimization Improvement by optimize=variable_access

Variables allocated in a 16-bit absolute address space can be allocated in an 8-bit address space
by applying optimization.

h. Optimization Improvement by optimize=register

When option optimize=speed is not specified, the file is compressed after optimizing the
saving and restoring of register contents between functions, and replacing saving and restoring
of multiple register contents with function calls.

i. Optimization Improvement of Assembly Programs

Sections including .org, .align, or .data directive can be optimized.

j. Debugging Information Deletion

The strip option can be used to delete debugging information from either the load module file
or the library file.

k. Debugging Information Compression

The compress option can be used to compress debugging information.

2. Added and Improved Functions in Upgrade from Ver. 7.0 to Ver. 8.0

a. Support for New CPU

Input of an object file with a CPU type of H8SX is supported.

b. Output to Empty Area

The space option can be used to fill the specified value in an empty area.

c. Specifying Memory Size Used

The memory option specifies the used size of internal memory.

d. Specifying 8-bit Absolute Area Address

The sbr option specifies the address to locate the 8-bit absolute address area.

e. Changing Error Level for Overlapping Section Addresses

The error level for overlapping section addresses at linkage is changed from Fatal in Ver. 7.0
to Error in Ver. 8.0. Thus, even when the section addresses overlap, the change_message
option can be used to continue processing on the user’s own responsibility.

956

3. Added and Improved Functions in Upgrade from Ver.8.00 to Ver. 9.00

a. Alignment Value Specification for Input Section with binary Option

A boundary alignment value can be specified for the section specified by the binary option.

b. Output of Cross-Reference Information

The cross-reference information is output to the linkage list when the show=xreference option
is specified, which is useful to determine the location that refers to a variable or function.

c. Notification of Unreferenced Symbol

When the msg_unused option is specified, the user can be notified of unreferenced symbols
even if optimization is not specified.

d. Reducing Empty Areas between Sections

In compiler units, the data_stuff option tightens up the spacing between areas in the compiler
output.

18.3 Operating Format Converter

18.3.1 Object File Format

The object file format complies with the standard ELF format. The debugging information format
complies with the standard DWARF2 format.

18.3.2 Compatibility with Earlier Versions

1. Object and Library Files

When an object file or library file that has been output by Ver. 3.0 or earlier version of the
compiler or assembler is to be input to the optimizing linkage editor, it must be converted to
the ELF format by using a format converter. However, the debugging information will then be
deleted.

Relocatable files that have been output by the linkage editor (extension: rel) and library files
that include such relocatable files cannot be converted.

The format converter outputs a file with a converted object format and the same name as the
input file. The input file is saved as <input file name.extension>.bak.

ELF-format object and library files cannot be converted to the object format of earlier versions
of the compiler (Ver. 3.0 or earlier) or assembler.

2. Load Module File

ELF-format load module files can be converted to the format of the linkage editor of Ver. 6.0
or earlier versions by using the format converter. Table 18.3 is a list of the object file formats
that can be converted. The ELF-format load module file of H8SX is not supported.

957

Table 18.3 Object File Formats that can be Converted from ELF Format

Object File Format

No.

Version
Number of
Compiler or
Assembler

Linkage Editor
Specification Option

Object

Debugging
Information

Conversion

1 debug SYSROF SYSROF OK

2

Ver. 2.0 or
lower sdebug SYSROF SYSROF NG

3 debug SYSROF SYSROF OK

4

sysrof

sdebug SYSROF DWARF1 NG

5 debug ELF DWARF1 OK

6

Ver. 3.0 or
lower

elf

sdebug ELF DWARF1 NG

The format converter outputs a converted file with the same file name as the input file. The
input file is saved as <input file name.extension>.bak.

The load module file output by the linkage editor of Ver. 6.0 or earlier versions cannot be
converted to the ELF format.

Load modules with a newly-added feature of the compiler, assembler, or optimizing linkage
editor in the Ver. 4.0 package or later cannot be converted from the ELF format to one of the
older formats.

18.3.3 Command Line Format

The command line format is as follows:

helfcnv[∆<option>…]∆<file name>[…][∆<option>…]

<option>: -<option>[=<suboption>]

<file name>: A wild card (* or ?) can be used.

18.3.4 Interpretation of Options

In the command line format, uppercase letters indicate the abbreviations and characters underlined
indicate the defaults. When the HEW is used, the option is specified in the option window of the
optimizing linkage editor. The format of the dialog menus of the HEW is
Tab name <Category> [Item]....

The format converter automatically determines the type of the file to be converted (object file,
library file, or load module).

1. Conversion of Object File or Library File

An object file or library file created by Ver. 3.x or earlier versions of the compiler or assembler
is converted to the ELF format. The debugging information that was included in the object file
or library file is deleted.

958

Use this function from the command line since it is not supported by the HEW.

Table 18.4 Options for Converting Object Files or Library Files

No. Item Option Dialog Menu Specification

1 Address space
specification

Address_space=<size>
<size>:{ 20 | 24 | 28 | 32 }

 Address space
specification

2 fpu Fpu With FPU*

3 dsp Dsp With DSP*

Note: Options for the SuperH compiler. They cannot be used in the H8S, H8/300 series compiler.

Address_space: Address Space Specification

• Command Line Format

Address_space=<Address space size>

 <Address space size>:{20 | 24 | 28 | 32}

• Description

Specifies the address space size when cpu=300ha, 2000a, or 2600a is specified.

When the option is omitted, 24 will be selected.

• Example

helfcnv -a=20 *.obj ; Converts all files with extension .obj to files with
 ; extension .elf and a 20-bit address space.

• Remarks

Library files that include relocatable files output by the linkage editor (extension: .rel), and
other relocatable files cannot be converted.

2. Conversion of Load Module Files

ELF-format load module files have been converted to the object file format output by of the
linkage editor of Ver. 6.0 or earlier versions. When debugging information is included in the
load module file, the load module file after conversion retains the debugging information.
Refrain from converting a load module of H8SX.

Table 18.5 Options for Converting Load Module File

 Item Option Dialog Menu Specification

1 Specification of
conversion format

Sysrof Output Converts to the SYSROF
format

 Dwarf1 [Type of output file:] Converts to the ELF/DWARF1
format

959

Sysrof, Dwarf1: Conversion Format Specification

Link/Library <Output> [Type of output file:][Absolute(SYSROF)]

• Command Line Format

Sysrof

Dwarf1

• Description

Specifies the object format after conversion.

When sysrof is specified, a load module file in the ELF/DWARF2 format is converted to the
SYSROF format.

When dwarf1 is specified, a load module file in the ELF/DWARF2 format is converted to the
ELF/DWARF1 format.

When the sdebug option is specified to the optimizing linkage editor, the debugging
information is not retained in the converted file.

• Example

helfcnv test.abs ; Converts test.abs to the SYSROF format.

helfcnv –d test.abs ; Converts test.abs to the ELF/DWARF1 format.

• Remarks

When there are functions both with and without optimization in a file because #pragma option
has been used, debugging information will not be included in the converted file.

960

961

Section 19 Appendix

19.1 S-Type and HEX File Format

This section describes the S-type files and HEX files that are output by the optimizing linkage
editor.

19.1.1 S-Type File Format

(a) Header record (S0 record)

30 30 45 30 30 30 30 XX XX53

 0 E S 0 0 0 0 0

Load address
Byte count [1]
Record format
Record header

Checksum [2]
File format extension (3 characters: 6 bytes)
Body of file name (8 characters: 16 bytes)

[3]

(b) Data record (S1, S2, and S3 records)

(i) When the load address is 0 to FFFF

31 XX XX XX XX XX XX53

 1 S

Load address (2 bytes)
Byte count [1]
Record format
Record header

XX XX

Checksum [2]
Data (16 bytes max.)

[3]

(ii) When the load address is 10000 to FFFFFF

32 XX XX XX XX XX XX53

 2 S

Load address (3 bytes)
Byte count [1]
Record format
Record header

XX XX

Checksum [2]
Data (16 bytes max.)

[3]

XX XX

˜ ˜ ˜ ˜
˜ ˜

˜ ˜
˜ ˜

˜ ˜
˜ ˜

˜ ˜

Figure 19.1 S-Type File Format

962

(iii) When the load address is 1000000 to FFFFFFFF

33 XX XX XX XX XX XX53

 3 S

Load address (4 bytes)
Byte count [1]
Record format
Record header

XX XX

Checksum [2]
Data (16 bytes max.)

[3]

XX XX XX XX

(c) End record (S9, S8, and S7 record)

(i) When the entry address is 0 to FFFF

39 30 33 XX XX XX XX53

 9 S

Entry address (2 bytes)
Byte count [1]
Record format
Record header

Checksum [2]

[3]

(ii) When the entry address is 10000 to FFFFFF

38 30 34 XX XX XX XX53

 8 S

Entry address (3 bytes)
Byte count [1]
Record format
Record header

XX XX

Checksum [2]

[3]

XX XX

(iii) When the entry address is 1000000 to FFFFFFFF

37 30 35 XX XX XX XX53

 7 S

Entry address (4 bytes)
Byte count [1]
Record format
Record header

XX XX

Checksum [2]

[3]

XX XX XX XX

 3 0

XX XX

 4 0

 5 0

Notes: [1] The number of bytes from the load address (or the entry address) to the checksum.
[2] 1's complement of the sum of the byte count and the data between the checksum

and the byte count, in byte units.
[3] A new-line character is added immediately after the checksum.

˜ ˜
˜ ˜

Figure 19.1 S-Type File Format (cont)

963

19.1.2 HEX File Format

The execution address of each data record is obtained as described below.

• Segment address

(Segment base address << 4) + (Address offset of the data record)

• Linear address

(Linear base address << 16) + (Address offset of the data record)

 0 0 0 0 0

Record type
Address offset
Byte count [1]
Start mark

XX XX

Checksum [2]
Data

 0 XX XX XX XX 1 0

(a) Data Record (00 Record)
[3]

(b) End Record (01 Record)

 0 0 0 0 0 0 0

Address offset
Byte count [1]
Start mark

Checksum [2]
Record type

 1 FF FF

[3]

(c) Expansion Segment Address Record (02 Record)

 0 2 0 0 0 0 2 XX XX

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Segment base address

 0 XXXX XXXX

[3]

Figure 19.2 HEX File Format

964

(e) Expansion Linear Address Record (04 Record)

 0 2 0 0 0 0 4 XX XX

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Linear base address

 0 XXXX XXXX

[3]

Notes: [1] The number of bytes from the record type to the previous bit of the checksum.
[2] 2's complement of the sum of the byte count and the data between the byte count and checksum,

 in hexadecimal (lower 8 bits are valid).
 [3] Line feed is added immediately after the checksum.

(f) 32-Bit Start Linear Address Record (05 Record)

 0 4 0 0 0 0 5 XX XX

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Start address

 0 XXXX XXXX

[3]

XXXX XXXX

(d) Start Address Record (03 Record)

 0 4 0 0 0 0 3 XX XX

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Start address

 0 XXXX XXXX

[3]

XX XXXXXX

Figure 19.2 HEX File Format (cont)

965

19.2 ASCII Code List

Table 19.1 ASCII Code List

Lower 4
bits

Upper 4 bits

 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ‘ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS − = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

966

19.3 Access Range of Short Absolute Addresses

Table 19.2 shows the access range of 8-bit absolute addresses and 16-bit absolute addresses in
CPU/operating mode.

Table 19.2 Access Range of Short Absolute Addresses

CPU/Operating
Mode

Access Range of 8-Bit
Absolute Addresses (@aa:8)

Access Range of 16-Bit
Absolute Addresses (@aa:16)

H8SXA:32
H8SXX[:32]
2600a:32
2000a:32

0xFFFFFF00 to 0xFFFFFFFF 0x0 to 0x7FFF

0xFFFF8000 to 0xFFFFFFFF

H8SXA:28
H8SXX:28
2600a:28
2000a:28

0xFFFFF00 to 0xFFFFFFF 0x0 to 0x7FFF

0xFFF8000 to 0xFFFFFFF

H8SXA[:24]
H8SXM[:24]
2600a[:24]
2000a[:24]
300ha[:24]

0xFFFF00 to 0xFFFFFF 0x0 to 0x7FFF

0xFF8000 to 0xFFFFFF

H8SXA:20
H8SXM:20
2600a:20
2000a:20
300ha:20

0xFFF00 to 0xFFFFF 0x0 to 0x7FFF

0xF8000 to 0xFFFFF

H8SXN
2600n
2000n
300hn
300
300l

0xFF00 to 0xFFFF

Note: When the H8SX is selected as the CPU, the access range of 8-bit absolute addresses can
be modified by the sbr option.

967

Index

#pragma abs16..317
#pragma abs16 section..314
#pragma abs8..317
#pragma abs8 section..314
#pragma address ...353
#pragma asm...341
#pragma bit_order...301, 322
#pragma entry ...328
#pragma extension ..311
#pragma global_register ...347
#pragma indirect ...331
#pragma indirect section...314
#pragma inline ..334
#pragma inline_asm..335
#pragma interrupt..323
#pragma noregsave ...337
#pragma option ...339
#pragma pack 1...348
#pragma pack 2...348
#pragma regsave ...337
#pragma section ..314
#pragma stacksize...314
#pragma unpack..348

$

$..637
$$function_name ..333
$1 ..187
$4 ..187
$ABS16B.. 32, 186, 187, 198, 315, 317
$ABS16C.. 32, 186, 187, 198, 315, 317
$ABS16D.. 32, 186, 187, 198, 315, 317
$ABS8B.. 32, 186, 198, 315, 317
$ABS8C.. 32, 186, 198, 315, 317
$ABS8D.. 32, 186, 198, 315, 317
$ADDRESS ..188
$EXINDIRECT .. 31, 187, 198, 315
$function_name ..331

968

$INDIRECT.. 31, 187, 198, 315, 331
$VECT..187

*

* specification...472

.

.ABS8 ...723

.AELIF..764

.AELSE...764, 766

.AENDI...764, 766

.AENDR ...768

.AENDW ..769

.AERROR ...772

.AIF...764

.AIFDEF ...766

.ALIGN...689

.ALIMIT ...773

.AREPEAT ...768

.ASSIGN...692

.ASSIGNA..759

.ASSIGNC ..761

.AWHILE ...769

.BEQU ..695

.BEXPORT ...721

.BIMPORT ...722

.BREAK..797, 812

.CASE...797

.CONTINUE...813

.CPU ...676

.DATA ..697

.DATAB ...699

.DEBUG ...727

.DEFINE...763

.DISPSIZE ..730

.ELSE..793

.END...747

.ENDF...802

.ENDI..793

.ENDM ...777

.ENDS...797

.ENDW ...807

.EQU...691

969

.EXITM...771

.EXPORT..715

.FOR[U]..802

.FORM..737

.GLOBAL ...719

.HEADING ...739

.IF..793

.IMPORT ..717

.INCLUDE..750

.INSTR..788

.LEN ...787

.LINE ..729

.LIST...735

.MACRO...777

.NOABS8..723

.ORG...686

.OTHERS..797

.OUTPUT ...725

.PAGE...741

.PRINT..733

.PROGRAM ...745

.RADIX...746

.REG ...693

.REPEAT ..810

.RES..708

.SDATA..701

.SDATAB ...702

.SDATAC ...704

.SDATAZ ...706

.SECTION ..681

.SPACE...743

.SRES..710

.SRESC...711

.SRESZ ...713

.STACK ..748

.SUBSTR ..789

.SWITCH..797

.UNTIL ...810

.WHILE ..807

?

? ..649

970

_

_ _abs16..33, 317
_ _abs8..33, 317
_ _asm...342
_ _entry ...328
_ _evenaccess..351
_ _global_register ...347
_ _indirect ...331
_ _indirect_ex ...333
_ _inline ..334
_ _interrupt ...323
_ _near16 ..319
_ _near8 ..319
_ _noregsave ...337
_ _ptr16...321
_ _regparam2 ..338
_ _regparam3 ..338
_ _regsave ...337
_ _secend ..359
_ _sectop ...359
_CALL_END..206
_CALL_INIT..206, 212
_CLOSEALL..206, 214
_ec2p_new_handler ..576
_file_ptr ..574
_INITLIB.. 206, 212, 215
_INITSCT...206
_IOFBF...453
_IOLBF...453
_IONBF ..453
_movfpe ..377

+

+..630

2

2000A ... 53, 88, 676
2000N ... 53, 88, 676
2600A ... 53, 88, 676
2600N ... 53, 88, 676

3

300 .. 53, 88, 676

971

300HA .. 53, 88, 676
300HN .. 53, 88, 676
300L.. 53, 88, 676
300REG ..53

6

64-bit multiplication ...362, 374

8

8-bit absolute area address specification...59

A

abort ..94, 243
abs... 509, 586, 596
abs16...32, 84
abs8...32, 84
absolute...109, 185
absolute_forbid ...123
access to EEPROM...931
access to EEPROM...926
acos ...417
acosf..432
add ..940
address check..127
address symbol..631
address_space ...958
addressing mode ...650
AE5...88, 925
aliases of register name...631
align ..19
ALIGN..681
align_section...939
alignment ..19, 348
all ..18
allocation ..23, 24
allocation of initialized data areas...198
alphabetic character ..401
and_ccr..367
and_exr ...370
ANSI conformance ...49
arg ...587, 597
argument reference in macro ..780
array..283

972

array type ..293
asin..418
asinf ..432
asmcode ..14
assembler directives..674
assembler functions ..930
assembler listings..167
assembly program sections ...189
assembly specifications...627
assembly-language instruction..341
assert ...399
assert.h ..399
assigna ..69
assignc ..70
atan ...418
atan2 ...419
atan2f ..434
atanf ..433
atof ..500
atoi ..501
atol ..501
auto ...18, 29

B

B ... 186, 198, 315
basic type ..286
binary..104, 109
binary file..104, 394
binary number...635
bit data name...631
bit field.. 285, 299, 351
bit field order specification ...60
bit_order..60, 301
block transfer ..379, 380
block transfer instruction ..47
block transfer instructions (with ECR setting)..928
block transfer instructions (with EPR and ECR setting)...929
bool ... 289, 555, 565
boolalpha ..544
boundary alignment ..185, 288
boundary alignment of structure, union, and class members ..58
boundary alignment value and disable of boundary alignment...19
br_relative...76

973

branch ...121
bsearch ..507
bss ...15
BTBL..205, 210
BUFSIZ ..453
byteenum ..45

C

C ... 61, 186, 198, 315
C library function..390
C$BSEC..188, 198
C$DSEC ...188, 198
C$INIT..188, 198
C$VTBL ...188, 198
C/C++ language specifications ...279
C/C++ libraries ...390
C/C++ library function initial settings ..206, 212
C/C++ program sections ...185
C++ class libraries ..533
C++ global class object initial settings ...212
cache size..123
cachesize...123
calculation of heap area size ...203
calculation of size ...196
calculation of stack area size ..200
callee-save ..247
caller-save...247
calloc...505
calls...81
case ...29
ceil ..427
ceilf ...442
CH38...151
CH38SBR ...151
CH38TMP ..151
change_message ... 42, 48, 135, 145
char ...289
CHAR_BIT...413
CHAR_MAX..413
CHAR_MIN ...413
character code select in string literal...62
character constant ...635
character specifications...280

974

class ..285
class data allocation ..295
class type...293
clearerr ..495
close ..218
close files ..206
closing files...214
cmncode..47
code... 14, 81, 185
CODE ...681
coding notes..272
columns...97
command line format.. 7, 65, 101, 141, 957
command-line interface ..937
comment ...43, 628
comment in macro ..783
comment nesting...43
common code size...121
common expression optimization ...47
compatibility with earlier versions..956
compatibility with the earlier version ...934
compiler functions ..925
compiler listings..157
compiler options ...925
compiler specifications ...279
compiling a C Program with the C++ Compiler ...275
complex ..533, 578
complex number calculation class libraries ..578
compound type..293
compress ...131
condition code register..361
conditional assembly ..754
conditional assembly directives ..758
conditional assembly function ..752
conditional iterated expansion ..757
conditionals...81
conj ...587, 597
const..15
const constant propagation..39
const_var_propagate ...39
constant...635
constant areas..198
constant symbol ..631

975

contents of dynamic memory area ..199
contents of static memory area ...196
control character ...401
conversion between decimal and internal representation..308
conversion character ...456
conversion specification ...465, 472
conversion specifier ..472
converted data size..472
copyright...139
cos... 420, 587, 597
cosf ...435
cosh... 421, 587, 597
coshf ...436
cpp ..61
cpu ..926
cpu ..930
cpu .. 52, 88, 127
CPU option ...138
CPU options..50, 87
cpu type...926
cpu type...930
CPU type...925
CPU/operating mode ..52
cpuexpand...16
cross reference listing ...169
cross_reference ...82
cross-reference information ..179
ctype.h...400

D

D ... 52, 90, 186, 198, 315, 678
dadd ..388
data ...15, 185
DATA ...681
data allocation example ..288
data range..288
data representation ..288
data_stuff ..115
DBL_DIG ...411
DBL_EXP_DIG..411
DBL_MANT_DIG ...411
DBL_MAX...409
DBL_MAX_10_EXP ...410

976

DBL_MAX_EXP ...410
DBL_MIN ..410
DBL_MIN_10_EXP...411
DBL_MIN_EXP...410
DBL_NEG_EPS ...412
DBL_NEG_EPS_EXP..412
DBL_POS_EPS ..412
DBL_POS_EPS_EXP...412
debug .. 14, 72, 111
debug information...14, 111
debug information compression..131
debug information deletion...134
dec...546
decimal digit ...401
decimal number ..635
decimal operation..361
declaration specifications..286
default include file ..9
define .. 10, 68, 104
definitions ...81
del_vacant_loop..36
delete...132
denormalized number ... 303, 304, 306
diagnostics ..399
disable of copyright output ...62
disable preprocessor inline output ..145
disabling optimization against loop iteration condition ..45
div ...509
div_t ..499
divider...678
division of optimizing ranges ...40
domain error ...416, 430
double ... 289, 302, 305
double to float conversion...55
double_complex class ...589
double_complex non-member function ..592
double_complex::_im ...589
double_complex::_re ..589
double_complex::double_complex ...590
double_complex::imag ...590
double_complex::operator−=..590, 591
double_complex::operator*=..591
double_complex::operator/=...591

977

double_complex::operator+=..590, 591
double_complex::operator=..590, 591
double_complex::real ...590
double_complex::value_type ..589
double=float..55
dsub...389
DTBL..205, 210
DUMMY ..681
dwarf1...959
dynamic memory area allocation ..199, 204

E

EBADF ...414, 884
ECBASE...414, 883
ecpp...44
ECSPEC..414, 884
EDBLO...414
EDBLU...414
EDIV...414, 883
EDOM .. 414, 415, 416, 429, 883
eepmov..47, 379
eepmovb..379
eepmovi ..380
eepmovw...379
EEPROM ..926
EEPROM ..931
eepromb ..928
eepromb_epr ...929
eepromw ...928
eepromw_epr ..929
EEXP ..414, 883
EEXPN ...414, 883
EFLOATO ..414, 884
EFLOATU ..414, 884
ELDBLO ..414
ELDBLU ..414
elements of expression..638
elimination of expression preceding infinite loop...37
embedded C++ language ..44
enable_register..49
end ..140
end code..130
endl ...570

978

end-of-file indicator ..396
ends...570
entry ..105
enum ...289
enumeration ..285
enumeration data size ...45
environment ..280
environment specifications ...279
environment variables list ...149
eof ...538
EOF...393
EOVER...884
ERANGE .. 414, 415, 416, 429, 883
errno..397, 414
errno.h...414
errno_addr...220, 238
error .. 48, 135, 815, 885, 903, 917
error indicator ...396
error information... 160, 173, 182
error messages of assembler ...885
error messages of C library function...882
error messages of compiler ...815
error messages of optimizing linkage editor ...903
error messages of standard library generator and format converter..917
ESTRN..414, 883
ETLN..414, 883
euc... 62, 63, 95
EUNDER ..884
exception...57
exception processing...57
exclude..86
executable instructions..650
execution continued ..140
execution environment settings...205
execution start address ..105
exit ..140, 241
exp .. 423, 587, 597
expand...73
expanded memory indirect addressing mode..333
expansion ..23
expansions ..81
expf ...438
exponent..302

979

expression ...638, 641
expression ...28
extend register...361
extended functions ..311
external variable optimization ..33
external variable optimization range specification ...34
external variable register allocation ..38
externally-defined symbol list ..174
extract ...134

F

fabs ...427
fabsf ..442
fatal ... 815, 885, 903, 917
fclose...459
feof..496
ferror ...497
fflush...460
fgetc ..481
fgets ..482
field width... 466, 467, 472
FILE..453
file access mode..395
file extension...155
file inclusion function ...749
file pointer...393
file position indicator..396
FILE structure...393
file_inline..40
file_inline_path...11
fixed..546
flags ..466
float... 289, 302, 304
float.h..409
float_complex class ..579
float_complex non-member function..582
float_complex::_im...579
float_complex::_re..579
float_complex::float_complex ..580
float_complex::imag ...580
float_complex::operator−= ...580, 581
float_complex::operator*=..581
float_complex::operator/= ..581

980

float_complex::operator+= ...580, 581
float_complex::operator=..580, 581
float_complex::real ...580
float_complex::value_type..579
floating-point number ...395
floating-point number limits ...282
floating-point number representation..303
floating-point number specifications ..282, 302
floating-point numbers..391
floating-point operation specifications ...307
floor ..428
floorf ...443
FLT_DIG..411
FLT_EXP_DIG...411
FLT_GUARD...409
FLT_MANT_DIG ..411
FLT_MAX..409
FLT_MAX_10_EXP ..410
FLT_MAX_EXP ..410
FLT_MIN ...410
FLT_MIN_10_EXP..411
FLT_MIN_EXP..410
FLT_NEG_EPS ..412
FLT_NEG_EPS_EXP...412
FLT_NORMALIZE..409
FLT_POS_EPS...412
FLT_POS_EPS_EXP ...412
FLT_RADIX ..409
FLT_ROUNDS...409
flush ..570
fmod..428
fmodf ..443
fopen ...461
form ..108, 938
format converter..956
format type..185
fprintf ..456, 465
fputc..483
fputs ..484
fread..491
free..505
freopen..462
frexp..423

981

frexpf ..438
fscanf ..471
fseek..493
fsymbol ...126
ftell..494
function access optimization symbol information ..178
function address area ..196, 198
function calling interface ..246
function_call ...121
function_forbid ...123, 124
functions and macros ..393
fwrite...492

G

get_ccr ..366
get_exr ..370
get_imask_ccr ...365
get_imask_exr...369
getc ...485
getchar ..486
getline ...619
gets..487
global class object initialization processing..206
global class object postprocessing ..206
global_alloc ..38
goptimize ..28, 77
guard bit..395

H

H38CPU..150
H8/300 ..670
H8/300H ...666
H8/300L..670
H8S/2000 ..662
H8S/2600 ..658
H8SX ..652
H8SXA ... 53, 88, 676
H8SXM... 53, 88, 676
H8SXN ... 53, 88, 676
H8SXX ... 53, 88, 676
head...143
heap area ...199
hex ..546

982

hexadecimal ..109
hexadecimal digit..401
hexadecimal number...635
hide ...135
HIGH ..644
HLNK_DIR ..152
HLNK_LIBRARY1..152
HLNK_LIBRARY2..152
HLNK_LIBRARY3..152
HLNK_TMP...152
HUGE_VAL... 415, 416, 429
HWORD ...644

I

I/O...215
identifier specifications...279
ifthen...29
illegal operation ..307
imag ..586, 596
implementation definition...396
implicit declaration ...153
improvements ...941
include ..9, 67
include file directory...9
increases the number of registers..46
increasing number of registers for register variables ..46
indirect ..31
indirect.h ...332
infinite_loop..37
infinity .. 303, 305, 306, 457
information ... 48, 135, 815, 903
information message...10, 114
initial processing data area..198
initial setting program...195
initial settings..205, 208
initial value ...185
initialized data areas ...198
initialized data section address area..198
inline ...28
inline expansion..39
input ..3, 102
input file..102
input information ..173

983

Input Information..181
input options ...102
int ..289
INT_MAX ..413
INT_MIN..413
int_type ...534
integer constant...635
integer specifications ..281
inter-file inline expansion ...40
inter-file inline expansion directory specification...11
inter-module optimization...28
internal .. 546, 815, 903
internal representation ..288
internal representation of floating-point numbers...302
internal symbol ...633
intrinsic function...311, 361
intrinsic functions ...927
iomanip ...533
ios ...533
ios class...541
ios class manipulators ...544
ios::~ios ..542
ios::bad..543
ios::clear..542
ios::copyfmt ..543
ios::eof ..543
ios::fail ..543
ios::good ...542
ios::init ..542
ios::ios...542
ios::operator void* ..542
ios::operator!...542
ios::rdbuf...543
ios::rdstate...542
ios::sb..541
ios::setstate..542
ios::state ..541
ios::tie ...543
ios::tiestr ...541
ios_base class..536
ios_base::_ec2p_copy_base ..539
ios_base::_ec2p_init_base ..539
ios_base::~ios_base ..539

984

ios_base::adjustfield ...537
ios_base::app ..538
ios_base::ate..538
ios_base::badbit ..538
ios_base::basefield ..537
ios_base::beg ..539
ios_base::binary ..538
ios_base::boolalpha...537
ios_base::cur ...539
ios_base::dec...537
ios_base::end ..539
ios_base::eofbit ...538
ios_base::failbit...538
ios_base::fill..540
ios_base::fillch..536
ios_base::fixed ..537
ios_base::flags...539
ios_base::floatfield..537
ios_base::fmtfl ..536
ios_base::fmtflags ...537
ios_base::fmtmask ..537
ios_base::goodbit ..538
ios_base::hex ..537
ios_base::in ...538
ios_base::Init class ..535
ios_base::Init::~ Init..535
ios_base::Init::Init ...535
ios_base::Init::init_cnt ..535
ios_base::internal ..537
ios_base::ios_base...539
ios_base::iostate ..538
ios_base::left ...537
ios_base::oct ...537
ios_base::openmode..538
ios_base::out ...538
ios_base::prec ...536
ios_base::precision..540
ios_base::right...537
ios_base::scientific..537
ios_base::seekdir...539
ios_base::setf ..539
ios_base::showbase...537
ios_base::showpoint..537

985

ios_base::showpos ..537
ios_base::skipws ...537
ios_base::statemask...538
ios_base::trunc ..538
ios_base::unitbuf...537
ios_base::unsetf...539
ios_base::uppercase ..537
ios_base::wide...536
ios_base::width ...540
iostate..538
iostream ..533
isalnum..402
isalpha...402, 403
iscntrl ..402, 403
isdigit ..404
isgraph ..404
islower ..402, 405
isprint ..402, 405
ispunc..406
isspace...406
istream ..533
istream class..556
istream class manipulator..564
istream non-member function...564
istream::_ec2p_getistr...559
istream::~istream ..559
istream::chcount..556
istream::gcount ...560
istream::get ...560, 561
istream::getline ...561
istream::ignore ..562
istream::istream...559
istream::operator>>...559, 560
istream::peek...562
istream::putback..562
istream::read ...562
istream::readsome ...562
istream::seekg ...563
istream::sentry class..555
istream::sentry::~sentry ..555
istream::sentry::ok_ ..555
istream::sentry::operator bool ...555
istream::sentry::sentry...555

986

istream::sync ...563
istream::tellg ...563
istream::unget ...563
isupper ..402, 407
isxdigit ..407
iterated expansion ...756, 758

J

Japanese code conversion in object code..63
jmp_buf...444
joining sections ...191

K

keyword ..311

L

L_tmpnam...453
label ..627
labs..510
lang ...61
language specifications...279
latin1 ...62, 94
LDBL_DIG...411
LDBL_EXP_DIG ...411
LDBL_MANT_DIG ...411
LDBL_MAX ..409
LDBL_MAX_10_EXP ...410
LDBL_MAX_EXP ...410
LDBL_MIN ..410
LDBL_MIN_10_EXP...411
LDBL_MIN_EXP...410
LDBL_NEG_EPS...412
LDBL_NEG_EPS_EXP ...412
LDBL_POS_EPS..412
LDBL_POS_EPS_EXP ..412
ldexp ...424
ldexpf ..439
ldiv ..510
ldiv_t...499
left...60, 546
legacy..21
length ..23
libraries ...390

987

libraries unsupported ..625
library.. 4, 39, 103, 109, 533
library file ...103
library information..182
library listings ...180
library types ..390
limitations ...921
limits.h ..413
lines...97
linkage listing ...172
linkage listings ..171
linkage map information...174
linking C/C++ programs and assembly programs...244
list ... 22, 79, 117
list contents ...117
list contents and format...23
list file ...22, 117
list file specification..941
list options... 22, 78, 117
listing .. 157, 167, 171, 180
little-endian space ...351
local label..648
local symbol name hide ..135
locale.h..625
LOCATE ..681
location counter ..631, 637
log ... 424, 587, 597
log10 ... 425, 587, 598
log10f..440
logf..439
logo ... 62, 98, 139
long ...289
long double ... 289, 302, 305
LONG_MAX..413
LONG_MIN ...413
longjmp...447
longreg..55
loop ...28
loop expansion maximum number specification ..36
LOW ...644
lowercase letter ...401
low-level interface routine .. 206, 215, 222
lseek ..219

988

LWORD..644

M

M... 52, 90, 678
mac ...372
MAC ...361
MAC register ..44
machine.h..361
machinecode ...14
macl ..372
macro body ...774, 780
macro call ...774, 775
macro definition..774, 775
macro function..774
macro function directives..776
macro generation number ...781
macro name...774
macro name definition ..10
macro replacement processing exclusion..783
macsave ..44
malloc ...506
manipulating character arrays...511
mantissa ..302
map ...113
math.h ...415
mathematical operations ...415, 429
mathf.h..429
max_unroll..36
MD.. 52, 90, 678
memchr ...521
memcmp ...518
memcpy ..514
memmove ...532
memory...131
memory allocation ..195
memory area allocated for parameters ..251
memory indirect addressing mode ..31
memory management library ..576
memory occupancy reduction...131
memset..530
message...10, 114
message level .. 42, 48, 135
method for mutual referencing of external names ..244

989

mnemonic ...650
modf..425
modff ..440
module extraction ...134
module information within library..183
module replacement..133
movfpe..377
movmdb..381
movmdl...381
movmdw ...381
movsd..382
movtpe ..378
msg_unused ..115
mulsu ..374
multiplier ..678
muluu..374
mystrbuf..573

N

naming files ..155
new ...576
new_handler..576
no_float.h..498
noalign ..19
noboolalpha ..544
nocompress ...131
nocpuexpand...16
nocross_reference ...82
nodebug .. 14, 72, 111
noexception...57
noexclude..86
noline ..48, 145
nolist ...22, 79
nologo ... 62, 98, 139
nolongreg ..55
nomessage...10, 114
none ..18
noobject ..18, 77
nooptimize ..74, 120
nop ..382
noprelink...4, 106
noregexpansion...46
norm..587, 597

990

normalization ..395
normalized number ... 303, 304, 305
noscope ...40
nosection...83
noshow..81
noshowbase...545
noshowpoint..545
noshowpos ..545
noskipws ...544, 545
nosource..80
nostructreg ..54
not-a-number .. 303, 305, 306, 457
notification of unreferenced symbol ...115
NOTOPN ..414, 884
nouppercase ..546
novolatile ..33
NULL.. 393, 394, 397
null character ..394

O

object .. 18, 23, 77, 109
object file format...956
object file output ...18
object information...164
object options..12, 71
object type...14
oct ...546
octal number ...635
off_type...534
open ..216
operand ...628
operation ...627
operation size..650
operation size expanded interpretation ...16
operator...638
operator delete ..577
operator delete[]...577
operator evaluation order ..310
operator new ...577
operator new[]..576, 577
operator!= ... 586, 596, 618
operator−... 585, 595
operator*...585, 595

991

operator/..585, 595
operator+... 585, 595, 618
operator<...618
operator<< .. 571, 586, 596, 619
operator<= ..619
operator= = ... 586, 596, 618
operator>...618
operator>= ..619
operator>> .. 564, 586, 596, 619
opt_range ..34
optimization ..27
optimization for speed ..28
optimization partially disabled..123
optimize .. 27, 74, 120
optimize options..25, 119
option consistency ..937
option information ..173, 181
options ..7
options other than above... 60, 93, 139
or_ccr ..367
or_exr..371
ordinary characters..465, 471
ostream..533
ostream class...566
ostream class manipulator...570
ostream non-member function ..571
ostream::~ostream...567
ostream::flush ...569
ostream::operator<<..568
ostream::ostream...567
ostream::putc ..568
ostream::seekp ..569
ostream::sentry class ...565
ostream::sentry::_ _ec2p_os ...565
ostream::sentry::~sentry..565
ostream::sentry::ok_ ...565
ostream::sentry::operator bool ..565
ostream::sentry::sentry..565
ostream::tellp ..569
ostream::write ...568
other options ... 41, 86, 129
outcode..63, 96
output ..112, 143

992

output file..112
output format ..108
output of external symbol allocation information file...113
output options ...107
output to unused areas ..107, 113
overflow..307
overflow testing ..361
overview ...925
overview of formats..471
ovfaddc ...383
ovfaddl ..383
ovfadduc ...383
ovfaddul ..383
ovfadduw ..383
ovfaddw ..383
ovfnegc ...387
ovfnegl ..387
ovfnegw ..387
ovfshalc...385
ovfshall ...385
ovfshalw..385
ovfshlluc ...386
ovfshllul ..386
ovfshlluw ..386
ovfsubc..384
ovfsubl ..384
ovfsubuc..384
ovfsubul ..384
ovfsubuw ..384
ovfsubw ..384

P

P.. 186, 198, 315
pack...58
parameter allocation..253
parameter assignment examples ...257
parameter size specification..468
parameter storage register...53
parameters and return values ..249
passing parameters..249
path ...149
perror ..497
pointer...283, 289

993

pointer size..321
pointer size specification ..32
pointer to data member ...290
pointer to function member...291
pointer to virtual function member ...291
pointers to function members ...292
polar ..587, 597
pos_type..534
pow ... 426, 588, 598
PowerON_Reset ...205, 208
powf..441
precision..467
preferential allocation of register storage class variables ...49
preinclude ...9
prelinker..106
preprocessor..13
preprocessor expansion...13, 48
preprocessor specifications ...287
preprocessor variable reference in macro ...781
preprocessor variables...752
printf ...456, 474
printing character ..401
procedures for developing programs ..1
profile..122
profile information..122
program...15
program area ...198
program development ...276
ptr16..32
ptr16 option...291
ptrdiff_t...397
PTRERR ...414, 883
putc ...488
putchar ..489
puts ...489

Q

qsort ..508
qualifier specifications..285

R

radix ..395
rand ...504

994

RAND_MAX..499
range error...416, 430
range of integer types and values..281
read ...218
real ..586, 596
realloc ...506
record..111
record size unification...111
reduce empty areas of boundary alignment ..115
reent ..144
reentrant library ..237, 620
reference ...290
regexpansion...46
register .. 28, 120, 284
register allocation of 4-byte parameters..55
register allocation of structure parameters ..54
register specifications ...284
register usage ..267
regparam ...53
relative ..185
relocate..109
rename ..132
replace...133
replacement symbols ..753
reserved word..631, 633
resetiosflags ..572
return code ..394
return value setting ...254
rewind ...495
right...60, 546
rom..16, 112
ROM support function..112
ROM, RAM allocation ...198
rotlc...375
rotll ...375
rotlw..375
rotrc...375
rotrl ...375
rotrw ...375
rounding..307, 395
rtti ...57
rules concerning allocation and release of stack frames ...246
rules concerning registers ...247

995

rules concerning the stack pointer...246
runtime type information ..57

S

S ..188
S9..130
safe..121
same_code ..120
samecode_forbid...123
samesize..121
SBR... 59, 91, 138, 339, 679
SBR address specification ..138
sbrk ...220
scalar type ...288
scanf..475
SCHAR_MAX..413
SCHAR_MIN ...413
scientific..546
scope ...40
sdebug... See
section...15, 83
section address ..125
section address operator..311, 359
section attribute...185
section information listing ..171
section information within library ..183
section initialization..206
section initialization tables..205
section name ...631
section options ..125
sections ...185
SEEK_CUR ..453, 493
SEEK_END ..453, 493
SEEK_SET ...453, 493
selecting C or C++ language...61
set_ccr...366
set_exr...369
set_imask_ccr ...365
set_imask_exr ...368
set_new_handler ...577
set_vbr ..372
setbase...572
setbuf ..463

996

setfill ...572
setiosflags ...572
setjmp..446
setjmp.h...444
setprecision ...572
settings for the program execution environment...195
setvbuf ..464
setw...572
shift ...28
short ..289
short absolute addressing mode ..32
short_format..120, 121
show.. 23, 81, 117
showbase...545
showpoint..545
showpos ..545
SHRT_MAX...413
SHRT_MIN ..413
sign ...302
sign extension ...299
signal.h..625
signal_sem .. 215, 221, 237
signed char..280, 289
sin ... 420, 588, 598
sinf ..435
single-precision...429
sinh ... 422, 588, 598
sinhf ..437
size ..288, 291
size_t...397
SIZEOF...642
sjis... 62, 63, 95
skipws ...545
sleep ..376
smanip class manipulator..572
source..23, 80
source listing...158, 167
source options ...8, 66
source statements ..627
space ... 102, 113, 121
space characters ..456
special character..401
speed ...28, 121

997

sprintf..476
sqrt .. 426, 588, 598
sqrtf...441
srand ...504
sring lteral ...647
sscanf ..477
subcommand file option..137
stack .. 56, 130, 185
STACK ...681
stack analysis tool ...147
stack area ..199
stack area usage ..267
stack information file ..130
stack section creation..314
stack size specification..56
standard error output file...394
standard include file..390
standard input file ...394
standard input/output files ..394
standard output file ...394
start ... 19, 31, 32, 125
STARTOF ..642
statement specifications ..286
static..18
static memory area allocation ...196
statistics ..23
statistics information...166
stdarg.h ...448
stddef.h ...397
stderr ...394, 453
stdin ..394, 453
stdio.h ...453
stdlib.h ..499
stdout ..394, 453
strcat ...516
strchr ...522
strcmp ...519
strcpy ..514
strcspn...523
stream input/output ...392
stream input/output class library...533
streambuf ..533
streambuf class..547

998

streambuf::_B_cnt_ptr ..547
streambuf::_B_len_ptr ..547
streambuf::~streambuf ..550
streambuf::B_beg_pptr ...547
streambuf::B_beg_ptr ...547
streambuf::B_end_ptr ...547
streambuf::B_next_pptr ..547
streambuf::B_next_ptr ..547
streambuf::C_flg_ptr...547
streambuf::eback...552
streambuf::egptr..552
streambuf::epptr..553
streambuf::gbump...552
streambuf::gptr..552
streambuf::in_avail ...550
streambuf::overflow..554
streambuf::pbackfail ...554
streambuf::pbase ...552
streambuf::pbump...553
streambuf::pptr..552
streambuf::pubseekoff ..550
streambuf::pubseekpos..550
streambuf::pubsetbuf ..550
streambuf::pubsync...550
streambuf::sbumpc..551
streambuf::seekoff ..553
streambuf::seekpos ...553
streambuf::setbuf ..553
streambuf::setg..552
streambuf::setp..553
streambuf::sgetc..551
streambuf::sgetn..551
streambuf::showmanyc ...553
streambuf::snextc..551
streambuf::sputbackc ..551
streambuf::sputc..551
streambuf::sputn ...552
streambuf::streambuf ..550
streambuf::sungetc..551
streambuf::sync...553
streambuf::uflow...554
streambuf::underflow..554
streambuf::xsgetn..554

999

streambuf::xsputn ...554
streamoff...534
streamsize ...534
strerror ..531
strict_ansi..49
string ...15, 599
string class ..599
string class manipulator ..616
string handling class library..599
string literal manipulation functions in macro ..784, 786
string literal output area ..15
string.h ..511
string::~string..606
string::append ...609
string::assign ...609, 610
string::at ..608
string::begin ..607
string::c_str ...612
string::capacity..608
string::clear ...608
string::compare ...615
string::const_iterator ...599
string::copy ...612
string::data ..612
string::empty...608
string::end ...607
string::erase...610, 611
string::find ..612
string::find_first_not_of..614
string::find_first_of...613
string::find_last_not_of...614
string::find_last_of..613
string::insert ..610
string::iterator ...599
string::length...607
string::max_size..607
string::npos ...599
string::operator[] ..608
string::operator+= ...608, 609
string::operator= ...606, 607
string::replace ...611, 612
string::reserve ...608
string::resize..607, 608

1000

string::rfind ...612, 613
string::s_len ..599
string::s_ptr ...599
string::s_res...599
string::size...607
string::string..606
string::substr ...614
string::swap...612
string_unify...120
strip ...134
strlen ...531
strncat..517
strncmp ...520
strncpy ..515
strpbrk...524
strrchr..525
strspn...526
strstr ..527
strtod ...500, 502
strtok ...528
strtol ..503
struct ...28
struct_alloc..38
structreg ..54
structure ..285
structure data allocation..294
structure type ..293
structure/union member register allocation...38
structured ..81
structured assembly ..790
structured assembly directives ..792
structured assembly symbol..633
stype..109
subcommand... 63, 99, 137
subcommand file...63, 137
swap ..619
switch..28
switch statement output code selection method..29
symbol address file ...126
symbol allocation information ..161
symbol definition ..104
symbol information...174
symbol information within library ..183

1001

symbol name deletion ...132
symbol name modification..132
symbol_delete ...120
symbol_forbid...123
symbols...631
SYS_OPEN ..453
sysrof ..959

T

tab ...23
table ..29
tables for section initialization..210
tan ... 421, 588, 598
tanf ..436
tanh ... 422, 588, 598
tanhf ..437
tas..378
template ..18
template instance generation...18
term...638
termination processing..140
termination processing routine..206
termination processing routines ..240
terms used in library function descriptions ...392
text file..394
time.h ..625
TMP_MAX...453
tolower ..408
toupper ..408
trapa ..376
tuning options ...84
type conversion...249

U

UCHAR_MAX...413
UINT_MAX ...413
ULONG_MAX...413
underflow..307
ungetc..490
uninitialized data areas..198
uninitialized data section address area ..198
union ...285
union data allocation...295

1002

union type ...293
unsigned char ..289
unsigned int...289
unsigned long..289
unsigned short...289
uppercase ..545
uppercase letter ...401
use of EEPMOV/P.W ...925, 930
used...18
USHRT_MAX..413

V

va_arg ...451
va_end...452
va_list..448, 451
va_start..450, 451
vacant loop elimination...36
variable access optimization symbol information...176
variable_access ...120
variable_forbid..123
VEC_TBL...205, 207
vector table ...205
vector table settings ..207
Ver.4.0 Optimization Object Code ...21
verify options..127
version upgrade...933
vfprintf ..478
virtual function table...296
virtual function table area ...198
volatile ..33
volatile_loop ...45
vprintf ...479
vsprintf..480

W

wait_sem... 215, 220, 237
warning ... 44, 48, 135, 815, 885, 903, 917
white-space character..401
white-space characters ..471
width ...23
write ..219
write operation..185
ws..564

1003

X

xor_ccr ..368
xor_exr..371

Z

zero ... 303, 305, 306

1004

Renesas Microcomputer Development Environment System
User's Manual
H8S, H8/300 Series C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Publication Date: Rev.1.00, January 12, 2005
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Technical Documentation & Information Department
 Renesas Kodaira Semiconductor Co., Ltd.

 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

RENESAS SALES OFFICES

Colophon 2.0

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

H8S, H8/300 Series C/C++ Compiler, Assembler,
Optimizing Linkage Editor

REJ10B0161-0100

User’s Manual

	Cover
	Keep safety first in your circuit designs!
	Notes regarding these materials
	Contents
	Section 1 Overview
	1.1 Procedures for Developing Programs
	1.2 Compiler
	1.3 Assembler
	1.4 Optimizing Linkage Editor
	1.5 Prelinker
	1.6 Standard Library Generator
	1.7 Stack Analysis Tool
	1.8 Format Converter

	Section 2 C/C++ Compiler Operating Method
	2.1 Command Line Format
	2.2 Interpretation of Options
	2.2.1 Source Options
	2.2.2 Object Options
	2.2.3 List Options
	2.2.4 Optimize Options
	2.2.5 Other Options
	2.2.6 CPU Options
	2.2.7 Options Other Than Above

	Section 3 Assembler Options
	3.1 Command Line Format
	3.2 List of Options
	3.2.1 Source Options
	3.2.2 Object Options
	3.2.3 List Options
	3.2.4 Tuning Options
	3.2.5 Other Options
	3.2.6 CPU Options
	3.2.7 Options Other Than Above

	Section 4 Optimizing Linkage Editor Options
	4.1 Option Specifications
	4.1.1 Command Line Format
	4.1.2 Subcommand File Format

	4.2 List of Options
	4.2.1 Input Options
	4.2.2 Output Options
	4.2.3 List Options
	4.2.4 Optimize Options
	4.2.5 Section Options
	4.2.6 Verify Options
	4.2.7 Other Options
	4.2.8 Subcommand File Option
	4.2.9 CPU Option
	4.2.10 Options Other Than Above

	Section 5 Standard Library Generator Operating Method
	5.1 Comand Line Format
	5.2 Option Descriptions
	5.2.1 Additional Options
	5.2.2 Options Unavailable for Standard Library Generator
	5.2.3 Notes on Specifying Options

	Section 6 Operating Stack Analysis Tool
	6.1 Overview
	6.2 Starting the Stack Analysis Tool

	Section 7 Environment Variables
	7.1 Environment Variables List
	7.2 Compiler Implicit Declaration

	Section 8 File Specifications
	8.1 Naming Files
	8.2 Compiler Listings
	8.2.1 Structure of Compiler Listings
	8.2.2 Source Listing
	8.2.3 Error Information
	8.2.4 Symbol Allocation Information
	8.2.5 Object Information
	8.2.6 Statistics Information

	8.3 Assembler Listings
	8.3.1 Structure of Assembler Listings
	8.3.2 Source Listing
	8.3.3 Cross Reference Listing
	8.3.4 Section Information Listing

	8.4 Linkage Listings
	8.4.1 Structure of Linkage Listing
	8.4.2 Option Information
	8.4.3 Error Information
	8.4.4 Linkage Map Information
	8.4.5 Symbol Information
	8.4.6 Symbol Deletion Optimization Information
	8.4.7 Variable Access Optimization Symbol Information
	8.4.8 Function Access Optimization Symbol Information
	8.4.9 Cross-Reference Information

	8.5 Library Listings
	8.5.1 Structure of Library Listing
	8.5.2 Option Information
	8.5.3 Error Information
	8.5.4 Library Information
	8.5.5 Module, Section, and Symbol Information within Library

	Section 9 Programming
	9.1 Program Structure
	9.1.1 Sections
	9.1.2 C/C++ Program Sections
	9.1.3 Assembly Program Sections
	9.1.4 Linking Sections

	9.2 Creation of Initial Setting Programs
	9.2.1 Memory Allocation
	(1) Static memory area allocation
	(a) Contents of static memory area
	(b) Calculation of size
	(c) ROM, RAM allocation
	(d) Allocation of initialized data areas
	(e) Example of memory allocation and address specification at link time

	(2) Dynamic memory area allocation
	(a) Contents of dynamic memory
	(b) Calculation of stack area size
	(c) Calculation of heap area size
	(d) Dynamic memory area allocation

	9.2.2 Execution Environment Settings
	(1) Vector table settings (VEC_TBL)
	(2) Initial settings (PowerON_Reset)
	(3) Tables for section initialization (DTBL, BTBL)
	(4) C++ global class object initial settings (_CALL_INIT)
	(5) C/C++ library function initial settings (_INITLIB)
	(6) Closing files (_CLOSEALL)
	(7) Low-level interface routines
	(a) Approach to I/O
	(b) Specifications of low-level interface routines
	(c) Example of creation of a low-level interface routine
	(d) Example of low-level interface routines for reentrant library

	(8) Termination processing routines
	(a) Example of creation of a routine for termination processing registration and execution (atexit)
	(b) Example of creation of a routine for program termination (exit)
	(c) Example of creation of an abnormal termination (abort) routine

	9.3 Linking C/C++ Programs and Assembly Programs
	9.3.1 Method for Mutual Referencing of External Names
	(1) Method for referencing assembly program external names in C/C++ programs
	(2) Method for referencing C/C++ program external names (variables and C functions) from assembly programs
	(3) Method for referencing C++ program external names (functions) from assembly programs

	9.3.2 Function Calling Interface
	(1) Rules concerning the stack pointer
	(2) Rules concerning allocation and release of stack frames
	(3) Rules concerning registers
	(a) Calling an assembly program subroutine from a C/C++ program
	(b) Calling a C program subroutine from an assembly program
	(c) Calling a C++ program subroutine from an assembly program

	(4) Rules concerning settings and referencing parameters and return values
	(a) General rules for parameters and return values
	(b) Area for allocation of parameters
	(c) Parameter allocation
	(d) Location for setting return values

	9.3.3 Examples of Parameter Assignment
	(1) For the H8SX, H8S/2600, H8S/2000, H8/300H (cpu=H8SXN, cpu=H8SXM, cpu=H8SXA, cpu=H8SXX, cpu=2600a, cpu=2600n, cpu=2000a,
	 cpu=2000n, cpu=300ha, cpu=300hn)
	(2) For the H8/300 (cpu=300)

	9.3.4 Using the Registers and Stack Area
	(1) For the H8SX advanced mode and maximum mode (cpu=H8SXA, cpu=H8SXX)
	(2) For the H8SX middle mode, advanced mode with ptr16, maximum mode with ptr16 (cpu=H8SXM, cpu=H8SXA with ptr16,
	 CPU=H8SXX with ptr16)
	(3) For the H8SX normal mode (cpu=H8SXN)
	(4) For the H8S/2600, H8S/2000 and H8/300H advanced mode (cpu=2600a, cpu=2000a, cpu=300ha)
	(5) For the H8S/2600, H8S/2000, and H8/300H normal mode (cpu=2600n, cpu=2000n, cpu=300hn)
	(6) H8/300 (cpu=300)

	9.4 Important Information on Program Creation
	9.4.1 Important Information on Program Coding
	(1) Functions taking float type parameters
	(2) Expressions for which order of evaluation is not specified by the C/C++ language
	(3) Code which may be deleted through optimization
	(4) Overflow operations and division by zero
	(5) On the precision of mathematical library functions
	(6) Writing to const type variables
	(7) Note on bit manipulation instructions

	9.4.2 Important Information on Compiling a C Program with the C++ Compiler
	(1) Function prototype declarations
	(2) Linkage of const objects
	(3) Substitution from void*

	9.4.3 Important Information on Program Development
	(1) Information concerning selection of the CPU/operating mode
	(2) Important information on options

	Section 10 C/C++ Language Specifications
	10.1 Language Specifications
	10.1.1 Compiler Specifications
	(1) Environment
	(2) Identifiers
	(3) Characters
	(4) Integers
	(5) Floating-point numbers
	(6) Arrays and Pointers
	(7) Registers
	(8) Class, Structure, Union, and Enumeration Types, and Bit Fields
	(9) Qualifiers
	(10) Declarations
	(11) Statements
	(12) Preprocessor

	10.1.2 Internal Data Representation
	(1) Scalar Type (C), Basic Type (C++)
	(2) Compound Type (C), Class Type (C++)
	(3) Bit Fields

	10.1.3 Floating-Point Number Specifications
	(1) Internal Representation of Floating-Point Numbers
	(a) Format for internal representation
	(b) Structure of internal representation
	(c) Types of represented values of floating-point number

	(2) float type
	(3) double type and long double type
	(4) Floating-Point Operation Specifications
	(a) Specifications for arithmetic operations
	(b) Conversion between decimal and internal representation

	10.1.4 Operator Evaluation Order

	10.2 Extended Functions
	10.2.1 #pragma Extension Specifiers and Keywords
	(1) Extended Specifications Related to Memory Allocation
	(2) Extended Specifications Related to Functions
	(3) Other Extended Specifications

	10.2.2 Section Address Operator
	10.2.3 Intrinsic Functions

	10.3 C/C++ Libraries
	10.3.1 Standard C Libraries
	(1) Library Types
	(2) Organization of Library Part
	(3) Terms Used in Library Function Descriptions
	(a) Stream input/output
	(b) FILE structure and file pointer
	(c) Functions and macros
	(d) EOF
	(e) NULL
	(f) Null characters
	(g) Return code
	(h) Text files and binary files
	(i) Standard input/output files
	(j) Floating-point numbers
	(k) File access mode
	(l) Implementation definition
	(m) Error indicator and end-of-file indicator
	(n) File position indicator

	(4) Notes on use of libraries

	10.3.2 Embedded C++ Class Libraries
	(1) Overview of Libraries
	(a) Library Types

	(2) Stream Input/Output Class Library
	(a) ios_base::Init Class
	(b) ios_base Class
	(c) ios Class
	(d) ios Class Manipulators
	(e) streambuf Class
	(f) istream::sentry Class
	(g) istream Class
	(h) istream Class Manipulator
	(i) istream Non-Member Function
	(j) ostream::sentry Class
	(k) ostream Class
	(l) ostream Class Manipulator
	(m) ostream Non-Member Function
	(n) smanip Class Manipulator
	(o) Example of Using EC++ Input/Output Libraries

	(3) Memory Management Library
	(4) Complex Number Calculation Class Libraries
	(a) float_complex Class
	(b) float_complex Non-Member Function
	(c) double_complex Class
	(d) double_complex Non-Member Function

	(5) String Handling Class Library
	(a) string Class
	(b) string Class Manipulators

	10.3.3 Reentrant Library
	10.3.4 Unsupported Libraries

	Section 11 Assembly Specifications
	11.1 Program Elements
	11.1.1 Source Statements
	(1) Source Statement Structure
	(a) Label
	(b) Operation
	(c) Operand
	(d) Comment

	(2) Coding of Source Statements
	(a) Coding of Label
	(b) Coding of Operation
	(c) Coding of Operand
	(d) Coding of Comment

	(3) Coding of Source Statements across Multiple Lines

	11.1.2 Reserved Words
	11.1.3 Symbols
	(1) Functions of Symbols
	(2) Naming Symbols
	(a) Available Characters
	(b) First Character in a Symbol
	(c) Maximum Length of a Symbol
	(d) Names that Cannot Be Used as Symbols
	(e) Defining and Referencing Symbols

	11.1.4 Constants
	(1) Integer Constants
	(2) Character Constants

	11.1.5 Location Counter
	11.1.6 Expressions
	(1) Elements of Expression
	(a) Terms
	(b) Operators
	(c) Parentheses
	(d) Operation Precedence

	(2) Detailed Description on Operation
	(a) STARTOF Operation
	(b) SIZEOF Operation
	(c) HIGH Operation
	(d) LOW Operation
	(e) HWORD Operation
	(f) LWORD Operation

	(3) Notes on Expressions
	(a) Internal Processing
	(b) Logic Operators
	(c) Arithmetic Operators

	11.1.7 String Literal
	11.1.8 Local Label
	(1) Local Label Functions
	(2) Naming Local Labels
	(3) Scope of Local Labels

	11.2 Executable Instructions
	11.2.1 Overview of Executable Instructions
	(1) Mnemonic
	(2) Operation Size
	(3) Addressing Mode

	11.2.2 Notes on Executable Instructions
	(1) H8SX Executable Instruction and Operation Size Combinations:
	(a) Size of the executable instruction
	(b) Addressing format

	(2) H8S/2600 Executable Instruction and Operation Size Combinations:
	(a) Size of the executable instruction
	(b) Addressing format

	(3) H8S/2000 Executable Instruction and Operation Size Combinations:
	(a) Size of the executable instruction
	(b) Addressing format

	(4) H8/300H Executable Instruction and Operation Size Combinations:
	(a) Size of the executable instruction
	(b) Addressing format

	(5) H8/300 and H8/300L Executable Instruction and Operation Size Combinations:
	(a) Size of the executable instruction
	(b) Addressing format

	11.3 Assembler Directives
	11.4 File Inclusion Function
	11.5 Conditional Assembly Function
	11.5.1 Overview of the Conditional Assembly Function
	(1) Preprocessor variables
	(a) Integer preprocessor variables
	(b) Character preprocessor variables

	(2) Replacement Symbols
	(3) Conditional Assembly
	(a) Conditional Assembly with Comparison
	(b) Conditional Assembly with Definition

	(4) Iterated Expansion
	(5) Conditional Iterated Expansion

	11.5.2 Conditional Assembly Directives

	11.6 Macro Function
	11.6.1 Overview of the Macro Function
	(1) Macro definition
	(2) Macro call

	11.6.2 Macro Function Directives
	11.6.3 Macro Body
	(1) Argument reference
	(2) Preprocessor variable reference (.ASSIGNA, .ASSIGNC)
	(3) Macro generation number
	(4) Macro replacement processing exclusion
	(5) Comment in macro
	(6) String literal manipulation functions

	11.6.4 Macro Call
	11.6.5 String Literal Manipulation Functions

	11.7 Overview of Structured Assembly
	11.7.1 Notes on Structured Assembly
	11.7.2 Structured Assembly Directives

	Section 12 Compiler Error Messages
	12.1 Error Format and Error Levels
	12.2 Error Messages
	12.3 C Library Function Error Messages

	Section 13 Assembler Error Messages
	13.1 Error Message Format and Error Levels
	13.2 Error Messages

	Section 14 Error Messages for the Optimizing Linkage Editor
	14.1 Error Format and Error Levels
	14.2 List of Messages

	Section 15 Error Messages for the Standard Library Generator and Format Converter
	15.1 Error Format and Error Levels
	15.2 List of Messages

	Section 16 Limitations
	16.1 Limitations of the Compiler
	16.2 Limitations of the Assembler

	Section 17 Supporting AE5 Features
	17.1 Compiler Functions
	17.1.1 Overview
	17.1.2 Compiler Options
	17.1.3 Intrinsic Functions

	17.2 Assembler Functions

	Section 18 Notes on Version Upgrade
	18.1 Notes on Version Upgrade
	18.1.1 Guaranteed Program Operation
	18.1.2 Compatibility with the Earlier Version
	18.1.3 Command-line Interface
	18.1.4 Provided Contents
	18.1.5 List File Specification

	18.2 Additions and Improvements
	18.2.1 Common Additions and Improvements
	18.2.2 Added and Improved Compiler Features
	18.2.3 Added and Improved Features for the Assembler
	18.2.4 Added and Improved Features for the Optimizing Linkage Editor

	18.3 Operating Format Converter
	18.3.1 Object File Format
	18.3.2 Compatibility with Earlier Versions
	18.3.3 Command Line Format
	18.3.4 Interpretation of Options

	Section 19 Appendix
	19.1 S-Type and HEX File Format
	19.1.1 S-Type File Format
	19.1.2 HEX File Format

	19.2 ASCII Code List
	19.3 Access Range of Short Absolute Addresses

	Index
	Colophon

