Features

- 80C51 Core Architecture
- 256 Bytes of On-chip RAM
- 256 Bytes of On-chip XRAM
- 16K Bytes of On-chip Flash Memory
 - Data Retention: 10 Years at 85°C
 - Erase/Write Cycle: 100K
- Boot Code Section with Independent Lock Bits
- 2K Bytes of On-chip Flash for Bootloader
- In-System Programming by On-Chip Boot Program (CAN, UART) and IAP Capability
- 2K Bytes of On-chip EEPROM
- Erase/Write Cycle: 100K
- 14-sources 4-level Interrupts
- Three 16-bit Timers/Counters
- Full Duplex UART Compatible 80C51
- Maximum Crystal Frequency 40 MHz. In X2 Mode, 20 MHz (CPU Core, 40 MHz)
- Three or Four Ports: 16 or 20 Digital I/O Lines
- Two-channel 16-bit PCA
 - PWM (8-bit)
 - High-speed Output
 - Timer and Edge Capture
- Double Data Pointer
- 21-bit Watchdog Timer (7 Programmable bits)
- A 10-bit Resolution Analog-to-Digital Converter (ADC) with 8 Multiplexed Inputs
- Full CAN Controller
 - Fully Compliant with CAN rev.# 2.0A and 2.0B
 - Optimized Structure for Communication Management (Via SFR)
 - 4 Independent Message Objects
 - -Each Message Object Programmable on Transmission or Reception -Individual Tag and Mask Filters up to 29-bit Identifier/Channel
 - -8-byte Cyclic Data Register (FIFO)/Message Object
 - -16-bit Status and Control Register/Message Object
 - -16-bit Time-Stamping Register/Message Object
 - -CAN Specification 2.0 Part A or 2.0 Part B Programmable for Each Message Object
 - -Access to Message Object Control and Data Registers Via SFR

-Programmable Reception Buffer Length up to 4 Message Objects

- -Priority Management of Reception of Hits on Several Message Objects
- Simultaneously (Basic CAN Feature)
- -Priority Management for Transmission
- -Message Object Overrun Interrupt
- Supports
 - -Time Triggered Communication
 - -Autobaud and Listening Mode
 - -Programmable Automatic Reply Mode
- 1-Mbit/s Maximum Transfer Rate at 8 MHz⁽¹⁾ Crystal Frequency In X2 Mode
- Readable Error Counters
- Programmable Link to On-chip Timer for Time Stamping and Network Synchronization
- Independent Baud Rate Prescaler
- Data, Remote, Error and Overload Frame Handling
- Power-saving Modes
 - Idle Mode
 - Power-down Mode
- Power Supply: 3 Volts to 5.5 Volts
- Temperature Range: Industrial (-40° to +85°C)
- Packages: SOIC28, SOIC24, PLCC28, VQFP32

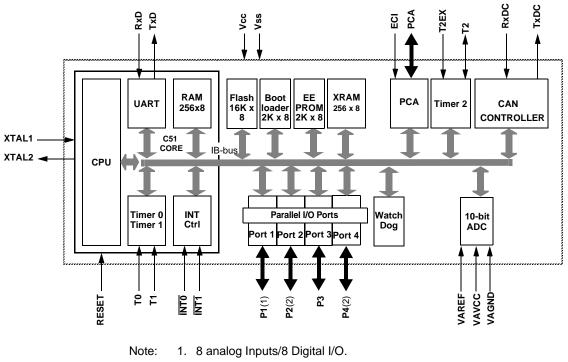
Note: 1. At BRP = 1 sampling point will be fixed.

Enhanced 8-bit Microcontroller with CAN Controller and Flash

T89C51CC02 AT89C51CC02

Rev. 4126L-CAN-01/08

Description


Part of the CANaryTM family of 8-bit microcontrollers dedicated to CAN network applications, the T89C51CC02 is a low-pin count 8-bit Flash microcontroller.

In X2 Mode a maximum external clock rate of 20 MHz reaches a 300 ns cycle time.

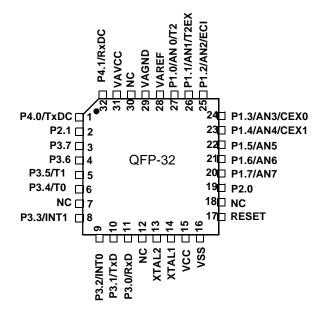
Besides the full CAN controller T89C51CC02 provides 16K Bytes of Flash memory including In-System Programming (ISP), 2K Bytes Boot Flash Memory, 2K Bytes EEPROM and 512 Bytes RAM.

Special attention is payed to the reduction of the electro-magnetic emission of T89C51CC02.

Block Diagram

2. 2-bit I/O Port.

² **AT/T89C51CC02**


Pin Configurations

VAREF [VAGND] VAVCC [P4.1/RxDC] P4.0/TxDC] P3.7 [P3.6] P3.5/T1 [P3.3/INT1] P3.2/INT0] P3.1/TxD [P3.0/RxD]	3 4 5 6 7 SO28 8 9 10 11	28 P1.0/AN0/T2 27 P1.1/AN1/T2EX 26 P1.2/AN2/ECI 25 P1.3/AN3/CEX0 24 P1.4/AN4/CEX1 23 P1.5/AN5 22 P1.6/AN6 21 P1.7/AN7 20 P2.0 19 RESET 18 VSS 17 VCC 16 XTAL1 15 XTAL2
VAREF VAGND VAVCC P4.1/RxDC P4.0/TxDC P3.5/T1 P3.3/INT1 P3.2/INT0 P3.1/TxD P3.0/RxD XTAL2	2 3 4 5 6 7 SO24 9 10 11	24 P1.0/AN0/T2 23 P1.1/AN1/T2EX 22 P1.2/AN2/ECI 21 P1.3/AN3/CEX0 20 P1.4/AN4/CEX1 19 P1.5/AN5 18 P1.6/AN6 17 P1.7/AN7 16 RESET 15 VSS 14 VCC 13 XTAL1
P4.0/TxDC 5 P2.1 6 P3.7 7 P3.6 8 P3.5/T1 9 P3.4/T0 10 P3.3/INT1 11		25 P1.3/AN3/CEX0 24 P1.4/AN4/CEX1 23 P1.5/AN5 22 P1.6/AN6 21 P1.7/AN7 20 P2.0 19 RESET

4126L-CAN-01/08

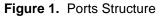
4

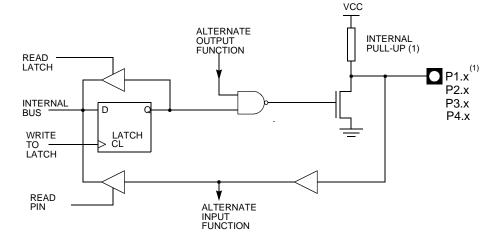
Pin Description

Pin Name	Туре	Description
VSS	GND	Circuit ground
VCC		Supply Voltage
VAREF		Reference Voltage for ADC (input)
VAVCC		Supply Voltage for ADC
VAGND		Reference Ground for ADC (internaly connected with the VSS)
P1.0:7	I/O	Port 1: Is an 8-bit bi-directional I/O port with internal pull-ups. Port 1 pins can be used for digital input/output or as analog inputs for the Analog Digital Converter (ADC). Port 1 pins that have 1's written to them are pulled high by the internal pull-up transistors and can be used as inputs in this state. As inputs, Port 1 pins that are being pulled low externally will be the source of current (I _L , See section 'Electrical Characteristic') because of the internal pull-ups. Port 1 pins are assigned to be used as analog inputs via the ADCCF register (in this case the internal pull-ups are disconnected). As a secondary digital function, port 1 contains the Timer 2 external trigger and clock input; the PCA external clock input and the PCA module I/O. P1.0/AN0/T2 Analog input channel 0, External clock input and the PCA module I/O. P1.1/AN1/T2EX Analog input channel 1, Trigger input for Timer/counter2. P1.1/AN1/T2EX Analog input channel 2, PCA external clock input. P1.3/AN3/CEX0 Analog input channel 3, PCA module 0 Entry of input/PWM output. P1.4/AN4/CEX1 Analog input channel 4, PCA module 1 Entry of input/PWM output. P1.5/AN5 Analog input channel 5, P1.6/AN6 Analog input channel 6, P1.7/AN7 Analog input channel 6
P2.0:1	I/O	Port 2: Is an 2-bit bi-directional I/O port with internal pull-ups. Port 2 pins that have 1's written to them are pulled high by the internal pull-ups and can be used as inputs in this state. As inputs, Port 2 pins that are being pulled low externally will be a source of current (IIL, on the datasheet) because of the internal pull-ups. In the T89C51CC02 Port 2 can sink or source 5mA. It can drive CMOS inputs without external pull-ups.

Pin Name	Туре	Description
P3.0:7	I/O	Port 3: Is an 8-bit bi-directional I/O port with internal pull-ups. Port 3 pins that have 1's written to them are pulled high by the internal pull-up transistors and can be used as inputs in this state. As inputs, Port 3 pins that are being pulled low externally will be a source of current (I _{IL} , See section 'Electrical Characteristic') because of the internal pull-ups. The output latch corresponding to a secondary function must be programmed to one for that function to operate (except for TxD and WR). The secondary functions are assigned to the pins of port 3 as follows: P3.0/RxD: Receiver data input (asynchronous) or data input/output (synchronous) of the serial interface P3.1/TxD: Transmitter data output (asynchronous) or clock output (synchronous) of the serial interface P3.2/INT0: External interrupt 0 input/timer 0 gate control input P3.3/INT1: External interrupt 1 input/timer 1 gate control input P3.4/T0: Timer 1 counter input P3.5/T1: Timer 1 counter input P3.6: Regular I/O port pin P3.7: Regular I/O port pin
P4.0:1	I/O	Port 4: Is an 2-bit bi-directional I/O port with internal pull-ups. Port 4 pins that have 1's written to them are pulled high by the internal pull-ups and can be used as inputs in this state. As inputs, Port 4 pins that are being pulled low externally will be a source of current (IIL, on the datasheet) because of the internal pull-up transistor. The output latch corresponding to a secondary function RxDC must be programmed to one for that function to operate. The secondary functions are assigned to the two pins of port 4 as follows: P4.0/TxDC: Transmitter output of CAN controller P4.1/RxDC: Receiver input of CAN controller. It can drive CMOS inputs without external pull-ups.
RESET	I/O	Reset: A high level on this pin during two machine cycles while the oscillator is running resets the device. An internal pull-down resistor to VSS permits power-on reset using only an external capacitor to VCC.
XTAL1	I	XTAL1: Input of the inverting oscillator amplifier and input of the internal clock generator circuits. To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. To operate above a frequency of 16 MHz, a duty cycle of 50% should be maintained.
XTAL2	0	XTAL2: Output from the inverting oscillator amplifier.

6


I/O Configurations


Each Port SFR operates via type-D latches, as illustrated in Figure 1 for Ports 3 and 4. A CPU 'write to latch' signal initiates transfer of internal bus data into the type-D latch. A CPU 'read latch' signal transfers the latched Q output onto the internal bus. Similarly, a 'read pin' signal transfers the logical level of the Port pin. Some Port data instructions activate the 'read latch' signal while others activate the 'read pin' signal. Latch instructions are referred to as Read-Modify-Write instructions. Each I/O line may be independently programmed as input or output.

Port Structure Figure 1 shows the structure of Ports, which have internal pull-ups. An external source can pull the pin low. Each Port pin can be configured either for general-purpose I/O or for its alternate input output function.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x = 1 to 4). To use a pin for general-purpose input, set the bit in the Px register. This turns off the output FET drive.

To configure a pin for its alternate function, set the bit in the Px register. When the latch is set, the 'alternate output function' signal controls the output level (See Figure 1). The operation of Ports is discussed further in 'Quasi-Bi-directional Port Operation' paragraph.

Note: 1. The internal pull-up can be disabled on P1 when analog function is selected.

Read-Modify-Write Instructions

Some instructions read the latch data rather than the pin data. The latch based instructions read the data, modify the data and then rewrite the latch. These are called 'Read-Modify-Write' instructions. Below is a complete list of these special instructions (See Table 1). When the destination operand is a Port or a Port bit, these instructions read the latch rather than the pin:

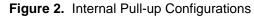
Table 1.	Read/Modify	/Write	Instructions
----------	-------------	--------	--------------

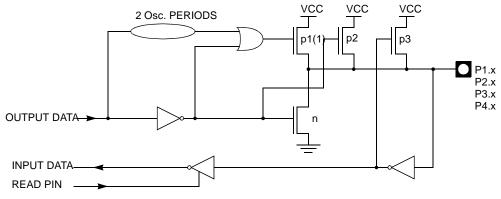
Instruction	Description	Example
ANL	Logical AND	ANL P1, A
ORL	Logical OR	ORL P2, A
XRL	Logical EX-OR	XRL P3, A
JBC	Jump if bit = 1 and clear bit	JBC P1.1, LABEL
CPL	Complement bit	CPL P3.0
INC	Increment	INC P2
DEC	Decrement	DEC P2
DJNZ	Decrement and jump if not zero	DJNZ P3, LABEL
MOV Px.y, C	Move carry bit to bit y of Port x	MOV P1.5, C
CLR Px.y	Clear bit y of Port x	CLR P2.4
SET Px.y	Set bit y of Port x	SET P3.3

It is not obvious that the last three instructions in this list are Read-Modify-Write instructions. These instructions read the port (all 8 bits), modify the specifically addressed bit and write the new byte back to the latch. These Read-Modify-Write instructions are directed to the latch rather than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic) levels at the pin. For example, a Port bit used to drive the base of an external bipolar transistor cannot rise above the transistor's base-emitter junction voltage (a value lower than VIL). With a logic one written to the bit, attempts by the CPU to read the Port at the pin are misinterpreted as logic zero. A read of the latch rather than the pins returns the correct logic one value.

Quasi Bi-directional Port Operation Port 1, Port 3 and Port 4 have fixed internal pull-ups and are referred to as 'quasi-bidirectional' Ports. When configured as an input, the pin impedance appears as logic one and sources current in response to an external logic zero condition. Resets write logic one to all Port latches. If logical zero is subsequently written to a Port latch, it can be returned to input conditions by a logic one written to the latch.

> Note: Port latch values change near the end of Read-Modify-Write insruction cycles. Output buffers (and therefore the pin state) are updated early in the instruction after Read-Modify-Write instruction cycle.


> Logical zero-to-one transitions in Port 1, Port 3 and Port 4 use an additional pull-up (p1) to aid this logic transition See Figure 2. This increases switch speed. This extra pull-up sources 100 times normal internal circuit current during 2 oscillator clock periods. The internal pull-ups are field-effect transistors rather than linear resistors. Pull-ups consist of three p-channel FET (pFET) devices. A pFET is on when the gate senses logic zero and off when the gate senses logic one. pFET #1 is turned on for two oscillator periods immediately after a zero-to-one transition in the Port latch. A logic one at the Port pin turns on pFET #3 (a weak pull-up) through the inverter. This inverter and pFET pair form a latch to drive logic one. pFET #2 is a very weak pull-up switched on whenever the


AT/T89C51CC02

8

associated nFET is switched off. This is traditional CMOS switch convention. Current strengths are 1/10 that of pFET #3.

Note: During Reset, pFET#1 is not avtivated. During Reset, only the weak pFET#3 pull up the pin.

SFR Mapping

Tables 3 through Table 11 show the Special Function Registers (SFRs) of the T89C51CC02.

Table 2. C51 Core SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ACC	E0h	Accumulator								
В	F0h	B Register								
PSW	D0h	Program Status Word	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81h	Stack Pointer								
DPL	82h	Data Pointer Low byte LSB of DPTR								
DPH		Data Pointer High byte MSB of DPTR								

Table 3. I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
P1	90h	Port 1								
P2	A0h	Port 2 (x2)								
P3	B0h	Port 3								
P4	C0h	Port 4 (x2)								

Table 4. Timers SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
TH0	8Ch	Timer/Counter 0 High byte								
TL0	8Ah	Timer/Counter 0 Low byte								
TH1	8Dh	Timer/Counter 1 High byte								
TL1	8Bh	Timer/Counter 1 Low byte								
TH2	CDh	Timer/Counter 2 High byte								
TL2	CCh	Timer/Counter 2 Low byte								
TCON	88h	Timer/Counter 0 and 1 control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	ITO
TMOD	89h	Timer/Counter 0 and 1 Modes	GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00

Table 4. Timers SFRs (Continued)

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
T2CON	C8h	Timer/Counter 2 control	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#
T2MOD	C9h	Timer/Counter 2 Mode							T2OE	DCEN
RCAP2H	CBh	Timer/Counter 2 Reload/Capture High byte								
RCAP2L	CAh	Timer/Counter 2 Reload/Capture Low byte								
WDTRST	A6h	WatchDog Timer Reset								
WDTPRG	A7h	WatchDog Timer Program						S2	S1	S0

Table 5. Serial I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SCON	98h	Serial Control	FE/SM0	SM1	SM2	REN	TB8	RB8	TI	RI
SBUF	99h	Serial Data Buffer								
SADEN	B9h	Slave Address Mask								
SADDR	A9h	Slave Address								

Table 6. PCA SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CCON	D8h	PCA Timer/Counter Control	CF	CR		CCF4	CCF3	CCF2	CCF1	CCF0
CMOD	D9h	PCA Timer/Counter Mode	CIDL					CPS1	CPS0	ECF
CL	E9h	PCA Timer/Counter Low byte								
сн	F9h	PCA Timer/Counter High byte								
CCAPM0 CCAPM1	DAh DBh	PCA Timer/Counter Mode 0 PCA Timer/Counter Mode 1		ECOM0 ECOM1	CAPP0 CAPP1	CAPN0 CAPN1	MAT0 MAT1	TOG0 TOG1	PWM0 PWM1	ECCF0 ECCF1
CCAP0H CCAP1H	FAh FBh	PCA Compare Capture Module 0 H PCA Compare Capture Module 1 H	CCAP0H7 CCAP1H7	CCAP0H6 CCAP1H6	CCAP0H5 CCAP1H5	CCAP0H4 CCAP1H4	CCAP0H3 CCAP1H3	CCAP0H2 CCAP1H2	CCAP0H1 CCAP1H1	CCAP0H0 CCAP1H0

Table 6. PCA SFRs (Continued)

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CCAP0L CCAP1L		PCA Compare Capture Module 0 L PCA Compare Capture Module 1 L	CCAP0L7 CCAP1L7	CCAP0L6 CCAP1L6	CCAP0L5 CCAP1L5	CCAP0L4 CCAP1L4	CCAP0L3 CCAP1L3	CCAP0L2 CCAP1L2	CCAP0L1 CCAP1L1	CCAP0L0 CCAP1L0

Table 7. Interrupt SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
IEN0	A8h	Interrupt Enable Control 0	EA	EC	ET2	ES	ET1	EX1	ET0	EX0
IEN1	E8h	Interrupt Enable Control 1						ETIM	EADC	ECAN
IPL0	B8h	Interrupt Priority Control Low 0		PPC	PT2	PS	PT1	PX1	PT0	PX0
IPH0	B7h	Interrupt Priority Control High 0		PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
IPL1	F8h	Interrupt Priority Control Low 1						POVRL	PADCL	PCANL
IPH1	F7h	Interrupt Priority Control High1						POVRH	PADCH	PCANH

Table 8. ADC SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ADCON	F3h	ADC Control		PSIDLE	ADEN	ADEOC	ADSST	SCH2	SCH1	SCH0
ADCF	F6h	ADC Configuration	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
ADCLK	F2h	ADC Clock				PRS4	PRS3	PRS2	PRS1	PRS0
ADDH	F5h	ADC Data High byte	ADAT9	ADAT8	ADAT7	ADAT6	ADAT5	ADAT4	ADAT3	ADAT2
ADDL	F4h	ADC Data Low byte							ADAT1	ADAT0

Table 9. CAN SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CANGCON	ABh	CAN General Control	ABRQ	OVRQ	TTC	SYNCTTC	AUT-BAUD	TEST	ENA	GRES
CANGSTA	AAh	CAN General Status		OVFG		TBSY	RBSY	ENFG	BOFF	ERRP
CANGIT	9Bh	CAN General Interrupt	CANIT		OVRTIM	OVRBUF	SERG	CERG	FERG	AERG
CANBT1	B4h	CAN bit Timing 1		BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	
CANBT2	B5h	CAN bit Timing 2		SJW1	SJW0		PRS2	PRS1	PRS0	
CANBT3	B6h	CAN bit Timing 3		PHS22	PHS21	PHS20	PHS12	PHS11	PHS10	SMP

Table 9. CAN SFRs (Continued)

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CANEN	CFh	CAN Enable Channel byte					ENCH3	ENCH2	ENCH1	ENCH0
CANGIE	C1h	CAN General Interrupt Enable			ENRX	ENTX	ENERCH	ENBUF	ENERG	
CANIE	C3h	CAN Interrupt Enable Channel byte					IECH3	IECH2	IECH1	IECH0
CANSIT	BBh	CAN Status Interrupt Channel byte					SIT3	SIT2	SIT1	SIT0
CANTCON	A1h	CAN Timer Control	TPRESC 7	TPRESC 6	TPRESC 5	TPRESC 4	TPRESC 3	TPRESC 2	TPRESC 1	TPRESC 0
CANTIMH	ADh	CAN Timer high	CANTIM 15	CANTIM 14	CANTIM 13	CANTIM 12	CANTIM 11	CANTIM 10	CANTIM 9	CANTIM 8
CANTIML	ACh	CAN Timer low	CANTIM 7	CANTIM 6	CANTIM 5	CANTIM 4	CANTIM 3	CANTIM 2	CANTIM 1	CANTIM 0
CANSTMPH	AFh	CAN Timer Stamp high	TIMSTMP 15	TIMSTMP 14	TIMSTMP 13	TIMSTMP 12	TIMSTMP 11	TIMSTMP 10	TIMSTMP 9	TIMSTMP 8
CANSTMPL	AEh	CAN Timer Stamp low	TIMSTMP7	TIMSTMP 6	TIMSTMP 5	TIMSTMP 4	TIMSTMP 3	TIMSTMP 2	TIMSTMP 1	TIMSTMP 0
CANTTCH	A5h	CAN Timer TTC high	TIMTTC 15	TIMTTC 14	TIMTTC 13	TIMTTC 12	TIMTTC 11	TIMTTC 10	TIMTTC 9	TIMTTC 8
CANTTCL	A4h	CAN Timer TTC low	TIMTTC 7	TIMTTC 6	TIMTTC 5	TIMTTC 4	TIMTTC 3	TIMTTC 2	TIMTTC 1	TIMTTC 0
CANTEC	9Ch	CAN Transmit Error Counter	TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0
CANREC	9Dh	CAN Receive Error Counter	REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
CANPAGE	B1h	CAN Page	-	-	CHNB1	CHNB0	AINC	INDX2	INDX1	INDX0
CANSTCH	B2h	CAN Status Channel	DLCW	ТХОК	RXOK	BERR	SERR	CERR	FERR	AERR
CANCONCH	B3h	CAN Control Channel	CONCH1	CONCH0	RPLV	IDE	DLC3	DLC2	DLC1	DLC0
CANMSG	A3h	CAN Message Data	MSG7	MSG6	MSG5	MSG4	MSG3	MSG2	MSG1	MSG0
CANIDT1	BCh	CAN Identifier Tag byte 1(Part A) CAN Identifier Tag byte 1(PartB)	IDT10 IDT28	IDT9 IDT27	IDT8 IDT26	IDT7 IDT25	IDT6 IDT24	IDT5 IDT23	IDT4 IDT22	IDT3 IDT21
CANIDT2	BDh	CAN Identifier Tag byte 2 (PartA) CAN Identifier Tag byte 2 (PartB)	IDT2 IDT20	IDT1 IDT19	IDT0 IDT18	- IDT17	- IDT16	- IDT15	- IDT14	- IDT13
CANIDT3	BEh	CAN Identifier Tag byte 3(PartA) CAN Identifier Tag byte 3(PartB)	- IDT12	- IDT11	- IDT10	- IDT9	- IDT8	- IDT7	- IDT6	- IDT5
CANIDT4	BFh	CAN Identifier Tag byte 4(PartA) CAN Identifier Tag byte 4(PartB)	- IDT4	- IDT3	- IDT2	- IDT1	- IDT0	RTRTAG	- RB1TAG	RB0TAG
CANIDM1	C4h	CAN Identifier Mask byte 1(PartA) CAN Identifier Mask byte 1(PartB)	IDMSK10 IDMSK28	IDMSK9 IDMSK27	IDMSK8 IDMSK26	IDMSK7 IDMSK25	IDMSK6 IDMSK24	IDMSK5 IDMSK23	IDMSK4 IDMSK22	IDMSK3 IDMSK21

Table 9. CAN SFRs (Continued)

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CANIDM2	C5h	CAN Identifier Mask byte 2(PartA)	IDMSK2	IDMSK1	IDMSK0	-	-	-	-	-
CANIDINZ	Con	CAN Identifier Mask byte 2(PartB)	IDMSK20	IDMSK19	IDMSK18	IDMSK17	IDMSK16	IDMSK15	IDMSK14	IDMSK13
CANIDM3	C6h	CAN Identifier Mask byte 3(PartA) CAN Identifier Mask byte 3(PartB)	- IDMSK12	- IDMSK11	- IDMSK10	- IDMSK9	IDMSK8	IDMSK7	- IDMSK6	- IDMSK5
CANIDM4	C7h	CAN Identifier Mask byte 4(PartA) CAN Identifier Mask byte 4(PartB)	- IDMSK4	- IDMSK3	- IDMSK2	- IDMSK1	- IDMSK0	RTRMSK	-	IDEMSK

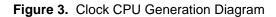
Table 10. Other SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	87h	Power Control	SMOD1	SMOD0		POF	GF1	GF0	PD	IDL
AUXR1	A2h	Auxiliary Register 1			ENBOOT		GF3	0		DPS
CKCON	8Fh	Clock Control	CANX2	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2
FCON	D1h	Flash Control	FPL3	FPL2	FPL1	FPL0	FPS	FMOD1	FMOD0	FBUSY
EECON	D2h	EEPROM Contol	EEPL3	EEPL2	EEPL1	EEPL0			EEE	EEBUSY

Table 11. SFR Mapping

	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	IPL1 xxxx x000	CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000					FFh
F0h	B 0000 0000		ADCLK xxx0 0000	ADCON x000 0000	ADDL 0000 0000	ADDH 0000 0000	ADCF 0000 0000	IPH1 xxxx x000	F7h
E8h	IEN1 xxxx x000	CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000					EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 0000 0000	CMOD 0xxx x000	CCAPM0 x000 0000	CCAPM1 x000 0000					DFh
D0h	PSW 0000 0000	FCON 0000 0000	EECON xxxx xx00						D7h
C8h	T2CON 0000 0000	T2MOD xxxx xx00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000		CANEN xxxx 0000	CFh
C0h	P4 xxxx xx11	CANGIE 1100 0000		CANIE 1111 0000	CANIDM1 xxxx xxxx	CANIDM2 xxxx xxxx	CANIDM3 xxxx xxxx	CANIDM4 xxxx xxxx	C7h
B8h	IPL0 x000 0000	SADEN 0000 0000		CANSIT xxxx 0000	CANIDT1 xxxx xxxx	CANIDT2 xxxx xxxx	CANIDT3 xxxx xxxx	CANIDT4 xxxx xxxx	BFh
B0h	P3 1111 1111	CANPAGE 1100 0000	CANSTCH xxxx xxxx	CANCONCH xxxx xxxx	CANBT1 xxxx xxxx	CANBT2 xxxx xxxx	CANBT3 xxxx xxxx	IPH0 x000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000	CANGSTA 1010 0000	CANGCON 0000 0000	CANTIML 0000 0000	CANTIMH 0000 0000	CANSTMPL xxxx xxxx	CANSTMPH xxxx xxxx	AFh
A0h	P2 xxxx xx11	CANTCON 0000 0000	AUXR1 ⁽²⁾ xxxx 00x0	CANMSG xxxx xxxx	CANTTCL 0000 0000	CANTTCH 0000 0000	WDTRST 1111 1111	WDTPRG xxxx x000	A7h
98h	SCON 0000 0000	SBUF 0000 0000		CANGIT 0x00 0000	CANTEC 0000 0000	CANREC 0000 0000			9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000		CKCON 0000 0000	8Fh
80h		SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00x1 0000	87h
L	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Reserved


Notes: 1. These registers are bit-addressable.

Sixteen addresses in the SFR space are both byte-addressable and bit-addressable. The bit-addressable SFRs are those whose address ends in 0 and 8. The bit addresses, in this area, are 0x80 through to 0xFF.

2. AUXR1 bit ENBOOT is initialized with the content of the BLJB bit inverted.

Clock	The T89C51CC02 core needs only 6 clock periods per machine cycle. This feature, called "X2", provides the following advantages:
	 Divides frequency crystals by 2 (cheaper crystals) while keeping the same CPU power.
	 Saves power consumption while keeping the same CPU power (oscillator power saving).
	 Saves power consumption by dividing dynamic operating frequency by 2 in operating and idle modes.
	 Increases CPU power by 2 while keeping the same crystal frequency.
	In order to keep the original C51 compatibility, a divider-by-2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by the software.
	An extra feature is available to start after Reset in the X2 Mode. This feature can be enabled by a bit X2B in the Hardware Security Byte. This bit is described in the section 'In-System Programming'.
Description	The X2 bit in the CKCON register (See Table 12) allows switching from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode).
	Setting this bit activates the X2 feature (X2 Mode) for the CPU Clock only (See Figure 3).
	The Timers 0, 1 and 2, Uart, PCA, watchdog or CAN switch in X2 Mode only if the corre- sponding bit is cleared in the CKCON register.
	The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on the XTAL1 input. In X2 Mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 3. shows the clock generation block diagram. The X2 bit is validated on the XTAL1 \div 2 rising edge to avoid glitches when switching from the X2 to the STD mode. Figure 4 shows the mode switching waveforms.

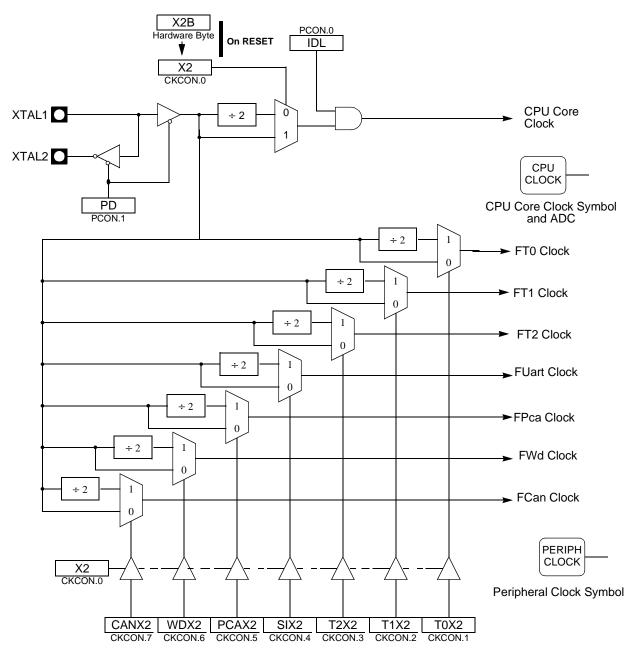
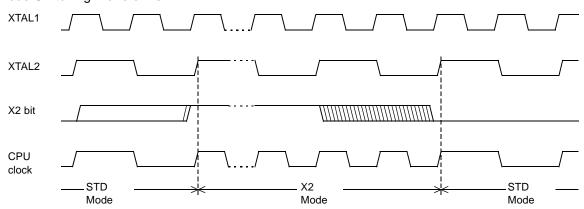



Figure 4. Mode Switching Waveforms⁽¹⁾

Note: 1. In order to prevent any incorrect operation while operating in the X2 Mode, users must be aware that all peripherals using the clock frequency as a time reference (UART, timers...) will have their time reference divided by 2. For example, a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. A UART with a 4800 baud rate will have a 9600 baud rate.

Register

Table 12.CKCON RegisterCKCON (S:8Fh)Clock Control Register

7	6	5	4	3	2	1	0	
CANX2	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2	
Bit Number	Bit Mnemonic	Description						
7	CANX2		ct 6 clock per	iods per perip ods per periph				
6	WDX2		ct 6 clock per	iods per perip ods per periph				
5	PCAX2	Clear to sele	ct 6 clock per	Array Clock ⁽¹ iods per peripl ods per periph	heral clock cy			
4	SIX2	Clear to sele	ct 6 clock per	MODE 0 and 2 iods per perip ods per periph	heral clock cy			
3	T2X2		ct 6 clock per	iods per perip ods per periph				
2	T1X2		ct 6 clock per	iods per perip ods per periph				
1	T0X2		ct 6 clock per	iods per perip ods per periph				
0	X2	CPU Clock Clear to select 12 clock periods per machine cycle (STD mode) for CPU and all the peripherals. Set to select 6 clock periods per machine cycle (X2 Mode) and to enable the individual peripherals 'X2' bits.						
Note: 1.	This contro		•	e CPU clock	bit X2 is set	: when X2 is	low, this	

Note: 1. This control bit is validated when the CPU clock bit X2 is set; when X2 is low, this bit has no effect.

Reset Value = 0000 0000b

		T		
Z1				7
				/(R

Power Management	Two power reduction modes are implemented in the A/T89C51CC02: the Idle mode and the Power-down mode. These modes are detailed in the following sections. In addition to these power reduction modes, the clocks of the core and peripherals can be dynamically divided by 2 using the X2 Mode detailed in Section "Clock"
	cally divided by 2 using the X2 Mode detailed in Section "Clock".

Reset Pin In order to start-up (cold reset) or to restart (warm reset) properly the microcontroller, a high level has to be applied on the RST pin. A bad level leads to a wrong initialisation of the internal registers like SFRs, PC, etc. and to unpredictable behavior of the microcontroller. A warm reset can be applied either directly on the RST pin or indirectly by an internal reset source such as a watchdog, PCA, timer, etc.

At Power-up (cold reset) Two conditions are required before enabling a CPU start-up:

- VDD must reach the specified VDD range,
- The level on xtal1 input must be outside the specification (VIH, VIL).

If one of these two conditions are not met, the microcontroller does not start correctly and can execute an instruction fetch from anywhere in the program space. An active level applied on the RST pin must be maintained until both of the above conditions are met. A reset is active when the level VIH1 is reached and when the pulse width covers the period of time where VDD and the oscillator are not stabilized. Two parameters have to be taken into account to determine the reset pulse width:

- VDD rise time (vddrst),
- Oscillator startup time (oscrst).

To determine the capacitor the highest value of these two parameters has to be chosen. The reset circuitry is shown in Figure 5.

Figure 5. Reset Circuitry

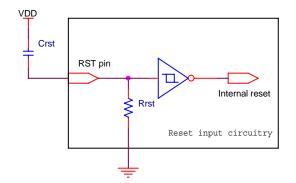


Table 13 and Table 14 give some typical examples for three values of VDD rise times, two values of oscillator start-up time and two pull-down resistor values.

Table 13. Minimum Reset Capacitor for a 50K Pull-down Resistor

oscrst/vddrst	1ms	10ms	100ms
5ms	820nF	1.2µF	12µF
20ms	2.7µF	3.9µF	12µF

²⁰ AT/T89C51CC02

oscrst/vddrst	1ms	10ms	100ms
5ms	2.7µF	4.7µF	47µF
20ms	10µF	15µF	47µF

Table 14. Minimum Reset Capacitor for a 15k Pull-down Resistor

Note: These values assume VDD starts from 0v to the nominal value. If the time between two on/off sequences is too fast, the power-supply decoupling capacitors may not be fully discharged, leading to a bad reset sequence.

During a Normal Operation (Warm Reset)

Reset pin must be maintained for at least 2 machine cycles (24 oscillator clock periods) to apply a reset sequence during normal operation. The number of clock periods is mode independent (X2 or X1).

Watchdog Reset

A 1K resistor must be added in series with the capacitor to allow the use of watchdog reset pulse output on the RST pin or when an external power-supply supervisor is used. Figure 6 shows the reset circuitry when a capacitor is used.

Figure 6. Reset Circuitry for a Watchdog Configuration

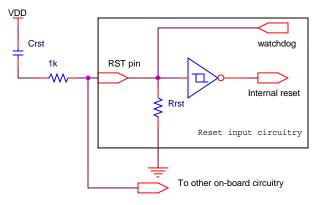
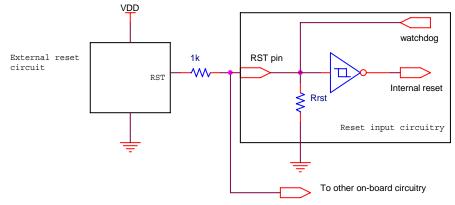
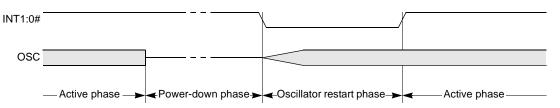



Figure 7 shows the reset circuitry when an external reset circuit is used.

Figure 7. Reset Circuitry Example Using an External Reset Circuit

R

Reset Recommendation to Prevent Flash Corruption	When a Flash program memory is embedded on-chip, it is strongly recommended to use an external reset chip (brown out device) to apply a reset (Figure 7). It prevents system malfunction during periods of insufficient power-supply voltage (power-supply failure, power supply switched off, etc.).				
ldle Mode	Idle mode is a power reduction mode that reduces the power consumption. In this mode, program execution halts. Idle mode freezes the clock to the CPU at known states while the peripherals continue to be clocked. The CPU status before entering Idle mode is preserved, i.e., the program counter and program status word register retain their data for the duration of Idle mode. The contents of the SFRs and RAM are also retained. The status of the Port pins during Idle mode is detailed in Table 15.				
Entering Idle Mode	To enter Idle mode, set the IDL bit in PCON register (See Table 16). The A/T89C51CC02 enters Idle mode upon execution of the instruction that sets IDL bit. The instruction that sets IDL bit is the last instruction executed.				
	Note: If IDL bit and PD bit are set simultaneously, the A/T89C51CC02 enters Power-down mode. Then it does not go in Idle mode when exiting Power-down mode.				
Exiting Idle Mode	There are two ways to exit Idle mode:				
	1. Generate an enabled interrupt.				
	Hardware clears IDL bit in PCON register which restores the clock to the CPU. Exe- cution resumes with the interrupt service routine. Upon completion of the interrupt service routine, program execution resumes with the instruction immediately follow- ing the instruction that activated Idle mode. The general purpose flags (GF1 and GF0 in PCON register) may be used to indicate whether an interrupt occurred dur- ing normal operation or during Idle mode. When Idle mode is exited by an interrupt, the interrupt service routine may examine GF1 and GF0.				
	2. Generate a reset.				
	A logic high on the RST pin clears IDL bit in PCON register directly and asynchro- nously. This restores the clock to the CPU. Program execution momentarily resumes with the instruction immediately following the instruction that activated the Idle mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the A/T89C51CC02 and vectors the CPU to address C:0000h.				
	 Notes: 1. During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the instruction that activated Idle mode should not write to a Port pin or to the external RAM. If Idle mode is invoked by ADC Idle, the ADC conversion completion will exit Idle. 				
Power-down Mode	The Power-down mode places the A/T89C51CC02 in a very low power state. Power- down mode stops the oscillator, freezes all clock at known states. The CPU status prior to entering Power-down mode is preserved, i.e., the program counter, program status word register retain their data for the duration of Power-down mode. In addition, the SFRs and RAM contents are preserved. The status of the Port pins during Power-down mode is detailed in Table 15.				
Entering Power-down Mode	To enter Power-down mode, set PD bit in PCON register. The A/T89C51CC02 enters the Power-down mode upon execution of the instruction that sets PD bit. The instruction that sets PD bit is the last instruction executed.				


Exiting Power-down Mode

Note: If V_{DD} was reduced during the Power-down mode, do not exit Power-down mode until V_{DD} is restored to the normal operating level.

There are two ways to exit the Power-down mode:

- 1. Generate an enabled external interrupt.
 - The A/T89C51CC02 provides capability to exit from Power-down using INT0#, INT1#.
 Hardware clears PD bit in PCON register which starts the oscillator and restores the clocks to the CPU and peripherals. Using INTx# input, execution resumes when the input is released (See Figure 8). Execution resumes with the interrupt service routine. Upon completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Power-down mode.
- Notes: 1. The external interrupt used to exit Power-down mode must be configured as level sensitive (INTO# and INT1#) and must be assigned the highest priority. In addition, the duration of the interrupt must be long enough to allow the oscillator to stabilize. The execution will only resume when the interrupt is deasserted.
 - 2. Exit from power-down by external interrupt does not affect the SFRs nor the internal RAM content.

Figure 8. Power-down Exit Waveform Using INT1:0#

- 2. Generate a reset.
 - A logic high on the RST pin clears PD bit in PCON register directly and asynchronously. This starts the oscillator and restores the clock to the CPU and peripherals. Program execution momentarily resumes with the instruction immediately following the instruction that activated Power-down mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the A/T89C51CC02 and vectors the CPU to address 0000h.
- Notes: 1. During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the instruction that activated the Power-down mode should not write to a Port pin or to the external RAM.
 - 2. Exit from power-down by reset redefines all the SFRs, but does not affect the internal RAM content.

Mode	Port 1	Port 2	Port 3	Port 4
Reset	High	High	High	High
Idle (internal code)	Data	Data	Data	Data
Idle (external code)	Data	Data	Data	Data
Power- Down(inter nal code)	Data	Data	Data	Data
Power- Down (external code)	Data	Data	Data	Data

Registers

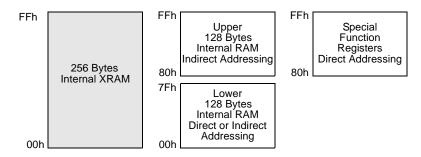
Table 16. PCON RegisterPCON (S:87h)Power Control Register

7	6	5	4	3	2	1	0	
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic	Description						
7	SMOD1	Serial port N Set to select		rate in mode 1	, 2 or 3.			
6	SMOD0			SCON register ON register.	r.			
5	-	Reserved The value re	ad from this t	oit is indetermi	nate. Do not se	et this bit.		
4	POF		ognize next re	eset type. _C rises from 0 t	o its nominal v	oltage. Can a	lso be set by	
3	GF1		iser for gener	al purpose usa irpose usage.	ige.			
2	GF0	Cleared by u	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.					
1	PD	Cleared by h	Power-down Mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.					
0	IDL	Idle Mode b Clear by har Set to enter	dware when i	nterrupt or res	et occurs.			

Reset Value = 00X1 0000b Not bit addressable

Data Memory

The T89C51CC02 provides data memory access in two different spaces:


The internal space mapped in three separate segments:

- The lower 128 Bytes RAM segment.
- The upper 128 Bytes RAM segment.
- The expanded 256 Bytes RAM segment (XRAM).

A fourth internal segment is available but dedicated to Special Function Registers, SFRs, (addresses 80h to FFh) accessible by direct addressing mode.

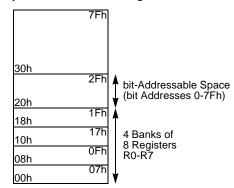
Figure 9 shows the internal data memory spaces organization.

Figure 9. Internal memory - RAM

Internal Space

Lower 128 Bytes RAM

The lower 128 Bytes of RAM (See Figure 10) are accessible from address 00h to 7Fh using direct or indirect addressing modes. The lowest 32 Bytes are grouped into 4 banks of 8 registers (R0 to R7). Two bits RS0 and RS1 in PSW register (See Table 18) select which bank is in use according to Table 17. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing, and can be used for context switching in interrupt service routines.


Table 17.	Register Bank Selection
-----------	-------------------------

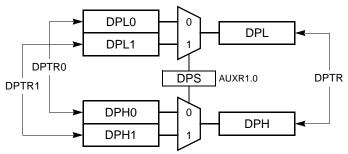
RS1	RS0	Description
0	0	Register bank 0 from 00h to 07h
0	1	Register bank 0 from 08h to 0Fh
1	0	Register bank 0 from 10h to 17h
1	1	Register bank 0 from 18h to 1Fh

The next 16 Bytes above the register banks form a block of bit-addressable memory space. The C51 instruction set includes a wide selection of singlebit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00h to 7Fh.

²⁶ AT/T89C51CC02

Figure 10. Lower 128 Bytes Internal RAM Organization

- Upper 128 Bytes RAM The upper 128 Bytes of RAM are accessible from address 80h to FFh using only indirect addressing mode.
- Expanded RAM The on-chip 256 Bytes of expanded RAM (XRAM) are accessible from address 0000h to 00FFh using indirect addressing mode through MOVX instructions. In this address range.
 - Note: Lower 128 Bytes RAM, Upper 128 Bytes RAM, and expanded RAM are made of volatile memory cells. This means that the RAM content is indeterminate after power-up and must then be initialized properly.



Dual Data Pointer

Description

The T89C51CC02 implements a second data pointer for speeding up code execution and reducing code size in case of intensive usage of external memory accesses. DPTR0 and DPTR1 are Seen by the CPU as DPTR and are accessed using the SFR addresses 83h and 84h that are the DPH and DPL addresses. The DPS bit in AUXR1 register (See Figure 19) is used to select whether DPTR is the data pointer 0 or the data pointer 1 (See Figure 11).

Figure 11. Dual Data Pointer Implementation

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare...) are well served by using one data pointer as a "source" pointer and the other one as a "destination" pointer. Hereafter is an example of block move implementation using the two pointers and coded in assembler. The latest C compiler takes also advantage of this feature by providing enhanced algorithm libraries.

The INC instruction is a short (2 Bytes) and fast (6 machine cycle) way to manipulate the DPS bit in the AUXR1 register. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is 0 or 1 on entry.

; ASCII block move using dual data pointers ; Modifies DPTR0, DPTR1, A and PSW ; Ends when encountering NULL character ; Note: DPS exits opposite to the entry state unless an extra INC AUXR1 is added AUXR1EQU0A2h move:movDPTR,#SOURCE ; address of SOURCE incluyD1

incAUXR1 ; switch data pointers movDPTR,#DEST ; address of DEST mv_loop:incAUXR1; switch data pointers movxA,@DPTR; get a byte from SOURCE incDPTR; increment SOURCE address incAUXR1; switch data pointers movx@DPTR,A; write the byte to DEST incDPTR; increment DEST address jnzmv_loop; check for NULL terminator end_move:

Registers

Table 18. PSW RegisterPSW (S:D0h)Program Status Word Register

7	6	5	4	3	2	1	0	
CY	AC	F0	RS1	RS0	ov	F1	Р	
Bit Number	Bit Mnemonic	Description						
7	CY	Carry Flag Carry out fro	Carry Flag Carry out from bit 1 of ALU operands.					
6	AC		Auxiliary Carry Flag Carry out from bit 1 of addition operands.					
5	F0	User Defina	ble Flag 0					
4 - 3	RS1:0	-	nk Select bit le 17 for bits c					
2	OV		Overflow Flag Overflow set by arithmetic operations.					
1	F1	User Defina	User Definable Flag 1					
0	Р		Parity bit Set when ACC contains an odd number of 1's. Cleared when ACC contains an even number of 1's.					

Reset Value = 0000 0000b

Table 19. AUXR1 RegisterAUXR1 (S:A2h)Auxiliary Control Register 1

7	6	5	4	3	2	1	0
-	-	ENBOOT	-	GF3	0	-	DPS
Bit Number	Bit Mnemonic	Description					
7 - 6	-	Reserved The value rea	ad from these	e bits is indeter	minate. Do no	ot set these bi	ts.
5	ENBOOT ⁽¹⁾	Set this bit to	Enable Boot Flash Set this bit to map the boot Flash between F800h -FFFFh Clear this bit to disable boot Flash.				
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
3	GF3	General Pur	pose Flag 3				
2	0		Always Zero This bit is stuck to logic 0 to allow INC AUXR1 instruction without affecting GF3 flag.				
1	-	Reserved fo	Reserved for Data Pointer Extension				
0	DPS		second dual	data pointer: D ata pointer: DF			

Reset Value = XXXX 00X0b

Note: 1. ENBOOT is initialized with the invert BLJB at reset. See In-System Programming section.

EEPROM Data Memory	The 2K bytes on-chip EEPROM memory block is located at addresses 0000h to 07FFh of the XRAM/XRAM memory space and is selected by setting control bits in the EECON register. A read in the EEPROM memory is done with a MOVX instruction.						
	A physical write in the EEPROM memory is done in two steps: write data in the column latches and transfer of all data latches into an EEPROM memory row (programming).						
	The number of data written on the page may vary from 1 up to 128 Bytes (the page size). When programming, only the data written in the column latch is programmed and a ninth bit is used to obtain this feature. This provides the capability to program the whole memory by Bytes, by page or by a number of Bytes in a page. Indeed, each ninth bit is set when the writing the corresponding byte in a row and all these ninth bits are reset after the writing of the complete EEPROM row.						
Write Data in the Column Latches	Data is written by byte to the column latches as for an external RAM memory. Out of the 11 address bits of the data pointer, the 4 MSBs are used for page selection (row) and 7 are used for byte selection. Between two EEPROM programming sessions, all the addresses in the column latches must stay on the same page, meaning that the 4 MSB must no be changed.						
	The following procedure is used to write to the column latches:						
	Save and disable interrupt						
	Set bit EEE of EECON register						
	Load DPTR with the address to write						
	Store A register with the data to be written						
	Execute a MOVX @DPTR, A						
	 If needed loop the three last instructions until the end of a 128 Bytes page 						
	Restore interrupt						
	Note: The last page address used when loading the column latch is the one used to select the page programming address.						
Programming	The EEPROM programming consists of the following actions:						
	• Write one or more Bytes of one page in the column latches. Normally, all Bytes must belong to the same page; if not, the last page address will be latched and the others discarded.						
	 Launch programming by writing the control sequence (50h followed by A0h) to the EECON register. 						
	• EEBUSY flag in EECON is then set by hardware to indicate that programming is in progress and that the EEPROM segment is not available for reading.						
	• The end of programming is indicated by a hardware clear of the EEBUSY flag.						
	Note: The sequence 5xh and Axh must be executed without instructions between then other- wise the programming is aborted.						
Read Data	 The following procedure is used to read the data stored in the EEPROM memory: Save and disable interrupt Set bit EEE of EECON register Load DPTR with the address to read Execute a MOVX A, @DPTR Restore interrupt 						

4126L-CAN-01/08

Examples

```
;* NAME: api rd eeprom byte
;* DPTR contain address to read.
;* Acc contain the reading value
;* NOTE: before execute this function, be sure the EEPROM is not BUSY
api rd eeprom byte:
; Save and clear EA
MOV EECON, #02h; map EEPROM in XRAM space
MOVX A, @DPTR
MOV EECON, #00h; unmap EEPROM
; Restore EA
ret
;* NAME: api_ld_eeprom_cl
;* DPTR contain address to load
;* Acc contain value to load
;* NOTE: in this example we load only 1 byte, but it is possible upto
;* 128 Bytes.
;* before execute this function, be sure the EEPROM is not BUSY
api_ld_eeprom_cl:
; Save and clear EA
MOV EECON, #02h ; map EEPROM in XRAM space
MOVX @DPTR, A
MOVEECON, #00h; unmap EEPROM
; Restore EA
ret
;* NAME: api wr eeprom
;* NOTE: before execute this function, be sure the EEPROM is not BUSY
api wr eeprom:
; Save and clear EA
MOV EECON, #050h
MOV EECON, #0A0h
; Restore EA
ret
```

Registers

Table 20.EECON RegisterEECON (S:0D2h)EEPROM Control Register

7	6	5	4	3	2	1	0	
EEPL3	EEPL2	EEPL1	EEPL0	-	-	EEE	EEBUSY	
Bit Number	Bit Mnemonic	Descriptio	n					
7 - 4	EEPL3-0	•	Programming Launch Command bits Vrite 5Xh followed by AXh to EEPL to launch the programming.					
3	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.					
2	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.					
1	EEE	Set to map latches)	Enable EEPROM Space bit Set to map the EEPROM space during MOVX instructions (Write in the column latches) Clear to map the XRAM space during MOVX.					
0	EEBUSY	Set by hard Cleared by	Programming Busy Flag Set by hardware when programming is in progress. Cleared by hardware when programming is done. Can not be set or cleared by software.					

Reset Value = XXXX XX00b Not bit addressable

	e e e e e e e e e e e e e e e e e e e			
Program/Code	ram/Code The T89C51CC02 implement 16K Bytes of on-chip program/code memory.			
Memory	The Flash memory increases EPROM and ROM functionality by in-circuit electrical erasure and programming. Thanks to the internal charge pump, the high voltage needed for programming or erasing Flash cells is generated on-chip using the standard V_{DD} voltage. Thus, the Flash memory can be programmed using only one voltage and allows In-System Programming (ISP). Hardware programming mode is also available using specific programming tool.			
	Figure 12. Program/Code Memory Organization			
	3FFFh			
	16K Bytes Internal Flash			
	0000h			
Flash Memory Architecture	 T89C51CC02 features two on-chip Flash memories: Flash memory FM0: containing 16K Bytes of program memory (user space) organized into 128 bytes pages, Flash memory FM1: 2K Bytes for boot loader and Application Programming Interfaces (API). 			
	The FM0 can be program by both parallel programming and Serial ISP whereas FM1 supports only parallel programming by programmers. The ISP mode is detailed in the 'In-System Programming' section.			
	All Read/Write access operations on Flash memory by user application are managed by a set of API described in the 'In-System Programming' section.			
Figure 13. Flash Memory Archite	ecture			

Hardware Security (1 byte) \longrightarrow Extra Row (128 Bytes) \longrightarrow Column Latches (128 Bytes) \longrightarrow	
3FFFh	
	16K Bytes
	Flash Memory User Space
	FM0
0000h	

2K Bytes Flash Memory Boot Space	FFFFh
FM1	F800h

FM1 mapped between F800h and FFFFh when bit ENBOOT is set in AUXR1 register

FM0 Memory Architecture	 The Flash memory is made up of 4 blocks (See Figure 13): 1. The memory array (user space) 16K Bytes 2. The Extra Row 3. The Hardware security bits 4. The column latch registers 	
User Space	This space is composed of a 16K Bytes Flash memory organized in 128 pages of 128 Bytes. It contains the user's application code.	
Extra Row (XRow)	This row is a part of FM0 and has a size of 128 Bytes. The extra row may contain infor- mation for boot loader usage.	
Hardware Security Byte	The Hardware security Byte space is a part of FM0 and has a size of 1 byte. The 4 MSB can be read/written by software, the 4 LSB can only be read by software and written by hardware in parallel mode.	
Column Latches	The column latches, also part of FM0, have a size of full page (128 Bytes). The column latches are the entrance buffers of the three previous memory locations (user array, XROW and Hardware security byte).	
Cross Flash Memory Access Description	The FM0 memory can be programmed as describe on Table 21. Programming FM0 from FM0 is impossible.	
	The FM1 memory can be program only by parallel programming.	
	Table 21 show all software Flash access allowed.	

		Action	FM0 (user Flash)	FM1 (boot Flash)	
from		Read	ok	-	
60 FM0 ith (user Flash)		Load column latch ok		-	
SXECL	Write	-	-		
Code e		Read	ok	ok	
Ŭ	ර FM1 (boot Flash)	Load column latch	ok	-	
		Write	ok	-	

 Table 21. Cross Flash Memory Access

Overview of FM0The CPU interfaces the Flash memory through the FCON register and AUXR1 register.OperationsThese registers are used to:

- Map the memory spaces in the adressable space
- Launch the programming of the memory spaces
- Get the status of the Flash memory (busy/not busy)

Mapping of the Memory Space By default, the user space is accessed by MOVC instruction for read only. The column latches space is made accessible by setting the FPS bit in FCON register. Writing is possible from 0000h to 3FFFh, address bits 6 to 0 are used to select an address within a page while bits 14 to 7 are used to select the programming address of the page. Setting FPS bit takes precedence on the EEE bit in EECON register.

The other memory spaces (user, extra row, hardware security) are made accessible in the code segment by programming bits FMOD0 and FMOD1 in FCON register in accordance with Table 22. A MOVC instruction is then used for reading these spaces.

	Table 22.	FM0 blocks Select bits
--	-----------	------------------------

FMOD1	FMOD0	FM0 Adressable Space	
0	0	User (0000h-3FFFh)	
0	1	Extra Row(FF80h-FFFFh)	
1	0	Hardware Security Byte (0000h)	
1	1	Reserved	

Launching Programming

FPL3:0 bits in FCON register are used to secure the launch of programming. A specific sequence must be written in these bits to unlock the write protection and to launch the programming. This sequence is 5xh followed by Axh. Table 23 summarizes the memory spaces to program according to FMOD1:0 bits.

Table 23. Programming Spaces

	Write to FCON				
	FPL3:0	FPS	FMOD1	FMOD0	Operation
	5	х	0	0	No action
User	A	x	0	0	Write the column latches in user space
	5	х	0	1	No action
Extra Row	А	A x 0	1	Write the column latches in extra row space	
Hardware	5	х	1	0	No action
Security Byte	А	х	1	0	Write the fuse bits space
Paparyad	5	х	1	1	No action
Reserved	А	х	1	1	No action

Note: The sequence 5xh and Axh must be executing without instructions between them otherwise the programming is aborted.

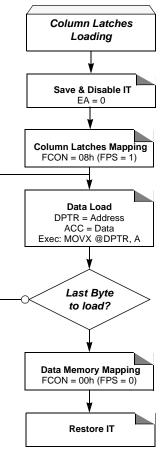
Interrupts that may occur during programming time must be disabled to avoid any spurious exit of the programming mode.

Status of the Flash Memory The bit FBUSY in FCON register is used to indicate the status of programming.

FBUSY is set when programming is in progress.

Selecting FM1 The bit ENBOOT in AUXR1 register is used to map FM1 from F800h to FFFFh.

Loading the Column Latches Any number of data from 1 byte to 128 Bytes can be loaded in the column latches. This provides the capability to program the whole memory by byte, by page or by any number of Bytes in a page.


When programming is launched, an automatic erase of the locations loaded in the column latches is first performed, then programming is effectively done. Thus no page or block erase is needed and only the loaded data are programmed in the corresponding page.

The following procedure is used to load the column latches and is summarized in Figure 14:

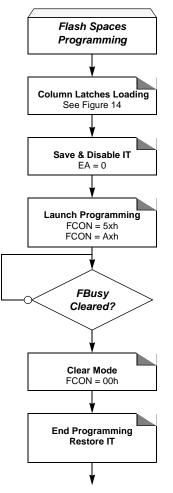
- Save then disable interrupt and map the column latch space by setting FPS bit.
- Load the DPTR with the address to load.
- Load Accumulator register with the data to load.
- Execute the MOVX @DPTR, A instruction.
- If needed loop the three last instructions until the page is completely loaded.
- unmap the column latch and Restore Interrupt

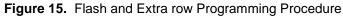
Figure 14. Column Latches Loading Procedure⁽¹⁾

Note: 1. The last page address used when loading the column latch is the one used to select the page programming address.

Programming the Flash Spaces

User


The following procedure is used to program the User space and is summarized in Figure 15:

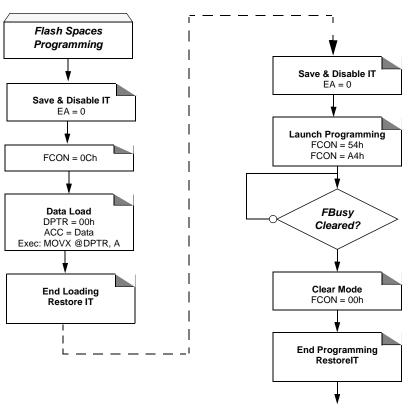

- Load up to one page of data in the column latches from address 0000h to 3FFFh.
- Save then disable the interrupts.
- Launch the programming by writing the data sequence 50h followed by A0h in FCON register. This step must be executed from FM1. The end of the programming indicated by the FBUSY flag cleared.
- Restore the interrupts.

•

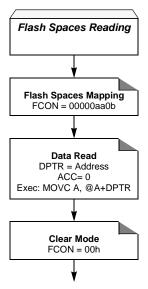
Extra Row

- The following procedure is used to program the Extra Row space and is summarized in Figure 15:
- Load data in the column latches from address FF80h to FFFFh.
- Save then disable the interrupts.
- Launch the programming by writing the data sequence 52h followed by A2h in FCON register. This step of the procedure must be executed from FM1. The end of the programming indicated by the FBUSY flag cleared.
- Restore the interrupts.

Hardware Security Byte


The following procedure is used to program the Hardware Security Byte space and is summarized in Figure 16:

- Set FPS and map Hardware byte (FCON = 0x0C)
- Save then disable the interrupts.
- Load DPTR at address 0000h.
- Load Accumulator register with the data to load.
- Execute the MOVX @DPTR, A instruction.
- Launch the programming by writing the data sequence 54h followed by A4h in FCON register. This step of the procedure must be executed from FM1. The end of the programming indicated by the FBusy flag cleared.
- Restore the interrupts



Reading the Flash Spaces

User	The following procedure is used to read the User space:
	 Read one byte in Accumulator by executing MOVC A,@A+DPTR with A+DPTR is the address of the code byte to read.
	Note: FCON must be cleared (00h) when not used.
Extra Row	The following procedure is used to read the Extra Row space and is summarized in Figure 17:
	 Map the Extra Row space by writing 02h in FCON register.
	 Read one byte in Accumulator by executing MOVC A,@A+DPTR with A= 0 & DPTR= FF80h to FFFFh.
	Clear FCON to unmap the Extra Row.
Hardware Security Byte	The following procedure is used to read the Hardware Security Byte and is sum- marized in Figure 17:
	 Map the Hardware Security space by writing 04h in FCON register.
	 Read the byte in Accumulator by executing MOVC A,@A+DPTR with A= 0 & DPTR= 0000h.
	Clear FCON to unmap the Hardware Security Byte.

Figure 17. Reading Procedure

Note: aa = 10 for the Hardware Security Byte.

Flash Protection from Parallel Programming

The three lock bits in Hardware Security Byte (See 'In-System Programming' section) are programmed according to Table 24 provide different level of protection for the onchip code and data located in FM0 and FM1.

The only way to write this bits are the parallel mode. They are set by default to level 3.

Program Lock bits				
Security Level	LB0	LB1	LB2	Protection Description
1	U	U	U	No program lock features enabled.
2	Ρ	U	U	Parallel programming of the Flash is disabled.
3	U	Ρ	U	Same as 2, also verify through parallel programming interface is disabled. This is the factory defaul programming.
4	U	U	Р	Same as 3

Table 24. Program Lock bit

Note: 1. Program Lock bits U: unprogrammed

P: programmed

WARNING: Security level 2, 3 and 4 should only be programmed after Flash and Core verification.

Preventing Flash Corruption See

See Section "Power Management".

Registers

Table 25.FCON RegisterFCON Register FCON (S:D1h)Flash Control Register

7	6	5	4	3	2	1	0
FPL3	FPL2	FPL1	FPL0	FPS	FMOD1	FMOD0	FBUSY
Bit Number	Bit Mnemonic	Description					
7 - 4	FPL3:0	•	lowed by AXh	ommand bits to launch the	e programming	g according to	FMOD1:0.
3	FPS	Flash Map Program Space Set to map the column latch space in the data memory space. Clear to re-map the data memory space.					
2 - 1	FMOD1:0	Flash Mode See Table 22	or Table 23.				
0	FBUSY	Clear by har		gramming is i rogramming is ftware.			

Reset Value = 0000 0000b

4126L-CAN-01/08

Operation Cross Memory Access

Space addressable in read and write are:

- RAM
- ERAM (Expanded RAM access by movx)
- EEPROM DATA
- FM0 (user flash)
- Hardware byte
- XROW
- Boot Flash
- Flash Column latch

The table below provides the different kind of memory which can be accessed from different code location.

Table 26. Cross Memory Access

	Action	RAM	ERAM	Boot FLASH	FM0	E ² Data	Hardware Byte	XROW
boot FLASH	Read			OK	OK	OK	OK	-
DOOL FLASH	Write			-	OK ⁽¹⁾	OK ⁽¹⁾	OK ⁽¹⁾	OK ⁽¹⁾
FM0	Read			ОК	OK	ОК	-OK	-
r=WIU	Write			-	OK (idle)	OK ⁽¹⁾	-	-OK

Note: 1. RWW: Read While Write

Sharing Instructions

Action	RAM	ERAM	EEPROM DATA	Boot FLASH	FM0	Hardware Byte	XROW
Read	MOV	MOVX	MOVX	MOVC	MOVC	MOVC	MOVC
Write	MOV	MOVX	MOVX	-	by cl	by cl	by cl

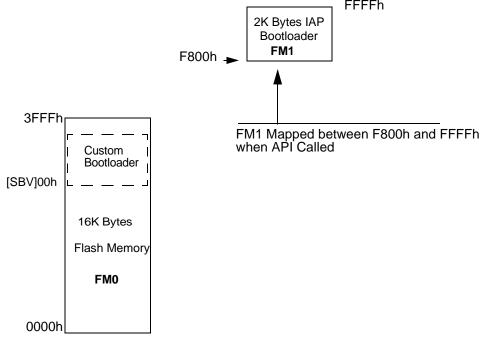
Note: by cl : using Column Latch

Table 28. Read MOVX A, @DPTR

EEE bit in EECON Register	FPS in FCON Register	ENBOOT	ERAM	EEPROM DATA	Flash Column Latch
0	0	Х	ОК		
0	1	Х	ОК		
1	0	Х		ОК	
1	1	Х	ОК		

Table 29. Write MOVX @DPTR,A

EEE bit in EECON Register	FPS bit in FCON Register	ENBOOT	ERAM	EEPROM Data	Flash Column Latch
0	0	х	ОК		
0	1	х			ОК
1	0	х		ОК	
1	1	Х			ОК


Table 30. Read MOVC A, @DPTR

	FCON Register		ter						Hardware
Code Execution	FMOD1	FMOD0	FPS	ENBOOT	DPTR	FM1	FM0	XROW	Byte
				0	0000h to 3FFFh		ОК		
	0	0	Х	1	0000h to 3FFFh		ОК		
					F800h to FFFFh	[Do not use this configuration		
From FM0	0	1	х	x	0000 to 007Fh See ⁽¹⁾			ОК	
	1	0	Х	х	х				ОК
				0	000h to 3FFFh		ОК		
	1	1	х	1	0000h to 3FFFh		ОК		
					F800h to FFFFh	Do not use this configuration			
				1	0000h to 3FFF		ОК		
			0		F800h to FFFFh	OK			
	0	0		0	х		NA	4	
			1	1	х		ОК		
			I	0	Х		NA	4	
From FM1 (ENBOOT =1	0	1	х	1	0000h to 007h			ОК	
	Ū	I	Х	0	See ⁽²⁾		NA	A	
	1 0	х	1	Х				ОК	
		U	~	0	~		NA	4	
	1	1	х	1	000h to 3FFFh		ОК		
	1		Λ	0			NA	4	

1. For DPTR higher than 007Fh only lowest 7 bits are decoded, thus the behavior is the same as for addresses from 0000h to 007Fh

2. For DPTR higher than 007Fh only lowest 7 bits are decoded, thus the behavior is the same as for addresses from 0000h to 007Fh

In-System Programming (ISP)	 With the implementation of the User Space (FM0) and the Boot Space (FM1) in Flash technology the T89C51CC02 allows the system engineer the development of applications with a very high level of flexibility. This flexibility is based on the possibility to alter the customer program at any stages of a product's life: Before mounting the chip on the PCB, FM0 flash can be programmed with the application code. FM1 is always preprogrammed by Atmel with a bootloader (chip can be ordered with CAN bootloader or UART bootloader).⁽¹⁾ Once the chip is mounted on the PCB, it can be programmed by serial mode via the CAN bus or UART. Note: 1. The user can also program his own bootloader in FM1.
	This ISP allows code modification over the total lifetime of the product.
	Besides the default Bootloaders Atmel provide customers all the needed Application- Programming-Interfaces (API) which are needed for the ISP. The API are located in the Boot memory.
	This allow the customer to have a full use of the 16-Kbyte user memory.
Flash Programming and Erasure	 There are three methods for programming the Flash memory: The Atmel bootloader located in FM1 is activated by the application. Low level API routines (located in FM1)will be used to program FM0. The interface used for serial downloading to FM0 is the UART or the CAN. API can be called also by user's bootloader located in FM0 at [SBV]00h. A further method exist in activating the Atmel boot loader by hardware activation. See the Section "Hardware Security Byte". The FM0 can be programmed also by the parallel mode using a programmer. Figure 18. Flash Memory Mapping

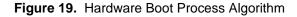
Boot Process

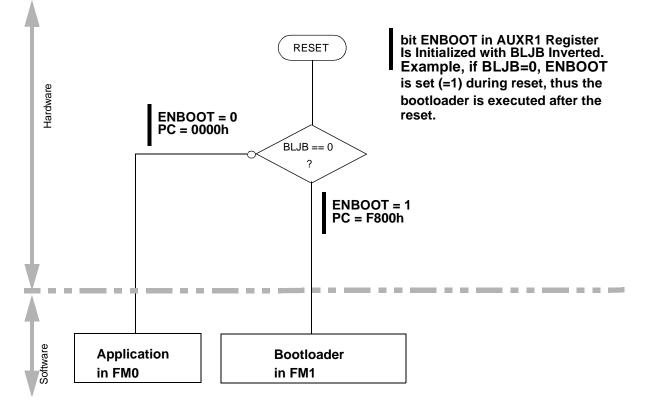
Software Boot Process Many algorithms can be used for the software boot process. Below are descriptions of Example the different flags and Bytes.

Boot Loader Jump bit (BLJB):

- This bit indicates if on RESET the user wants to jump to this application at address @0000h on FM0 or execute the boot loader at address @F800h on FM1.

- BLJB = 0 (i.e. bootloader FM1 executed after a reset) is the default Atmel factory programming.


-To read or modify this bit, the APIs are used.


Boot Vector Address (SBV):

- This byte contains the MSB of the user boot loader address in FM0.
- The default value of SBV is FCh (no user boot loader in FM0).
- To read or modify this byte, the APIs are used.

Extra Byte (EB) & Boot Status Byte (BSB):

- These Bytes are reserved for customer use.
- To read or modify these Bytes, the APIs are used.

Application-Programming-Interface

Several Application Program Interface (API) calls are available for use by an application program to permit selective erasing and programming of Flash pages. All calls are made by functions.

All these APIs are described in detail in the following documents on the Atmel web site.

- Datasheet Bootloader CAN T89C51CC02.
- Datasheet Bootloader UART T89C51CC02.

XROW Bytes The EXTRA ROW (XROW) includes 128 bytes. Some of these bytes are used for specific purpose in conjonction with the bootloader.

Description	Default Value	Address
Copy of the Manufacturer Code	58h	30h
Copy of the Device ID#1: Family code	D7h	31h
Copy of the Device ID#2: Memories size and type	BBh	60h
Copy of the Device ID#3: Name and Revision	FFh	61h

Hardware Conditions It is possible to force the controller to execute the bootloader after a Reset with hardware conditions.

During the first programming, the user can define a configuration on Port1 that will be recognized by the chip as the hardware conditions during a Reset. If this condition is met, the chip will start executing the bootloader at the end of the Reset.

See a detailed description in the applicable Document.

- Datasheet Bootloader CAN T89C51CC02.
- Datasheet Bootloader UART T89C51CC02.

Hardware Security Byte

 Table 32.
 Hardware Security byte

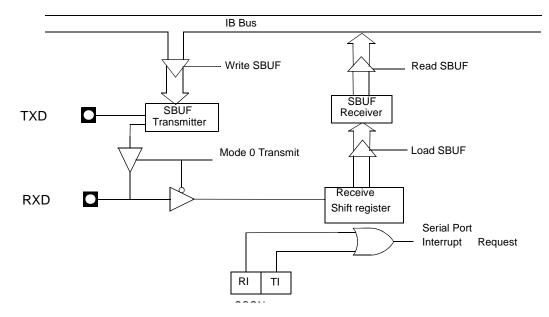
7	6	5	4	3	2	1	0		
X2B	BLJB	-	-	-	LB2	LB1	LB0		
Bit Number	Bit Mnemonic	Description	escription						
7	X2B		2 bit Set this bit to start in standard mode Clear this bit to start in X2 Mode.						
6	BLJB	- 1: To start the	Boot Loader Jump bit 1: To start the user's application on next RESET (@0000h) located in FM0, 0: To start the boot loader(@F800h) located in FM1.						
5 - 3	-	Reserved The value rea	Reserved The value read from these bits are indeterminate.						
2 - 0	LB2:0	Lock bits (se	ee Table 22)						

After erasing the chip in parallel mode, the default value is : FFh

The erasing in ISP mode (from bootloader) does not modify this byte.

Notes: 1. Only the 4 MSB bits can be accessed by software.

2. The 4 LSB bits can only be accessed by parallel mode.


Serial I/O Port

The T89C51CC02 I/O serial port is compatible with the I/O serial port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as a Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

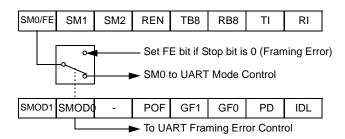
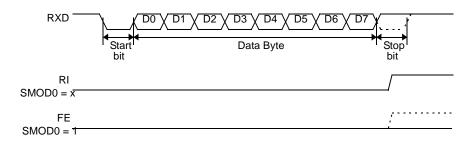

- Framing error detection
- Automatic address recognition

Figure 20. Serial I/O Port Block Diagram

Framing Error Detection Framing bit error detection is provided for the three asynchronous modes. To enable the framing bit error detection feature, set SMOD0 bit in PCON register.

Figure 21. Framing Error Block Diagram


When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register bit is set.

The software may examine the FE bit after each reception to check for data errors. Once set, only software or a reset clears the FE bit. Subsequently received frames with valid stop bits cannot clear the FE bit. When the FE feature is enabled, RI rises on the stop bit instead of the last data bit (See Figure 22 and Figure 23).

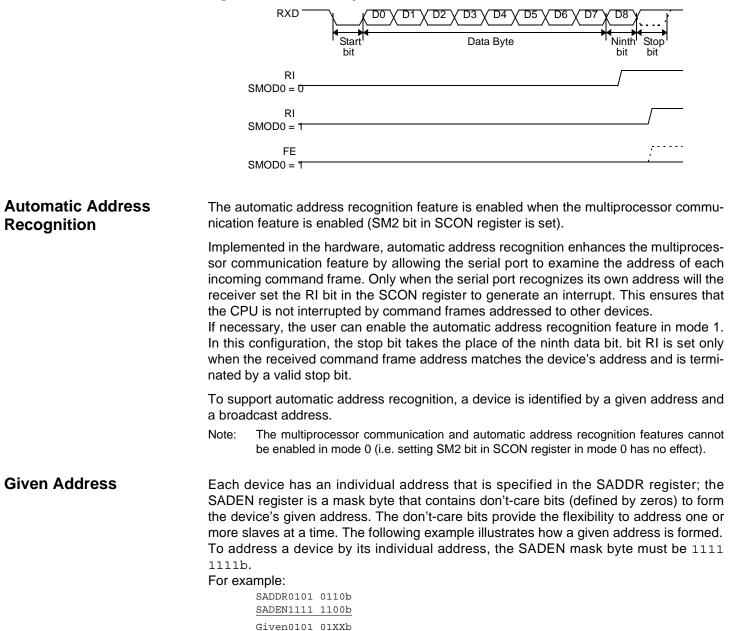


Figure 22. UART Timing in Mode 1

⁵² AT/T89C51CC02

Here is an example of how to use given addresses to address different slaves:

Slave A:SADDR1111 0001b
SADEN1111 1010b
Given1111 0X0Xb
Slave B:SADDR1111 0011b SADEN1111 1001b
Given1111 0XX1b
Slave C:SADDR1111 0011b SADEN1111 1101b
Given1111 00X1b

The SADEN byte is selected so that each slave may be addressed separately.

For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b).

For slave A, bit 1 is a 0; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves A and B, but not slave C, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b).

To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

Broadcast Address A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.:

SADDR 0101 0110b SADEN 1111 1100b SADDR OR SADEN1111 111Xb

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

```
Slave A:SADDR1111 0001b

<u>SADEN1111 1010b</u>

Given1111 1X11b,

Slave B:SADDR1111 0011b

<u>SADEN1111 1001b</u>

Given1111 1X11B,

Slave C:SADDR=1111 0010b

<u>SADEN1111 1101b</u>

Given1111 1111b
```

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

Registers

Table 33. SCON Register

SCON (S:98h) Serial Control Register

7	6	5	4	3	2	1	0		
FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI		
Bit Number	Bit Mnemonic	Description							
7	FE	Clear to rese		0 = 1) te, not cleared invalid stop bi		op bit.			
	SM0	•	Iode bit 0 (S I for serial por	MOD0 = 0) t mode select	ion.				
6	SM1	Serial port N SM0 SM1 0 0 0 1 1 0 1 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
5	SM2	Clear to disa	ble multiproce	ultiprocessor essor commun sor communica	ication feature	э.			
4	REN		nable bit ble serial rece serial recept						
3	TB8	Clear to trans	bit 8/Ninth b smit a logic 0 nit a logic 1 in		in Modes 2 a	and 3			
2	RB8	Cleared by h	Receiver bit 8/Ninth bit Received in Modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1.						
1	ті	Set by hardw	nowledge inte	d of the 8th bit	time in mode	0 or at the be	ginning of the		
0	RI	Set by hardw	nowledge inte	d of the 8th bit	time in mode	0, See Figur	e 22. and		

Reset Value = 0000 0000b bit addressable

Table 34.SADEN RegisterSADEN (S:B9h)Slave Address Mask Register

7	6	5	4	3	2	1	0
Bit Number	Bit Mnemonic	Description					
7 - 0		Mask Data f	or Slave Indi	vidual Addre	ss		

Reset Value = 0000 0000b Not bit addressable

Table 35.SADDR RegisterSADDR (S:A9h)Slave Address Register

7	6	5	4	3	2	1	0
Bit Number	Bit Mnemonic	Description					
7 - 0		Slave Indivi	dual Address	5			

Reset Value = 0000 0000b Not bit addressable

Table 36. SBUF Register SBUF (S:99h)

Serial Data Buffer

7	6	5	4	3	2	1	0
Bit Number	Bit Mnemonic	Description					
7 - 0		Data sent/re	ceived by Se	erial I/O Port			

Reset Value = 0000 0000b Not bit addressable

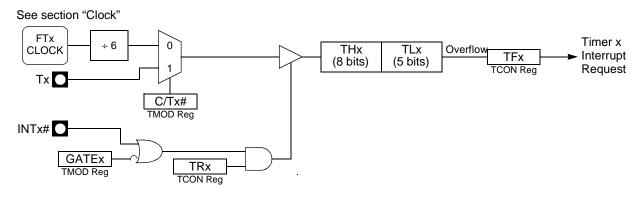
Table 37. PCON RegisterPCON (S:87h)Power Control Register

7	6	5	4	3	2	1	0	
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic	Description						
7	SMOD1	Serial port N Set to select		rate in mode 1	, 2 or 3.			
6	SMOD0			SCON register ON register.	r.			
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	POF	Clear to reco	Power-off Flag Clear to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software.					
3	GF1			al purpose usa rpose usage.	ige.			
2	GF0	Cleared by u	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.					
1	PD	Cleared by h	Power-down Mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.					
0	IDL	Idle Mode b Clear by hard Set to enter i	dware when ir	nterrupt or res	et occurs.			

Reset Value = 00X1 0000b Not bit addressable

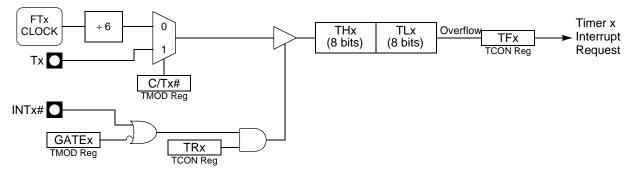
Timers/Counters	The T89C51CC02 implements two general-purpose, 16-bit Timers/Counters. Such are identified as Timer 0 and Timer 1, and can be independently configured to operate in a variety of modes as a Timer or an event Counter. When operating as a Timer, the Timer/Counter runs for a programmed length of time, then issues an interrupt request. When operating as a Counter, the Timer/Counter counts negative transitions on an external pin. After a preset number of counts, the Counter issues an interrupt request. The various operating modes of each Timer/Counter are described in the following sections.
Timer/Counter Operations	A basic operation is Timer registers THx and TLx ($x = 0, 1$) connected in cascade to form a 16-bit Timer. Setting the run control bit (TRx) in TCON register (See Figure 38) turns the Timer on by allowing the selected input to increment TLx. When TLx overflows it increments THx; when THx overflows it sets the Timer overflow flag (TFx) in TCON register. Setting the TRx does not clear the THx and TLx Timer registers. Timer registers can be accessed to obtain the current count or to enter preset values. They can be read at any time but TRx bit must be cleared to preset their values, otherwise the behavior of the Timer/Counter is unpredictable.
	The C/Tx# control bit selects Timer operation or Counter operation by selecting the divided-down peripheral clock or external pin Tx as the source for the counted signal. TRx bit must be cleared when changing the mode of operation, otherwise the behavior of the Timer/Counter is unpredictable. For Timer operation (C/Tx# = 0), the Timer register counts the divided-down peripheral clock. The Timer register is incremented once every peripheral cycle (6 peripheral clock periods). The Timer clock rate is $f_{PER}/6$, i.e. $f_{OSC}/12$ in standard mode or $f_{OSC}/6$ in X2 Mode.
	For Counter operation (C/Tx# = 1), the Timer register counts the negative transitions on the Tx external input pin. The external input is sampled every peripheral cycles. When the sample is high in one cycle and low in the next one, the Counter is incremented. Since it takes 2 cycles (12 peripheral clock periods) to recognize a negative transition, the maximum count rate is $f_{PER}/12$, i.e. $f_{OSC}/24$ in standard mode or $f_{OSC}/12$ in X2 Mode. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full peripheral cycle.
Timer 0	Timer 0 functions as either a Timer or event Counter in four modes of operation. Figure 24 through Figure 27 show the logical configuration of each mode.
	Timer 0 is controlled by the four lower bits of TMOD register (See Figure 39) and bits 0, 1, 4 and 5 of TCON register (See Figure 38). TMOD register selects the method of Timer gating (GATE0), Timer or Counter operation (T/C0#) and mode of operation (M10 and M00). TCON register provides Timer 0 control functions: overflow flag (TF0), run control bit (TR0), interrupt flag (IE0) and interrupt type control bit (IT0). For normal Timer operation (GATE0 = 0), setting TR0 allows TL0 to be incremented by the selected input. Setting GATE0 and TR0 allows external pin INT0# to control Timer operation.
	Timer 0 overflow (count rolls over from all 1s to all 0s) sets TF0 flag generating an inter- rupt request.

It is important to stop Timer/Counter before changing mode.



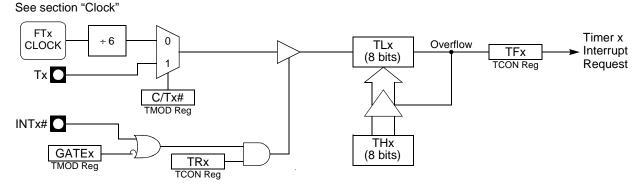
Mode 0 (13-bit Timer)

Mode 0 configures Timer 0 as an 13-bit Timer which is set up as an 8-bit Timer (TH0 register) with a modulo 32 prescaler implemented with the lower five bits of TL0 register (See Figure 24). The upper three bits of TL0 register are indeterminate and should be ignored. Prescaler overflow increments TH0 register.


Figure 24. Timer/Counter x (x= 0 or 1) in Mode 0

Mode 1 (16-bit Timer)

Mode 1 configures Timer 0 as a 16-bit Timer with TH0 and TL0 registers connected in cascade (See Figure 25). The selected input increments TL0 register.


Figure 25. Timer/Counter x (x= 0 or 1) in Mode 1 See section "Clock"

Mode 2 (8-bit Timer with Auto-Reload) Mode 2 configures Timer 0 as an 8-bit Timer (TL0 register) that automatically reloads from TH0 register (See Figure 26). TL0 overflow sets TF0 flag in TCON register and reloads TL0 with the contents of TH0, which is preset by software. When the interrupt request is serviced, hardware clears TF0. The reload leaves TH0 unchanged. The next

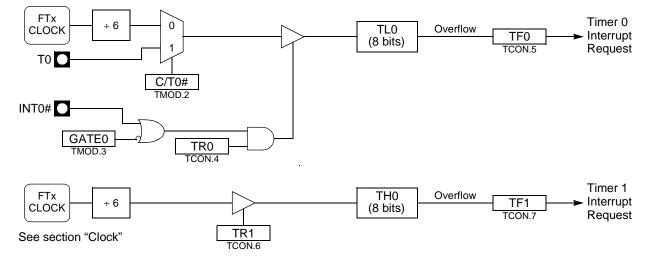

reload value may be changed at any time by writing it to TH0 register.

Figure 26. Timer/Counter x (x= 0 or 1) in Mode 2

Mode 3 (Two 8-bit Timers) Mode 3 configures Timer 0 such that registers TL0 and TH0 operate as separate 8-bit Timers (See Figure 27). This mode is provided for applications requiring an additional 8-bit Timer or Counter. TL0 uses the Timer 0 control bits C/T0# and GATE0 in TMOD register, and TR0 and TF0 in TCON register in the normal manner. TH0 is locked into a Timer function (counting F_{PER} /6) and takes over use of the Timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of Timer 1 is restricted when Timer 0 is in mode 3.

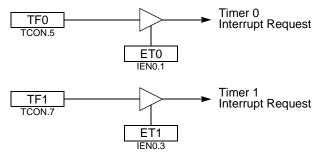
Figure 27. Timer/Counter 0 in Mode 3: Two 8-bit Counters

Timer 1

Timer 1 is identical to Timer 0 excepted for Mode 3 which is a hold-count mode. Following comments help to understand the differences:

- Timer 1 functions as either a Timer or event Counter in three modes of operation. Figure 24 to Figure 26 show the logical configuration for modes 0, 1, and 2. Timer 1's mode 3 is a hold-count mode.
- Timer 1 is controlled by the four high-order bits of TMOD register (See Figure 39) and bits 2, 3, 6 and 7 of TCON register (See Figure 38). TMOD register selects the method of Timer gating (GATE1), Timer or Counter operation (C/T1#) and mode of operation (M11 and M01). TCON register provides Timer 1 control functions: overflow flag (TF1), run control bit (TR1), interrupt flag (IE1) and interrupt type control bit (IT1).
- Timer 1 can serve as the Baud Rate Generator for the Serial Port. Mode 2 is best suited for this purpose.

- For normal Timer operation (GATE1= 0), setting TR1 allows TL1 to be incremented by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control Timer operation.
- Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag generating an interrupt request.
- When Timer 0 is in mode 3, it uses Timer 1's overflow flag (TF1) and run control bit (TR1). For this situation, use Timer 1 only for applications that do not require an interrupt (such as a Baud Rate Generator for the Serial Port) and switch Timer 1 in and out of mode 3 to turn it off and on.
- It is important to stop Timer/Counter before changing mode.
- Mode 0 (13-bit Timer)Mode 0 configures Timer 1 as a 13-bit Timer, which is set up as an 8-bit Timer (TH1 register)ister) with a modulo-32 prescaler implemented with the lower 5 bits of the TL1 register(See Figure 24). The upper 3 bits of TL1 register are ignored. Prescaler overflow increments TH1 register.


Mode 1 (16-bit Timer)Mode 1 configures Timer 1 as a 16-bit Timer with TH1 and TL1 registers connected in
cascade (See Figure 25). The selected input increments TL1 register.

Mode 2 (8-bit Timer with Auto-
Reload)Mode 2 configures Timer 1 as an 8-bit Timer (TL1 register) with automatic reload from
TH1 register on overflow (See Figure 26). TL1 overflow sets TF1 flag in TCON register
and reloads TL1 with the contents of TH1, which is preset by software. The reload
leaves TH1 unchanged.

Mode 3 (Halt)Placing Timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt
Timer 1 when TR1 run control bit is not available i.e. when Timer 0 is in mode 3.

Interrupt Each Timer handles one interrupt source that is the timer overflow flag TF0 or TF1. This flag is set every time an overflow occurs. Flags are cleared when vectoring to the Timer interrupt routine. Interrupts are enabled by setting ETx bit in IEN0 register. This assumes interrupts are globally enabled by setting EA bit in IEN0 register.

Figure 28. Timer Interrupt System

Registers

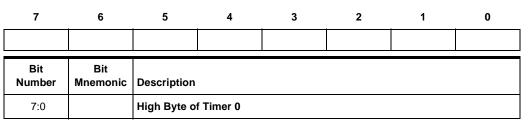
Table 38.TCON RegisterTCON (S:88h)Timer/Counter Control Register

7	6	5	4	3	2	1	0	
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
Bit Number	Bit Mnemonic	Description						
7	TF1		ardware whe	n processor ve /Counter overl			overflows.	
6	TR1		Control bit off Timer/Cou Timer/Coun					
5	TF0	Cleared by h	Timer 0 Overflow Flag Cleared by hardware when processor vectors to interrupt routine. Set by hardware on Timer/Counter overflow, when Timer 0 register overflows.					
4	TR0		Control bit off Timer/Coun Timer/Coun					
3	IE1		ardware whe	n interrupt is p ernal interrupt		0 00	See IT1).	
2	IT1	Clear to sele	Interrupt 1 Type Control bit Clear to select low level active (level triggered) for external interrupt 1 (INT1#). Set to select falling edge active (edge triggered) for external interrupt 1.					
1	IE0	Cleared by h	Interrupt 0 Edge Flag Cleared by hardware when interrupt is processed if edge-triggered (See IT0). Set by hardware when external interrupt is detected on INT0# pin.					
0	ITO	Clear to sele		bit ctive (level trig active (edge tri	o ,		`` '	

Reset Value = 0000 0000b

Table 39. TMOD RegisterTMOD (S:89h)Timer/Counter Mode Control Register

7	6	5	4	3	2	1	0
GATE1	C/T1#	M11	M01	GATE0	С/Т0#	M10	M00


Bit Number	Bit Mnemonic	Description
7	GATE1	Timer 1 Gating Control bit Clear to enable Timer 1 whenever TR1 bit is set. Set to enable Timer 1 only while INT1# pin is high and TR1 bit is set.
6	C/T1#	Timer 1 Counter/Timer Select bit Clear for Timer operation: Timer 1 counts the divided-down system clock. Set for Counter operation: Timer 1 counts negative transitions on external pin T1.
5	M11	Timer 1 Mode Select bits
4	M01	M11 M01 Operating mode 0 Mode 0: 8-bit Timer/Counter (TH1) with 5bit prescaler (TL1). 0 1 Mode 1: 16-bit Timer/Counter. 1 1 Mode 3: Timer 1 halted. Retains count. 1 0 Mode 2: 8-bit auto-reload Timer/Counter (TL1). ⁽¹⁾
3	GATE0	Timer 0 Gating Control bit Clear to enable Timer 0 whenever TR0 bit is set. Set to enable Timer/Counter 0 only while INT0# pin is high and TR0 bit is set.
2	C/T0#	Timer 0 Counter/Timer Select bit Clear for Timer operation: Timer 0 counts the divided-down system clock. Set for Counter operation: Timer 0 counts negative transitions on external pin T0.
1	M10	Timer 0 Mode Select bit M10 M00 Operating mode 0 0 Mode 0: 8-bit Timer/Counter (TH0) with 5bit prescaler (TL0).
0	M00	 1 Mode 1: 16-bit Timer/Counter. 1 0 Mode 2: 8-bit auto-reload Timer/Counter (TL0).⁽²⁾ 1 1 Mode 3: TL0 is an 8-bit Timer/Counter. TH0 is an 8-bit Timer using Timer 1's TR0 and TF0 bits.

Reset Value = 0000 0000b

Notes: 1. Reloaded from TH1 at overflow.

2. Reloaded from TH0 at overflow.

Table 40. TH0 RegisterTH0 (S:8Ch)Timer 0 High Byte Register

Reset Value = 0000 0000b

Table 41.TL0 RegisterTL0 (S:8Ah)Timer 0 Low Byte Register

7	6	5	4	3	2	1	0
Bit Number	Bit Mnemonic	Description					
7:0		Low Byte of	Timer 0				

Reset Value = 0000 0000b

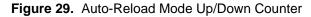
Table 42. TH1 RegisterTH1 (S:8Dh)Timer 1 High Byte Register

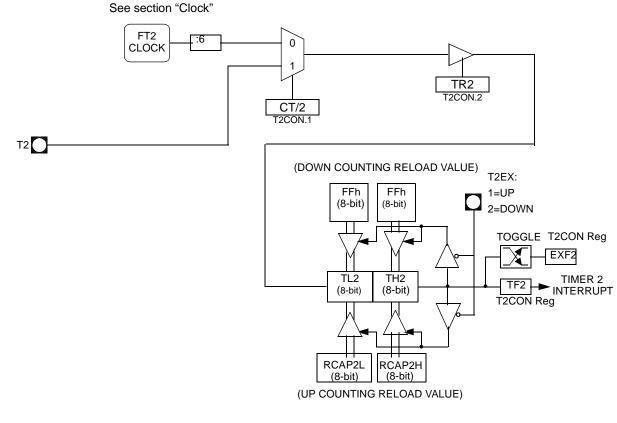
7	6	5	4	3	2	1	0
Bit Number	Bit Mnemonic	Description					
7:0		High Byte o	f Timer 1				

Reset Value = 0000 0000b

Table 43. TL1 RegisterTL1 (S:8Bh)Timer 1 Low Byte Register

7	6	5	4	3	2	1	0
Bit Number	Bit Mnemonic	Description					
7:0		Low Byte of	Timer 1				


Reset Value = 0000 0000b



Timer 2	The T89C51CC02 Timer 2 is compatible with Timer 2 in the 80C52.
	It is a 16-bit timer/counter: the count is maintained by two eightbit timer registers, TH2 and TL2 that are cascade-connected. It is controlled by T2CON register (See Table 45) and T2MOD register (See Table 46). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects $F_{T2 clock}$ /6 (timer operation) or external pin T2 (counter operation) as timer clock. Setting TR2 allows TL2 to be incremented by the selected input.
	Timer 2 includes the following enhancements:
	Auto-reload mode (up or down counter)
	Programmable clock-output
Auto-Reload Mode	The auto-reload mode configures Timer 2 as a 16-bit timer or event counter with auto- matic reload. This feature is controlled by the DCEN bit in T2MOD register (See Table 45). Setting the DCEN bit enables Timer 2 to count up or down as shown in Figure 29. In this mode the T2EX pin controls the counting direction.
	When T2EX is high, Timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.
	When T2EX is low, Timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.

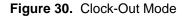
The EXF2 bit toggles when Timer 2 overflow or underflow, depending on the direction of the count. EXF2 does not generate an interrupt. This bit can be used to provide 17-bit resolution.

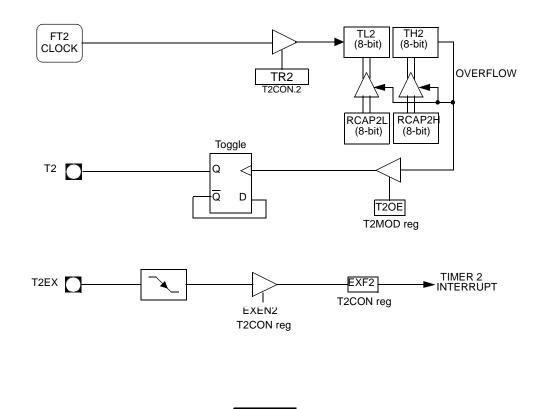
Downloaded from Elcodis.com electronic components distributor

64

Programmable Clock-Output

In clock-out mode, Timer 2 operates as a 50%-duty-cycle, programmable clock generator (Figure 30). The input clock increments TL2 at frequency $f_{OSC}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, Timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency depending on the system oscillator frequency and the value in the RCAP2H and RCAP2L registers:


 $Clock - OutFrequency = \frac{FT2clock}{4 \times (65536 - RCAP2H/RCAP2L)}$


For a 16 MHz system clock in x1 mode, Timer 2 has a programmable frequency range of 61 Hz ($f_{OSC}/2^{16}$) to 4 MHz ($f_{OSC}/4$). The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or different depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use Timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

Registers

Table 44.T2CON RegisterT2CON (S:C8h)

Timer 2 Control Register

7	6	5	4	3	2	1	0	
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#	
Bit Number	Bit Mnemonic	Description						
7	TF2	Must be clea	erflow Flag et if RCLK=1 of red by softwa vare on Timer	re.				
6	EXF2	Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. Set to cause the CPU to vector to Timer 2 interrupt routine when Timer 2 interrupt is enabled. Must be cleared by software.						
5	RCLK		timer 1 overfl	ow as receive w as receive c				
4	TCLK		timer 1 overfl	ow as transmi w as transmit o				
3	EXEN2	Clear to igno Set to cause	a capture or	bit T2EX pin for T reload when a used to clock	negative tran	sition on T2E	X pin is	
2	TR2	Timer 2 Run Clear to turn Set to turn of						
1	C/T2#	Clear for time	Timer/Counter 2 Select bit Clear for timer operation (input from internal clock system: f _{OSC}). Set for counter operation (input from T2 input pin).					
0	CP/RL2#	If RCLK=1 of Timer 2 over Clear to auto EXEN2=1.	flow. p-reload on Tir	bit //RL2# is ignor ner 2 overflow transitions or	s or negative	transitions on		

Reset Value = 0000 0000b bit addressable

Table 45.T2MOD RegisterT2MOD (S:C9h)Timer 2 Mode Control Register

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	T2OE	DCEN	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.		
6	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.		
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.		
3	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.		
2	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.		
1	T2OE	Clear to prog	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.					
0	DCEN		ble Timer 2 a	t s up/down cou p/down count				

Reset Value = XXXX XX00b Not bit addressable

Table 46. TH2 RegisterTH2 (S:CDh)

Timer 2 High Byte Register

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	-	-	
Bit Number	Bit Mnemonic	Description	Description					
7 - 0		High Byte of	Timer 2					

Reset Value = 0000 0000b Not bit addressable

Table 47. TL2 RegisterTL2 (S:CCh)Timer 2 Low Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0		Low Byte of	Timer 2				

Reset Value = 0000 0000b Not bit addressable

Table 48. RCAP2H Register

RCAP2H (S:CBh)

Timer 2 Reload/Capture High Byte Register

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	-	-	
Bit Number	Bit Mnemonic	Description	Description					
7 - 0		High Byte of	Timer 2 Reloa	ad/Capture.				

Reset Value = 0000 0000b Not bit addressable

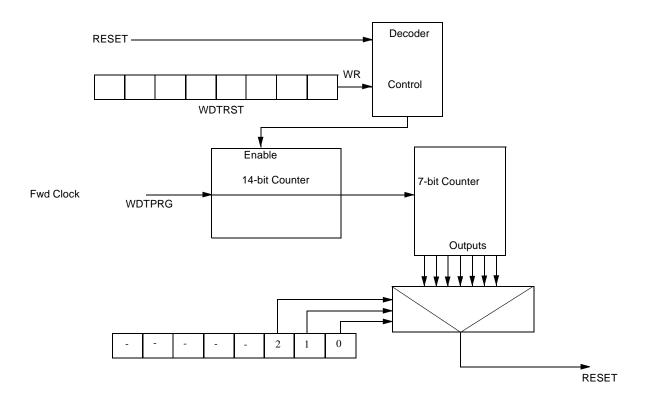
Table 49. RCAP2L Register

RCAP2L (S:CAh) Timer 2 Reload/Capture Low Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0		Low Byte of	Timer 2 Reloa	d/Capture.			

Reset Value = 0000 0000b Not bit addressable

Watchdog Timer


T89C51CC02 contains a powerful programmable hardware Watchdog Timer (WDT) that automatically resets the chip if it software fails to reset the WDT before the selected time interval has elapsed. It permits large Timeout ranging from 16ms to 2s $@f_{OSC} = 12$ MHz in X1 mode.

This WDT consists of a 14-bit counter plus a 7-bit programmable counter, a Watchdog Timer reset register (WDTRST) and a Watchdog Timer programming (WDTPRG) register. When exiting reset, the WDT is -by default- disable.

To enable the WDT, the user has to write the sequence 1EH and E1H into WDTRST register with no instruction between the two writes. When the Watchdog Timer is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is $96xT_{OSC}$, where $T_{OSC}=1/f_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset

Note: When the watchdog is enable it is impossible to change its period.

Figure 31. Watchdog Timer

Watchdog Programming

The three lower bits (S0, S1, S2) located into WDTPRG register permit to program the WDT duration.

Table 50. Machine Cycle Count

S2	S1	S0	Machine Cycle Count
0	0	0	2 ¹⁴ - 1
0	0	1	2 ¹⁵ - 1
0	1	0	2 ¹⁶ - 1
0	1	1	2 ¹⁷ - 1
1	0	0	2 ¹⁸ - 1
1	0	1	2 ¹⁹ - 1
1	1	0	2 ²⁰ - 1
1	1	1	2 ²¹ - 1

To compute WD Timeout, the following formula is applied:

$$FTime - Out = \frac{F_{osc}}{6 \times 2^{WDX2 \wedge X2} (2^{14} \times 2^{Svalue})}$$

Note: Svalue represents the decimal value of (S2 S1 S0)

Find Hereafter computed Timeout values for $f_{OSC}XTAL = 12$ MHz in X1 mode	
Table 51. Timeout Computation	

S2	S1	S0	f _{osc} =12 MHz	f _{OSC} =16MHz	f _{osc} =20 MHz
0	0	0	16.38 ms	12.28 ms	9.82 ms
0	0	1	32.77 ms	24.57 ms	19.66 ms
0	1	0	65.54 ms	49.14 ms	39.32 ms
0	1	1	131.07 ms	98.28 ms	78.64 ms
1	0	0	262.14 ms	196.56 ms	157.28 ms
1	0	1	524.29 ms	393.12 ms	314.56 ms
1	1	0	1.05 s	786.24 ms	629.12 ms
1	1	1	2.10 s	1.57 s	1.25 s

Watchdog Timer During Power-down Mode and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Power-down mode, the user does not need to service the WDT. There are 2 methods of exiting Power-down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, the watchdog is disabled. Exiting Power-down with an interrupt is significantly different. The interrupt shall be held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power-down.

To ensure that the WDT does not overflow within a few states of exiting powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting T89C51CC02 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

Register

 Table 52.
 WDTPRG Register

 WDTPRG (S:A7h) – Watchdog Timer Duration Programming register

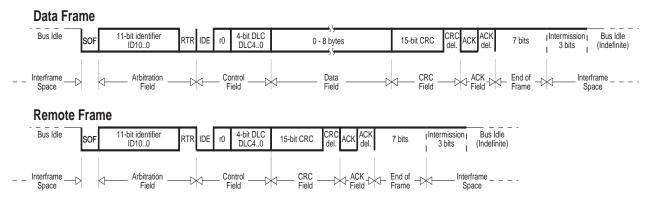
7	6	5	4	3	2	1	0			
-	-	-	-	-	S2	S1	S0			
Bit Number	Bit Mnemonic	Description								
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.								
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.								
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.								
2	S2	Watchdog Timer Duration selection bit 2 Work in conjunction with bit 1 and bit 0.								
1	S1	Watchdog Timer Duration selection bit 1 Work in conjunction with bit 2 and bit 0.								
0 Report Valu	S0	Watchdog Timer Duration selection bit 0 Work in conjunction with bit 1 and bit 2.								

Reset Value = XXXX X000b

Table 53. WDTRST RegisterWDTRST (S:A6h Write Only) – Watchdog Timer Enable register

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	-		
Bit Number	Bit Mnemonic	Description							
7	-	Watchdog Control Value							

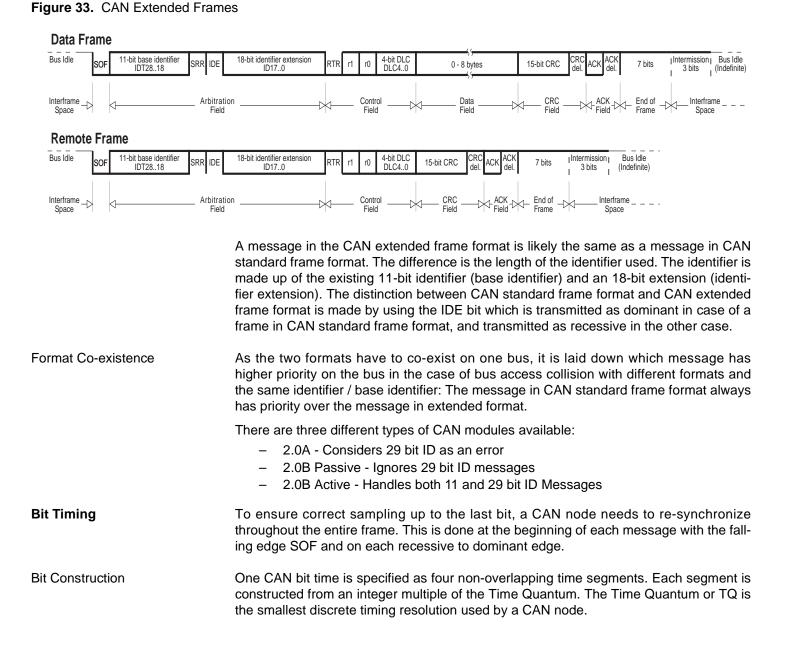
Reset Value = 1111 1111b

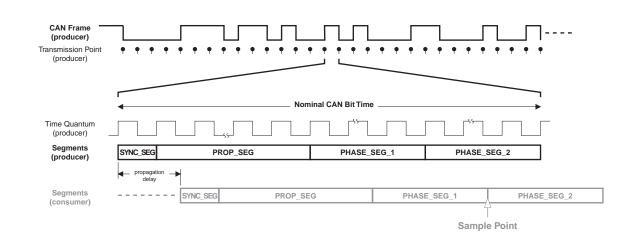

Note: The WDRST register is used to reset/enable the WDT by writing 1EH then E1H in sequence without instruction between these two sequences.

CAN Controller	The CAN Controller provides all the features required to implement the serial communi- cation protocol CAN as defined by BOSCH GmbH. The CAN specification as referred to by ISO/11898 (2.0A & 2.0B) for high speed and ISO/11519-2 for low speed. The CAN Controller is able to handle all types of frames (Data, Remote, Error and Overload) and achieves a bitrate of 1-Mbit/s at 8 MHz ¹ Crystal frequency in X2 Mode. Note: 1. At BRP = 1 sampling point will be fixed.
CAN Protocol	The CAN protocol is an international standard defined in the ISO 11898 for high speed and ISO 11519-2 for low speed.
Principles	CAN is based on a broadcast communication mechanism. This broadcast communica- tion is achieved by using a message oriented transmission protocol. These messages are identified by using a message identifier. Such a message identifier has to be unique within the whole network and it defines not only the content but also the priority of the message.
	The priority at which a message is transmitted compared to another less urgent mes- sage is specified by the identifier of each message. The priorities are laid down during system design in the form of corresponding binary values and cannot be changed dynamically. The identifier with the lowest binary number has the highest priority.
	Bus access conflicts are resolved by bit-wise arbitration on the identifiers involved by each node observing the bus level bit for bit. This happens in accordance with the "wired and" mechanism, by which the dominant state overwrites the recessive state. The competition for bus allocation is lost by all nodes with recessive transmission and dominant observation. All the "losers" automatically become receivers of the message with the highest priority and do not re-attempt transmission until the bus is available again.
Message Formats	The CAN protocol supports two message frame formats, the only essential difference being in the length of the identifier. The CAN standard frame, also known as CAN 2.0 A, supports a length of 11 bits for the identifier, and the CAN extended frame, also known

supports a length of 11 bits for the identifier, and the CAN extended frame, also known as CAN 2.0 B, supports a length of 29 bits for the identifier.

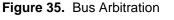
Can Standard Frame

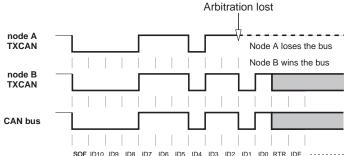

A message in the CAN standard frame format begins with the "Start Of Frame (SOF)", this is followed by the "Arbitration field" which consist of the identifier and the "Remote Transmission Request (RTR)" bit used to distinguish between the data frame and the data request frame called remote frame. The following "Control field" contains the "IDentifier Extension (IDE)" bit and the "Data Length Code (DLC)" used to indicate the



number of following data bytes in the "Data field". In a remote frame, the DLC contains the number of requested data bytes. The "Data field" that follows can hold up to 8 data bytes. The frame integrity is guaranteed by the following "Cyclic Redundant Check (CRC)" sum. The "ACKnowledge (ACK) field" compromises the ACK slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as a dominant bit by the receivers which have at this time received the data correctly. Correct messages are acknowledged by the receivers regardless of the result of the acceptance test. The end of the message is indicated by "End Of Frame (EOF)". The "Intermission Frame Space (IFS)" is the minimum number of bits separating consecutive messages. If there is no following bus access by any node, the bus remains idle.

CAN Extended Frame


Synchronization Segment	The first segment is used to synchronize the various bus nodes.
	On transmission, at the start of this segment, the current bit level is output. If there is a bit state change between the previous bit and the current bit, then the bus state change is expected to occur within this segment by the receiving nodes.
Propagation Time Segment	This segment is used to compensate for signal delays across the network.
	This is necessary to compensate for signal propagation delays on the bus line and through the transceivers of the bus nodes.
Phase Segment 1	Phase Segment 1 is used to compensate for edge phase errors.
	This segment may be lengthened during resynchronization.
Sample Point	The sample point is the point of time at which the bus level is read and interpreted as the value of the respective bit. Its location is at the end of Phase Segment 1 (between the two Phase Segments).
Phase Segment 2	This segment is also used to compensate for edge phase errors.
	This segment may be shortened during resynchronization, but the length has to be at
	least as long as the information processing time and may not be more than the length of Phase Segment 1.
Information Processing Time	least as long as the information processing time and may not be more than the length of
Information Processing Time	least as long as the information processing time and may not be more than the length of Phase Segment 1.



Bit Shortening	If, on the other hand, the transmitter oscillator is faster than the receiver one, the next falling edge used for resynchronization may be too early. So Phase Segment 2 in bit N is shortened in order to adjust the sample point for bit N+1 and the end of the bit time
Synchronization Jump Width	The limit to the amount of lengthening or shortening of the Phase Segments is set by the Resynchronization Jump Width.
	This segment may not be longer than Phase Segment 2.
Programming the Sample Point	Programming of the sample point allows "tuning" of the characteristics to suit the bus.
	Early sampling allows more Time Quanta in the Phase Segment 2 so the Synchroniza- tion Jump Width can be programmed to its maximum. This maximum capacity to shorten or lengthen the bit time decreases the sensitivity to node oscillator tolerances, so that lower cost oscillators such as ceramic resonators may be used.
	Late sampling allows more Time Quanta in the Propagation Time Segment which allows a poorer bus topology and maximum bus length.

Arbitration

The CAN protocol handles bus accesses according to the concept called "Carrier Sense Multiple Access with Arbitration on Message Priority".

During transmission, arbitration on the CAN bus can be lost to a competing device with a higher priority CAN Identifier. This arbitration concept avoids collisions of messages whose transmission was started by more than one node simultaneously and makes sure the most important message is sent first without time loss.

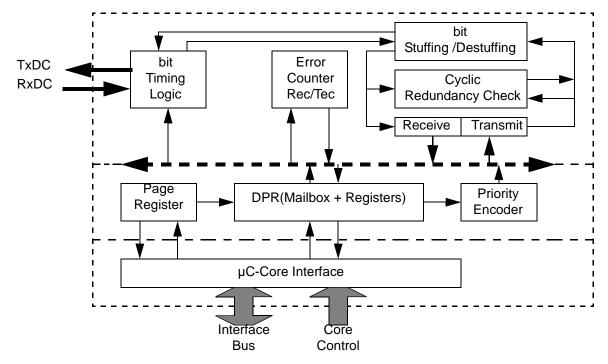
The bus access conflict is resolved during the arbitration field mostly over the identifier value. If a data frame and a remote frame with the same identifier are initiated at the same time, the data frame prevails over the remote frame (c.f. RTR bit).

The CAN protocol signals any errors immediately as they occur. Three error detection mechanisms are implemented at the message level and two at the bit level:

Error at Message Level

Errors

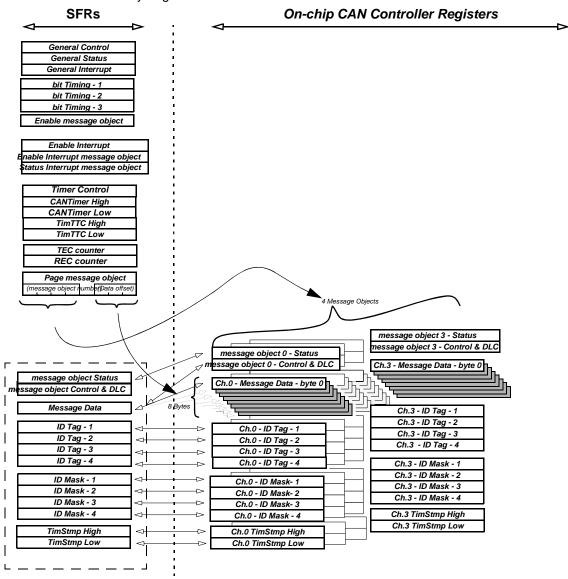
 Cyclic Redundancy Check (CRC) The CRC safeguards the information in the frame by adding redundant check bits at the transmission end. At the receiver these bits are re-computed and tested against the received bits. If they do not agree there has been a CRC error.


• Frame Check This mechanism verifies the structure of the transmitted frame by checking the bit

fields against the fixed format and the frame size. Errors detected by frame checks are designated "format errors".

ACK Errors As already mentioned frames received are acknowledged by all receivers through positive acknowledgement. If no acknowledgement is received by the transmitter of the message an ACK error is indicated. Error at Bit Level Monitoring The ability of the transmitter to detect errors is based on the monitoring of bus signals. Each node which transmits also observes the bus level and thus detects differences between the bit sent and the bit received. This permits reliable detection of global errors and errors local to the transmitter. Bit Stuffing The coding of the individual bits is tested at bit level. The bit representation used by CAN is "Non Return to Zero (NRZ)" coding, which guarantees maximum efficiency in bit coding. The synchronization edges are generated by means of bit stuffing. Error Signalling If one or more errors are discovered by at least one node using the above mechanisms, the current transmission is aborted by sending an "error flag". This prevents other nodes accepting the message and thus ensures the consistency of data throughout the network. After transmission of an erroneous message that has been aborted, the sender automatically re-attempts transmission. **CAN Controller** The CAN controller accesses are made through SFR. Description Several operations are possible by SFR: arithmetic and logic operations, transfers and program control (SFR is accessible by direct addressing). 4 independent message objects are implemented, a pagination system manages their accesses. Any message object can be programmed in a reception buffer block (even non-consecutive buffers). For the reception of defined messages one or several receiver message objects can be masked without participating in the buffer feature. An IT is generated when the buffer is full. The frames following the buffer-full interrupt will not be taken into account until at least one of the buffer message objects is re-enabled in reception. Higher priority of a message object for reception or transmission is given to the lower message object number. The programmable 16-bit Timer (CANTIMER) is used to stamp each received and sent message in the CANSTMP register. This timer starts counting as soon as the CAN controller is enabled by the ENA bit in the CANGCON register. The Time Trigger Communication (TTC) protocol is supported by the T89C51CC02.

Figure 36. CAN Controller Block Diagram



CAN Controller Mailbox and Registers Organization

The pagination allows management of the 91 registers including 80(4 x 20) Bytes of mailbox via 32 SFRs.

All actions on the message object window SFRs apply to the corresponding message object registers pointed by the message object number find in the Page message object register (CANPAGE) as illustrate in Figure 37.

Figure 37. CAN Controller Memory Organization

message object Window SFRs

Working on Message Objects

Cts The Page message object register (CANPAGE) is used to select one of the 4 message objects. Then, message object Control (CANCONCH) and message object Status (CANSTCH) are available for this selected message object number in the corresponding SFRs. A single register (CANMSG) is used for the message. The mailbox pointer is managed by the Page message object register with an auto-incrementation at the end of each access. The range of this counter is 8.

Note that the maibox is a pure RAM, dedicated to one message object, without overlap. In most cases, it is not necessary to transfer the received message into the standard memory. The message to be transmitted can be built directly in the maibox. Most calculations or tests can be executed in the mailbox area which provide quicker access.

CAN Controller Management

In order to enable the CAN Controller correctly the following registers have to be initialized:

- General Control (CANGCON),
- bit Timing (CANBT 1, 2 & 3),
- And for each page of 15 message objects:
 - Message object Control (CANCONCH),
 - Message object Status (CANSTCH).

During operation, the CAN Enable message object registers (CANEN) gives a fast overview of the message objects availability.

The CAN messages can be handled by interrupt or polling modes.

A message object can be configured as follows:

- Transmit message object
- Receive message object
- Receive buffer message object
- Disable

This configuration is made in the CONCH field of the CANCONCH register (See Table 54).

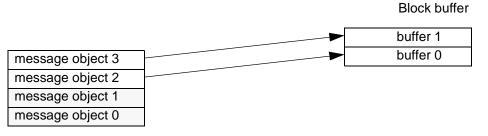
When a message object is configured, the corresponding ENCH bit of CANEN register is set.

Table 54. Configuration for CONCH1:2

CONCH 1	CONCH 2	Type of Message Object
0	0	Disable
0	1	Transmitter
1	0	Receiver
1	1	Receiver buffer

When a Transmitter or Receiver action of a message object is completed, the corresponding ENCH bit of the CANEN register is cleared. In order to re-enable the message object, it is necessary to re-write the configuration in CANCONCH register.

Non-consecutive message objects can be used for all three types of message objects (Transmitter, Receiver and Receiver buffer).


⁸⁰ AT/T89C51CC02

Buffer Mode

Any message object can be used to define one buffer, including non-consecutive message objects, and with no limitation in number of message objects used up to 4.

Each message object of the buffer must be initialized CONCH2 = 1 and CONCH1 = 1;

Figure 38. Buffer Mode

The same acceptance filter must be defined for each message objects of the buffer. When there is no mask on the identifier or the IDE, all messages are accepted.

A received frame will always be stored in the lowest free message object.

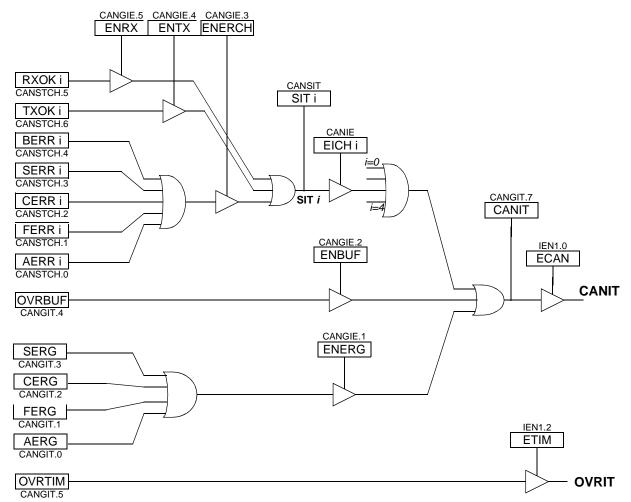
When the flag RxOk is set on one of the buffer message objects, this message object can then be read by the application. This flag must then be cleared by the software and the message object re-enabled in buffer reception in order to free the message object.

The OVRBUF flag in the CANGIT register is set when the buffer is full. This flag can generate an interrupt.

The frames following the buffer-full interrupt will not be stored and no status will be overwritten in the CANSTCH registers involved in the buffer until at least one of the buffer message objects is re-enabled in reception.

This flag must be cleared by the software in order to acknowledge the interrupt.

IT CAN Management


The different interrupts are:

- Transmission interrupt
- Reception interrupt
- Interrupt on error (bit error, stuff error, crc error, form error, acknowledge error)
- Interrupt when Buffer receive is full
- Interrupt on overrun of CAN Timer

Figure 39. CAN Controller Interrupt Structure

To enable a transmission interrupt:

- Enable General CAN IT in the interrupt system register
- Enable interrupt by message object, EICHi
- Enable transmission interrupt, ENTX

To enable a reception interrupt:

- Enable General CAN IT in the interrupt system register
- Enable interrupt by message object, EICHi
- Enable reception interrupt, ENRX

To enable an interrupt on message object error:

- Enable General CAN IT in the interrupt system register
- Enable interrupt by message object, EICHi
- Enable interrupt on error, ENERCH

To enable an interrupt on general error:

- Enable General CAN IT in the interrupt system register
- Enable interrupt on error, ENERG

To enable an interrupt on Buffer-full condition:

- Enable General CAN IT in the interrupt system register
- Enable interrupt on Buffer full, ENBUF

To enable an interrupt when Timer overruns:

• Enable Overrun IT in the interrupt system register

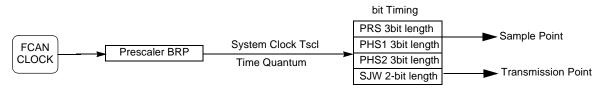
When an interrupt occurs, the corresponding message object bit is set in the SIT register.

To acknowledge an interrupt, the corresponding CANSTCH bits (RXOK, TXOK,...) or CANGIT bits (OVRTIM, OVRBUF,...), must be cleared by the software application.

When the CAN node is in transmission and detects a Form Error in its frame, a bit Error will also be raised. Consequently, two consecutive interrupts can occur, both due to the same error.

When a message object error occurs and is set in CANSTCH register, no general error are set in CANGIE register.

Bit Timing and Baud Rate

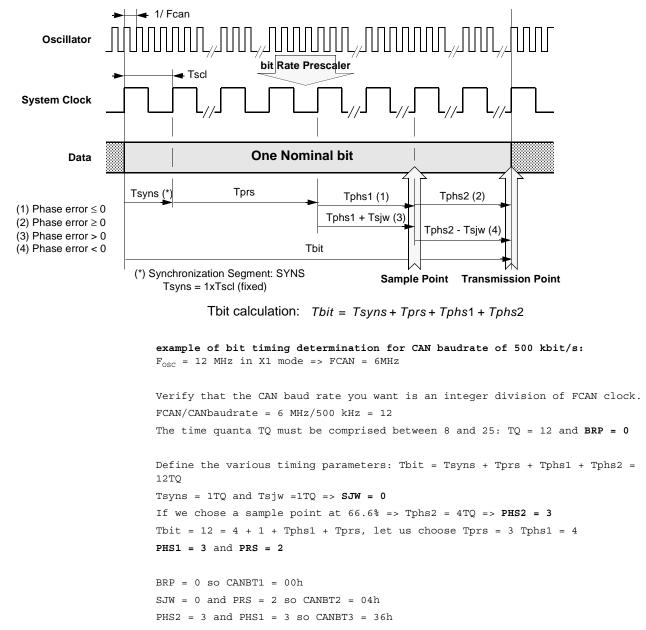

FSM's (Finite State Machine) of the CAN channel need to be synchronous to the time quantum. So, the input clock for bit timing is the clock used into CAN channel FSM's.

Field and segment abbreviations:

- BRP: Baud Rate Prescaler.
- TQ: Time Quantum (output of Baud Rate Prescaler).
- SYNS: SYNchronization Segment is 1 TQ long.
- PRS: PRopagation time Segment is programmable to be 1, 2, ..., 8 TQ long.
- PHS1: PHase Segment 1 is programmable to be 1, 2, ..., 8 TQ long.
- PHS2: PHase Segment 2 is programmable to be superior or eual to the Information Processing Time and inferior or equal to TPHS1
- INFORMATION PROCESSING TIME is 2 TQ.
- SJW: (Re) Synchronization Jump Width is programmable to be minimum of PHS1 and 4.

The total number of TQ in a bit time has to be programmed at least from 8 to 25.

Figure 40. Sample and Transmission Point


The baud rate selection is made by Tbit calculation:

Tbit = Tsyns + Tprs + Tphs1 + Tphs2

- 1. Tsyns = Tscl = (BRP[5..0]+ 1)/Fcan = 1TQ
- 2. Tprs = (1 to 8) * Tscl = (PRS[2..0]+ 1) * Tscl
- 3. Tphs1 = (1 to 8) * Tscl = (PHS1[2..0]+ 1) * Tscl
- 4. Tphs2 = (1 to 8) * Tscl = (PHS2[2..0]+ 1) * Tscl Tphs2 = Max of (Tphs1 and 2TQ)
- 5. Tsjw = (1 to 4) * Tscl = (SJW[1..0]+ 1) * Tscl

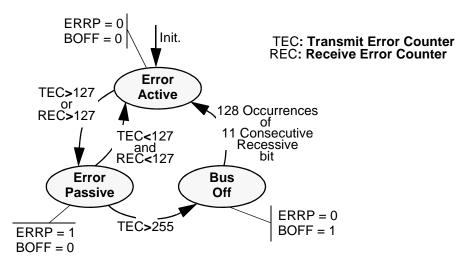
The total number of Tscl (Time Quanta) in a bit time must be comprised between 8 to 25.

Fault Confinement

With respect to fault confinement, a unit may be in one of the three following status:

- Error active
- Error passive
- Bus off

An error active unit takes part in bus communication and can send an active error frame when the CAN macro detects an error.


An error passive unit cannot send an active error frame. It takes part in bus communication, but when an error is detected, a passive error frame is sent. Also, after a transmission, an error passive unit will wait before initiating further transmission.

A bus off unit is not allowed to have any influence on the bus.

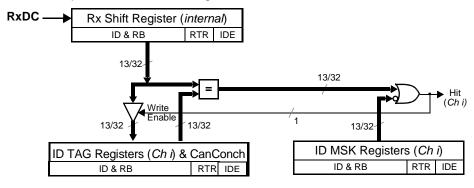
For fault confinement, two error counters (TEC and REC) are implemented.

See CAN Specification for details on Fault confinement.

Figure 42. Line Error Mode

Acceptance Filter

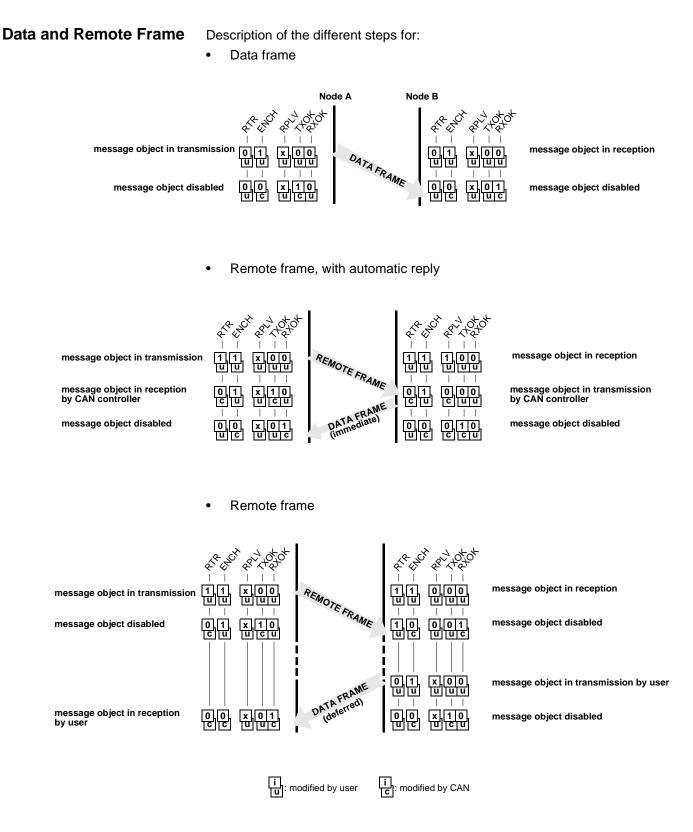
Upon a reception hit (i.e., a good comparison between the ID+RTR+RB+IDE received and an ID+RTR+RB+IDE specified while taking the comparison mask into account) the ID+RTR+RB+IDE received are written over the ID TAG Registers.


ID => IDT0-29

RTR => RTRTAG

RB => RB0-1TAG

IDE => IDE in CANCONCH register


Figure 43. Acceptance Filter Block Diagram

example: To accept only ID = 318h in part A. ID MSK = 111 1111 1111 b ID TAG = 011 0001 1000 b

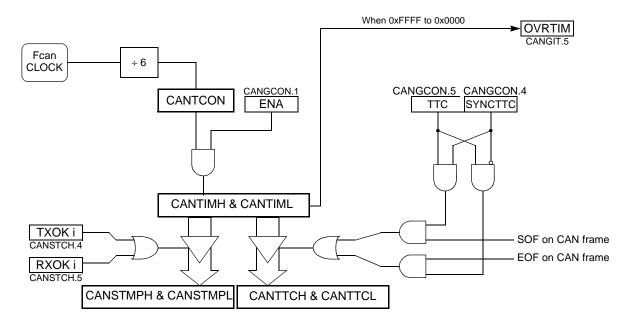
Time Trigger Communication (TTC) and Message Stamping

The T89C51CC02 has a programmable 16-bit Timer (CANTIMH&CANTIML) for message stamp and TTC.

This CAN Timer starts after the CAN controller is enabled by the ENA bit in the CANG-CON register.

Two modes in the timer are implemented:

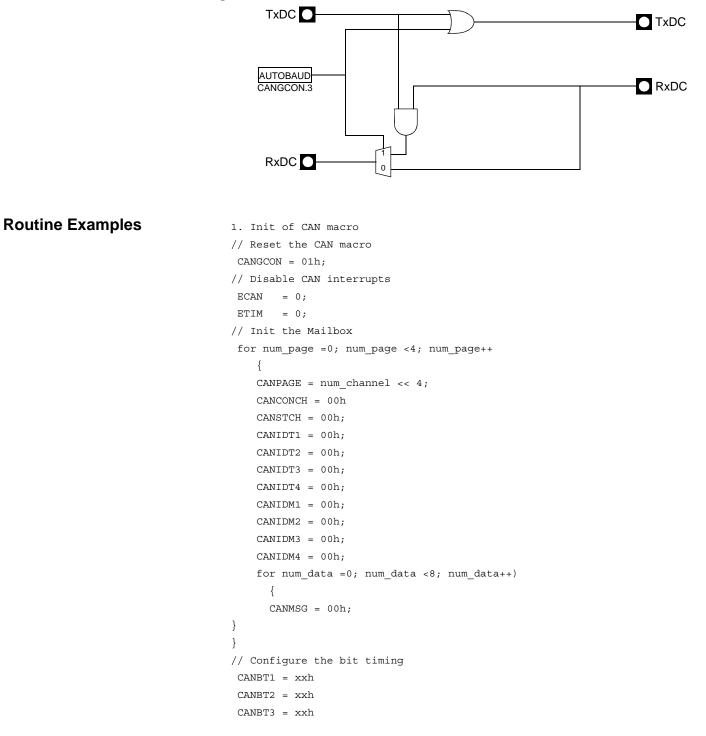
- Time Trigger Communication:
 - Capture of this timer value in the CANTTCH & CANTTCL registers on Start Of Frame (SOF) or End Of Frame (EOF), depending on the SYNCTTC bit in the CANGCON register, when the network is configured in TTC by the TTC bit in the CANGCON register.


Note: In this mode, CAN only sends the frame once, even if an error occurs.

- Message Stamping
 - Capture of this timer value in the CANSTMPH & CANSTMPL registers of the message object which received or sent the frame.
 - All messages can be stamps.
 - The stamping of a received frame occurs when the RxOk flag is set.
 - The stamping of a sent frame occurs when the TxOk flag is set.

The CAN Timer works in a roll-over from FFFFh to 0000h which serves as a time base.

When the timer roll-over from FFFFh to 0000h, an interrupt is generated if the ETIM bit in the interrupt enable register IEN1 is set.


CAN Autobaud and Listening Mode

To activate the Autobaud feature, the AUTOBAUD bit in the CANGCON register must be set. In this mode, the CAN controller is only listening to the line without acknowledging the received messages. It cannot send any message. The error flags are updated. The bit timing can be adjusted until no error occurs (good configuration find).

In this mode, the error counters are frozen.

To go back to the standard mode, the AUTOBAUD bit must be cleared.

Figure 45. Autobaud Mode


```
// Enable the CAN macro
CANGCON = 02h
2. Configure message object 3 in reception to receive only standard (11bit
identifier) message 100h
// Select the message object 3
CANPAGE = 30h
// Enable the interrupt on this message object
CANIE = 08h
//\ \mbox{Clear} the status and control register
CANSTCH = 00h
 CANCONCH= 00h
// Init the acceptance filter to accept only message 100h in standard mode
 CANIDT1 = 20h
 CANIDT2 = 00h
 CANIDT3 = 00h
 CANIDT4 = 00h
 CANIDM1 = FFh
 CANIDM2 = FFh
 CANIDM3 = FFh
 CANIDM4 = FFh
// Enable channel in reception
CANCONCH = 88h // enable reception
Note: to enable the CAN interrupt in reception:
EA = 1
ECAN = 1
CANGIE = 20h
3. Send a message on the message object 0
// Select the message object 0
CANPAGE = 00h
// Enable the interrupt on this message object
CANIE = 01h
// Clear the Status register
CANSTCH = 00h;
// load the identifier to send (ex: 555h)
CANIDT1 = AAh;
CANIDT2 = A0h;
// load data to send
 CANMSG = 00h
 CANMSG = 01h
 CANMSG = 02h
 CANMSG = 03h
 CANMSG = 04h
 CANMSG = 05h
 CANMSG = 06h
 CANMSG = 0.7h
// configure the control register
CANCONCH = 18h
4. Interrupt routine
// Save the current CANPAGE
```


// Find the first message object which generate an interrupt in CANSIT // Select the corresponding message object $% \left({{{\rm{A}}} \right) = {{\rm{A}}} \right)$

 $\ensuremath{{\prime}}\xspace$ // Analyse the CANSTCH register to identify which kind of interrupt is generated

// Manage the interrupt

// Clear the status register CANSTCH = 00h;

 $//% \left({{{\left({{{\left({{{\left({{{\left({1 \right)}}} \right)}} \right)}_{0}}}}}} \right)} \right)$ but a general interrupt but a general interrupt

 $\ensuremath{{\ensuremath{\text{--}}}}$ Manage the general interrupt and clear CANGIT register

 $//\ {\rm restore}$ the old CANPAGE

CAN SFRs

Table 55. SFR Mapping

	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	IPL1 xxxx x000	CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000					FFh
F0h	B 0000 0000		ADCLK xxx0 0000	ADCON x000 0000	ADDL 0000 0000	ADDH 0000 0000	ADCF 0000 0000	IPH1 xxxx x000	F7h
E8h	IEN1 xxxx x000	CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000					EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 0000 0000	CMOD 0xxx x000	CCAPM0 x000 0000	CCAPM1 x000 0000					DFh
D0h	PSW 0000 0000	FCON 0000 0000	EECON xxxx xx00						D7h
C8h	T2CON 0000 0000	T2MOD xxxx xx00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000		CANEN xxxx 0000	CFh
C0h	P4 xxxx xx11	CANGIE 1100 0000		CANIE 1111 0000	CANIDM1 xxxx xxxx	CANIDM2 xxxx xxxx	CANIDM3 xxxx xxxx	CANIDM4 xxxx xxxx	C7h
B8h	IPL0 x000 0000	SADEN 0000 0000		CANSIT xxxx 0000	CANIDT1 xxxx xxxx	CANIDT2 xxxx xxxx	CANIDT3 xxxx xxxx	CANIDT4 xxxx xxxx	BFh
B0h	P3 1111 1111	CANPAGE 1100 0000	CANSTCH xxxx xxxx	CANCONCH XXXX XXXX	CANBT1 xxxx xxxx	CANBT2 xxxx xxxx	CANBT3 xxxx xxxx	IPH0 x000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000	CANGSTA 1010 0000	CANGCON 0000 0000	CANTIML 0000 0000	CANTIMH 0000 0000	CANSTMPL xxxx xxxx	CANSTMPH xxxx xxxx	AFh
A0h	P2 xxxx xx11	CANTCON 0000 0000	AUXR1 ⁽²⁾ xxxx 00x0	CANMSG xxxx xxxx	CANTTCL 0000 0000	CANTTCH 0000 0000	WDTRST 1111 1111	WDTPRG xxxx x000	A7h
98h	SCON 0000 0000	SBUF 0000 0000		CANGIT 0x00 0000	CANTEC 0000 0000	CANREC 0000 0000			9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000		CKCON 0000 0000	8Fh
80h		SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00x1 0000	87h
	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Registers

Table 56. CANGCON Register

CANGCON (S:ABh) CAN General Control Register

7	6		5	4	3	2	1	0		
ABRQ	OVR	Q	ттс	SYNCTTC	AUTOBAUD	TEST	ENA	GRES		
Bit Numb	er	Bit N	Inemonic	Description						
7			ABRQ	Not an auto-r control & DLC pending trans the on-going	bort Request ot an auto-resetable bit. A reset of the ENCH bit (message object ontrol & DLC register) is done for each message object. The ending transmission communications are immediately aborted but e on-going communication will be terminated normally, setting e appropriate status flags, TxOk or RxOk.					
6			OVRQ	Overload Frame Request (Initiator). Auto-resetable bit. Set to send an overload frame after the next received message. Cleared by the hardware at the beginning of transmission of the overload frame.						
5			TTC	Network in Timer Trigger Communication set to select node in TTC. clear to disable TTC features.						
4		S`	YNCTTC	Synchronization of TTC When this bit is set the TTC timer is caught on the last bit of the End Of Frame. When this bit is clear the TTC timer is caught on the Start Of Frame. This bit is only used in the TTC mode.						
3		AU	TOBAUD		listening mode. ble listening mo	de				
2			TEST	Test mode. T customer use	he test mode is e.	intended for	factory testin	g and not for		
1		E	NA/STB	Enable/Standby CAN Controller When this bit is set, it enables the CAN controller and its input clock. When this bit is clear, the on-going communication is terminated normally and the CAN controller state of the machine is frozen (th ENCH bit of each message object does not change). In the standby mode, the transmitter constantly provides a recessive level; the receiver is not activated and the input clock is stopped in the CAN controller. During the disable mode, the registers and the mailbox remain accessible. Note that two clock periods are needed to start the CAN controlle state of the machine.						
0			GRES	Auto-resetab	et (Software Ro le bit. This reset et in order to re lisabled.	command				

Reset Value = 0000 0000b

Table 57. CANGSTA Register

CANGSTA (S:AAh Read Only) CAN General Status Register

7	6	5	4	3	2	1	0		
-	OVFG	-	TBSY	RBSY	ENFG	BOFF	ERRP		
Bit Numb	per Bit	Mnemonic	Description						
7		-	Reserved The values read from this bit is indeterminate. Do not set this bit.						
6		OVFG	Overload frame flag This status bit is set by the hardware as long as the produced overload frame is sent. This flag does not generate an interrupt						
5		-	Reserved The values read from this bit is indeterminate. Do not set this bit.						
4	4 TBSY		Transmitter busy This status bit is set by the hardware as long as the CAN transmitter generates a frame (remote, data, overload or error frame) or an ack field. This bit is also active during an InterFrame Spacing if a frame must be sent. This flag does not generate an interrupt.						
3		RBSY	Receiver busy This status bit is set by the hardware as long as the CAN receiver acquires or monitors a frame. This flag does not generate an interrupt.						
2		ENFG	Enable on-chip CAN controller flag Because an enable/disable command is not effective immediately, this status bit gives the true state of a chosen mode. This flag does not generate an interrupt.						
1		BOFF	Bus off mod See Figure 4	-					
0		ERRP	Error passiv See Figure 4						

Reset Value = x0x0 0000b

Table 58. CANGIT Register

CANGIT (S:9Bh) CAN General Interrupt

7	6	5	4	3	2	1	0		
CANIT	-	OVRTIM	OVRBUF	SERG	CERG	FERG	AERG		
Bit Numbe	Imber Bit Mnemonic Description								
7		CANIT	General interrupt flag ⁽¹⁾ This status bit is the image of all the CAN controller interrupts ser to the interrupt controller. It can be used in the case of the polling method.						
6		-	Reserved The values re	ead from this t	bit is indeterm	inate. Do not	set this bit.		
5		OVRTIM	Overrun CAN Timer This status bit is set when the CAN timer switches 0xFFFF to 0x0000. If the bit ETIM in the IE1 register is set, an interrupt is generated. Clear this bit in order to reset the interrupt.						
4		OVRBUF	Overrun BUFFER 0 - no interrupt. 1 - IT turned on This bit is set when the buffer is full. bit resetable by user. See Figure 39.						
3		SERG		General more than five generate an i			ame polarity.		
2		CERG	CRC Error General The receiver performs a CRC check on each destuffed received message from the start of frame up to the data field. If this checking does not match with the destuffed CRC field, a CRC error is set. This flag can generate an interrupt. resetable by user.						
1		FERG	Form Error General The form error results from one or more violations of the fixed form in the following bit fields: CRC delimiter acknowledgment delimiter end_of_frame This flag can generate an interrupt. resetable by user.						
0		AERG	No detection	ment Error G of the domina generate an i	nt bit in the a	0	lot.		

Note: 1. This field is Read Only.

Reset Value = 0x00 0000b

Table 59. CANTEC RegisterCANTEC (S:9Ch Read Only) – CAN Transmit Error Counter

7	(6	5	4	3	2	1	0
TEC7	TE	C6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0
Bit Numb	er	Bit I	Mnemonic	Description				
7 - 0			TEC7:0	Transmit Err	or Counter			

Reset Value = 00h

Table 60.CANREC RegisterCANREC (S:9Dh Read Only) – CAN Reception Error Counter

7	(6	5	4	3	2	1	0
REC7	RE	C6	REC5	REC4	REC3	REC2	REC1	REC0
Bit Numb	er	Bit	Mnemonic	Description				
7 - 0		I	REC7:0	Reception E See Figure 4	rror Counter 2			

Reset Value = 00h

Table 61. CANGIE Register

CANGIE (S:C1h) – CAN

7	6	5	4	3	2	1	0		
-	-	ENRX	ENTX	ENERCH	ENBUF	ENERG	-		
Bit Numb	er Bi	t Mnemonic	Description						
7 - 6		-	Reserved The values read from these bits are indeterminate. Do not set these bits.						
5		Enable Receive Interrupt ENRX 0 - Disable 1 - Enable							
4		ENTX	Enable Transmit Interrupt 0 - Disable 1 - Enable						
3		ENERCH	Enable Mess 0 - Disable 1 - Enable	sage Object E	Error Interrup	t			
2		ENBUF	Enable BUF Interrupt 0 - Disable 1 - Enable						
1		ENERG	Enable General Error Interrupt 0 - Disable 1 - Enable						
0		-	Reserved The value read from this bit is indeterminate. Do not set this See Figure 39.						

Reset Value = xx00 000xb

Table 62. CANEN RegisterCANEN (S:CFh Read Only)CAN Enable Message Object Registers

7	6	5	4	3	2	1	0	
-	-	-	- ENCH3 ENCH2 ENCH1 ENCH0					
Bit Numb	ber B	t Mnemonic	Description					
7 - 4		-	Reserved The values read from these bits are indeterminate. Do not set these bits.					
3 - 0		ENCH3:0	Enable Message Object 0 - message object is disabled => the message object is free for a new emission or reception. 1 - message object is enabled. This bit is resetable by re-writing the CANCONCH of the corresponding message object.					

Reset Value = xxxx 0000b

Table 63. CANSIT Register

CANSIT (S:BBh Read Only) – CAN Status Interrupt Message Object Registers

7	6	5	4	3	2	1	0		
-	-	-	- SIT3 SIT2 SIT1 SIT0						
Bit Numb	er Bit	Mnemonic	Description						
7 - 4		-	Reserved The values read from these bits are indeterminate. Do not set these bits.						
3 - 0		SIT3:0	0 - no interru 1 - IT turned	pt. on. Reset whe 0000 1001 -> I	ssage Object en interrupt co IT's on messa	ndition is clea	,		

Reset Value = xxxx0000b

Table 64. CANIE Register CANIE (S:C3h) – CAN Enable Interrupt message object Registers

7	6	5	4	3	2	1	0
-	-	-	-	IECH 3	IECH 2	IECH 1	IECH 0
Bit Numb	er Bit	Mnemonic	Description				
7 - 4		-	Reserved The values re bits.	ead from these	e bits are indet	erminate. Do	not set these
3 - 0		IECH3:0	0 - disable IT 1 - enable IT.	-	age Object > Enable IT's d	of message ol	bjects 3 & 2.

Reset Value = xxxx 0000b

Table 65.CANBT1 RegisterCANBT1 (S:B4h) – CAN bit Timing Registers 1

7	6	5	4	3	2	1	0		
-	BRP 5	BRP 4	BRP 3 BRP 2 BRP 1 BRP 0 -						
Bit Numb	er Bit I	Vnemonic	Description						
7		-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
6 - 1		BRP5:0	Baud Rate Prescaler The period of the CAN controller system clock Tscl is programmable and determines the individual bit timing. ⁽¹⁾ Tscl = BRP[50] + 1 F _{CAN}						
0		-	Reserved The value rea	ad from this bi	t is indetermir	nate. Do not se	et this bit.		

Note: 1. The CAN controller bit timing registers must be accessed only if the CAN controller is disabled with the ENA bit of the CANGCON register set to 0. See Figure 41.

No default value after reset.

Table 66. CANBT2 RegisterCANBT2 (S:B5h) – CAN bit Timing Registers 2

7	6	5	4	3	2	1	0		
-	SJW 1	SJW 0	-	PRS 2	PRS 1	PRS 0	-		
Bit Numb	oer Bit	Mnemonic	Description						
7		-	Reserved The value rea	ad from this bi	t is indetermir	nate. Do not s	et this bit.		
6 - 5		SJW1:0	Re-synchronization Jump WidthTo compensate for phase shifts between clock oscillators of different bus controllers, the controller must re-synchronize on any relevant signal edge of the current transmission.The synchronization jump width defines the maximum number of clock cycles. A bit period may be shortened or lengthened by a re- 						
4		-	Reserved The value rea	ad from this bi	t is indetermir	nate. Do not s	et this bit.		
3 - 1		PRS2:0	Programming Time Segment This part of the bit time is used to compensate for the physical delay times within the network. It is twice the sum of the signal propagation time on the bus line, the input comparator delay and the output driver delay. Tprs = Tscl x (PRS[20] + 1)						
0		-	Reserved The value read from this bit is indeterminate. Do not set this bit.						

Note: 1. The CAN controller bit timing registers must be accessed only if the CAN controller is disabled with the ENA bit of the CANGCON register set to 0. See Figure 41.

No default value after reset.

Table 67.CANBT3 RegisterCANBT3 (S:B6h)CAN bit Timing Registers 3

7	6	5	4	3	2	1	0		
-	PHS2 2	PHS2 1	PHS2 0	PHS1 2	PHS1 1	PHS1 0	SMP		
Bit Numb	ber Bi	t Mnemonic	Description						
7		-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
6 - 4	6 - 4 PHS2 2:0		Phase Segment 2 This phase is used to compensate for phase edge errors. This segment can be shortened by the re-synchronization jump width. Tphs2 = Tscl x (PHS2[20] + 1) Phasse segment 2 is the maximum of Phase segment1 and the Information Processing Time (= 2TQ).						
3 - 1		PHS1 2:0	Phase Segment 1 This phase is used to compensate for phase edge errors. This segment can be lengthened by the re-synchronization jump width Tphs1 = Tscl x (PHS1[20] + 1)						
0		SMP	Sample Type 0 - once, at the sample point. 1 - three times, the threefold sampling of the bus is the sample point and twice over a distance of a 1/2 period of the Tscl. The result corresponds to the majority decision of the three values.						

Note: 1. The CAN controller bit timing registers must be accessed only if the CAN controller is disabled with the ENA bit of the CANGCON register set to 0. See Figure 41.

No default value after reset.

Table 68. CANPAGE RegisterCANPAGE (S:B1h) – CAN Message Object Page Register

7	e	6	5	4	3	2	1	0		
-	-	•	CHNB 1	CHNB 0	AINC	INDX2	INDX1	INDX0		
Bit Numb	ber	Bit	Mnemonic	Description						
7 - 6			-	Reserved The values read from these bits are indeterminate. Do not set these bits.						
5 - 4		C	CHNB3:0	Selection of The available	•	j ect Number : 0 to 3(See F	ïgure 37).			
3			AINC	Auto Increment of the Index (Active Low) 0 - auto-increment of the index (default value). 1 - non-auto-increment of the index.						
2 - 0		I	NDX2:0	Index Byte location of the data field for the defined message object (Se Figure 37).						

Reset Value = xx00 0000b

Table 69. CANCONCH RegisterCANCONCH (S:B3h) – CAN Message Object Control and DLC Register

7	6	5	4	3	2	1	0		
CONCH 1	CONCH 0	RPLV	IDE DLC 3 DLC 2 DLC 1 DLC 0				DLC 0		
Bit Numb	er Bit	Mnemonic	Description						
7 - 6	с	ONCH1:0	Configuration of Message Object CONCH1 CONCH0 0 0: disable 0 1: Launch transmission 1 0: Enable Reception 1 1: Enable Reception Buffer NOTE: The user must re-write the configuration to enable the corresponding bit in the CANEN1:2 registers.						
5		RPLV	Reply valid Used in the automatic reply mode after receiving a remote frame 0 - reply not ready. 1 - reply ready & valid.						
4		IDE		dard rev 2.0 A	(ident = 11 bi 8 (ident = 29 bi	,			
3 - 0		DLC3:0	Data Length CodeNumber of Bytes in the data field of the message.The range of DLC is from 0 up to 8.This value is updated when a frame is received (data or remote frame).If the expected DLC differs from the incoming DLC, a warning appears in the CANSTCH register.						

No default value after reset

Table 70.CANSTCH RegisterCANSTCH (S:B2h) – CAN Message Object Status Register

7	6	5	4	3	2	1	0		
DLCW	тхок	RXOK	BERR	SERR	CERR	FERR	AERR		
Bit Numb	oer Bi	t Mnemonic	Description						
7	7 DLCW		The incoming Whatever the	a Code Warni g message do e frame type, t y the received	es not have th ne DLC field o	•			
6		ТХОК	When the co message obj message obj software.	(nication enable ntroller is reac ects are enab ect (0 to 13) is generate an i	ly to send a fra led as produce s supplied first	ame, if two or ers, the lower	more index		
5		RXOK	Receive OK The communication enabled by reception is completed. In the case of two or more message object reception hits, the lower index message object (0 to 13) is updated first. Must be cleared by software. This flag can generate an interrupt.						
4		BERR	bit Error (only in transmission) The bit value monitored is different from the bit value sent. Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the acknowledge slot detecting a dominant bit during the sending of an error frame. Must be cleared by software This flag can generate an interrupt.						
3		SERR	Must be clea	more than five red by softwar generate an i	e.	bits with the s	ame polarity.		
2		CERR	message from If this checking CRC error is	performs a C m the start of f ng does not m set. Must be o generate an i	rame up to the atch with the o cleared by sof	e data field. destuffed CR			
1		FERR	Form Error The form error results from one or more violations of the fixed form in the following bit fields: CRC delimiter acknowledgment delimiter end_of_frame Must be cleared by software. This flag can generate an interrupt.						
0		AERR	Acknowledgment Error No detection of the dominant bit in the acknowledge slot. Must be cleared by software. This flag can generate an interrupt.						

Note: See Figure 39.

No default value after reset.

Table 71. CANIDT1 Register for V2.0 part ACANIDT1 for V2.0 part A (S:BCh) – CAN Identifier Tag Registers 1

7	6	6	5	4	3	2	1	0	
IDT 10	ID	Г9	IDT 8	IDT 7	IDT 6	IDT 5	IDT 4	IDT 3	
Bit Numb	er	Bit I	Mnemonic	Description					
7 - 0			DT10:3	IDentifier Ta See Figure 4					

No default value after reset.

Table 72. CANIDT2 Register for V2.0 part ACANIDT2 for V2.0 part A (S:BDh) - CAN Identifier Tag Registers 2

7	6	5	4	3	2	1	0	
IDT 2	IDT 1	I IDT 0	-	-	-	-	-	
Bit Numb	er	Bit Mnemonic	Description					
7 - 5		IDT2:0	IDentifier Tag Value See Figure 43.					
4-0		-	Reserved The values read from these bits are indeterminate. Do not set these bits.					

No default value after reset.

Table 73. CANIDT3 Register for V2.0 part ACANIDT3 for V2.0 part A (S:BEh) –CAN Identifier Tag Registers 3

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	-	-	
Bit Numb	ber B	Bit Mnemonic	Description					
7 - 0		-	Reserved The values read from these bits are indeterminate. Do not set these bits.					

No default value after reset.

Table 74. CANIDT1 for V2.0 part A

CANIDT4 for V2.0 part A (S:BFh) CAN Identifier Tag Registers 4

7	6	5	4	3	2	1	0		
-	-	-	RTRTAG - RB0TAG						
Bit Numb	oer Bi	t Mnemonic	Description						
7 - 3		-	Reserved The values read from these bits are indeterminate. Do not set these bits.						
2		RTRTAG	Remote trans	smission requ	est tag value.				
1		-	Reserved The values read from this bit are indeterminate. Do not set these bit.						
0		RB0TAG	Reserved bit	0 tag value.					

No default value after reset.

Table 75.CANIDT2Register for V2.0 part ACANIDT1 for V2.0 Part B (S:BCh)CAN Identifier Tag Registers 1

7	(6	5	4	3	2	1	0	
IDT 28	IDT 27		IDT 26	IDT 25	IDT 24	IDT 23	IDT 22	IDT 21	
Bit Numb	Bit Number Bit Mnemonic			Description					
7 - 0 IDT28:21		IDentifier Tag See Figure 4	-						

No default value after reset.

Table 76. CANIDT2 Register for V2.0 Part BCANIDT2 for V2.0 Part B (S:BDh)CAN Identifier Tag Registers 2

7	(6	5	4	3	2	1	0
IDT 20	IDT 19		IDT 18	IDT 17	IDT 16	IDT 15	IDT 14	IDT 13
Bit Number Bit Mnemonic			Description					
7 - 0 IDT20:13			IDentifier Tag See Figure 4	-				

No default value after reset.

Table 77. CANIDT3 Register for V2.0 Part BCANIDT3 for V2.0 Part B (S:BEh)CAN Identifier Tag Registers 3

7	6		5	4	3	2	1	0	
IDT 12	IDT	11	IDT 10	IDT 9	IDT 8	IDT 7	IDT 6	IDT 5	
Bit Numb	Bit Number Bit Mnemonic			Description					
7 - 0		I	DT12:5	IDentifier Tag See Figure 4	-				

No default value after reset.

Table 78. CANIDT4 Register for V2.0 Part BCANIDT4 for V2.0 Part B (S:BFh)CAN Identifier Tag Registers 4

7	6	5	4 3		2	1	0		
IDT 4	IDT 3	IDT 2	IDT 1	IDT 0	RTRTAG	RB1TAG	RB0TAG		
Bit Numb	er Bit	Mnemonic	Description						
7 - 3		IDT4:0	IDentifier Tag Value See Figure 43.						
2		RTRTAG	Remote Transmission Request Tag Value						
1	1 RB1TAG Reserved bit 1 tag value.								
0		RB0TAG	Reserved bit 0 tag value.						

No default value after reset.

Table 79. CANIDM1 Register for V2.0 part ACANIDM1 for V2.0 part A (S:C4h)CAN Identifier Mask Registers 1

7	6		5	4	3	2	1	0			
IDMSK 10	IDMSK 9		IDMSK 8	IDMSK 7	IDMSK 6	IDMSK 5	IDMSK 4	IDMSK 3			
Bit Numb	Bit Number Bit Mnemonic			Description							
7 - 0		IDTI	MSK10:3	IDentifier Ma 0 - compariso 1 - bit compa See Figure 43	on true forced rison enabled						

No default value after reset.

Table 80. CANIDM2 Register for V2.0 part ACANIDM2 for V2.0 part A (S:C5h)CAN Identifier Mask Registers 2

7	6	5	5	4	3	2	1	0	
IDMSK 2	IDMS	SK 1	IDMSK 0			-	-	-	
Bit Number Bit Mnemonic Description									
7 - 5 IDTMSK2:0				IDentifier Mask Value 0 - comparison true forced. 1 - bit comparison enabled. See Figure 43.					
4 -0	4 -0 -		Reserved The values read from these bits are indeterminate. Do not set th bits.						

No default value after reset.

Table 81. CANIDM3 Register for V2.0 part ACANIDM3 for V2.0 part A (S:C6h)CAN Identifier Mask Registers 3

7	6	6	5	4	3	2	1	0		
-	-		-	-	-	-	-	-		
Bit Numb	per	Bit I	Mnemonic	Description						
7 - 0 -				Reserved The values read from these bits are indeterminate.						

No default value after reset.

Table 82. CANIDM4 Register for V2.0 part ACANIDM4 for V2.0 part A (S:C7h)CAN Identifier Mask Registers 4

7	6	5	4	3	2	1	0								
-			-	RTRMSK -											
Bit Numb	er Bit	Mnemonic	Description												
7 - 3		-	Reserved The values read from these bits are indeterminate. Do not set these bits.							The values read from these bits are indeterminate. Do not set th					
2	2 RTRMSH		Remote transmission request Mask Value 0 - comparison true forced. 1 - bit comparison enabled.												
1		-	Reserved The value read from this bit is indeterminate. Do not set this bit.												
0		DEMSK	IDentifier Extension Mask Value 0 - comparison true forced. 1 - bit comparison enabled.												

Note: The ID Mask is only used for reception.

No default value after reset.

Table 83. CANIDM1 Register for V2.0 Part BCANIDM1 for V2.0 Part B (S:C4h)CAN Identifier Mask Registers 1

7	6	5	4	3	2	1	0			
IDMSK 28	IDMSK 2	7 IDMSK 26	IDMSK 25	IDMSK 25 IDMSK 24 IDMSK 23 IDMSK 22 IDMSK						
Bit Numb	er Bit Mnemonic		Description							
7 - 0		IDMSK28:21	IDentifier Mask Value 0 - comparison true forced. 1 - bit comparison enabled. See Figure 43.							

Note: The ID Mask is only used for reception.

No default value after reset.

Table 84. CANIDM2 Register for V2.0 Part BCANIDM2 for V2.0 Part B (S:C5h)CAN Identifier Mask Registers 2

7	6	i	5	4	3	2	1	0		
IDMSK 20	IDMS	IDMSK 19 IDMSK 18		IDMSK 17	IDMSK 16	IDMSK 15	IDMSK 14	IDMSK 13		
Bit Numb	er	Bit Mnemonic		Description						
7 - 0		IDI	MSK20:13	IDentifier Mask Value ⁽¹⁾ 0 - comparison true forced. 1 - bit comparison enabled. See Figure 43.						

Note: 1. The ID Mask is only used for reception.

No default value after reset.

Table 85. CANIDM3 Register for V2.0 Part BCANIDM3 for V2.0 Part B (S:C6h)CAN Identifier Mask Registers 3

7	e	6	5	4	3	2	1	0
IDMSK 12	IDMS	SK 11	IDMSK 10	IDMSK 9	IDMSK 8	IDMSK 7	IDMSK 6	IDMSK 5
Bit Numb	er	Bit I	Mnemonic	Description				
7 - 0		ID		IDentifier Ma 0 - compariso 1 - bit compa See Figure 4	on true forced rison enabled			

Note: The ID Mask is only used for reception.

No default value after reset.

Table 86. CANIDM4 Register for V2.0 Part BCANIDM4 for V2.0 Part B (S:C7h)CAN Identifier Mask Registers 4

7	6														
IDMSK 4	IDMSK 3	(3 IDMSK 2 IDMSK 1 IDMSK 0 RTRMSK - II													
Bit Numb	er Bit	Bit Mnemonic Description		Description											
7 - 3		DMSK4:0	IDentifier Mask Value 0 - comparison true forced. 1 - bit comparison enabled. See Figure 43.							0 - comparison true forced.1 - bit comparison enabled.					
2		RTRMSK	Remote transmission request Mask Value 0 - comparison true forced. 1 - bit comparison enabled.												
1		-	Reserved The value read from this bit is indeterminate. Do not set this bit.												
0		IDEMSK	IDentifier Extension Mask Value 0 - comparison true forced. 1 - bit comparison enabled.												

Note: The ID Mask is only used for reception.

No default value after reset.

Table 87. CANMSG RegisterCANMSG (S:A3h)CAN Message Data Register

7	6	5	GG 5 MSG 4 MSG 3 MSG 2 MSG 1 MSG 0									
MSG 7	MSG 6	MSG 5	MSG 4 MSG 3 MSG 2 MSG 1 MSG 0							MSG 5 MSG 4 MSG 3 MSG		MSG 0
Bit Numb	er Bit	Mnemonic	Description									
7 - 0		MSG7:0	This register message obj After writing i to the specific defined ident of the data re	contains the r ect register. n the page m ed message le ifier + index. I egister writing ented. The ran	mailbox data b essage object ocation (in the f auto-increme or reading cyc ge of the cour	register, this l mailbox) of th ntation is use cle, the mailbo	byte is equal ne pre- d, at the end ox pointer is					

No default value after reset.

Table 88.CANTCON RegisterCANTCON (S:A1h) CAN Timer ClockControl

7	6		5	4	3	2	1	0
TPRESC 7	TPRE	SC 6	TPRESC 5	TPRESC 4	TPRESC 3	TPRESC 2	TPRESC 1	TPRESC 0
Bit Numb	ber	Bit Mnemonic		Description				
7 - 0	7 - 0 TPRESC7:0		RESC7:0	Timer Presc This register range = 0 to 2 See Figure 4	255.		imer upper co	vunter

Reset Value = 00h

Table 89. CANTIMH Register CANTIMH (S:ADh) CAN Timer High

7	(6	5	4	3	2	1	0
CANGTIM 15	-	GTIM 4	CANGTIM 13	CANGTIM 12	CANGTIM 11	CANGTIM 10	CANGTIM 9	CANGTIM 8
Bit Numb	er	Bit I	Mnemonic	Description				
7 - 0		CAI	NGTIM15:8	High byte of See Figure 4	Message Tir 4.	ner		

Reset Value = 0000 0000b

Table 90. CANTIML Register CANTIML (S:ACh) CAN Timer Low

7	(6	5	4	3	2	1	0	
CANGTIM 7	CAN	GTIM 6	CANGTIM 5	CANGTIM 4	CANGTIM 3	CANGTIM 2	CANGTIM 1	CANGTIM 0	
Bit Numb	ber	Bit	Mnemonic	Description					
7 - 0		CA	NGTIM7:0	Low byte of Message Timer See Figure 44.					

Reset Value = 0000 0000b

Table 91. CANSTMPH RegisterCANSTMPH (S:AFh Read Only)CAN Stamp Timer High

7	(6	5	4	3	2	1	0
TIMSTMP 15		STMP 4	TIMSTMP 13	TIMSTMP 12	TIMSTMP 11	TIMSTMP 10	TIMSTMP 9	TIMSTMP 8
Bit Numb	er	Bit I	Vinemonic	Description				
7 - 0		TIM	ISTMP15:8	High byte of See Figure 4	•			

No default value after reset

Table 92. CANSTMPL RegisterCANSTMPL (S:AEh Read Only)CAN Stamp Timer Low

7	6	5	4	3	2	1	0
TIMSTMP 7	TIMSTMP	6 TIMSTMP 5	TIMSTMP 4	TIMSTMP 3	TIMSTMP 2	TIMSTMP 1	TIMSTMP 0
Bit Numb	er B	it Mnemonic	Description				
7 - 0	-	TIMSTMP7:0	Low byte of Time Stamp See Figure 44.				

No default value after reset

Table 93.CANTTCH RegisterCANTTCH (S:A5h Read Only)CAN TTC Timer High

7	6	5	4	3	2	1	0
TIMTTC 15	TIMTTC 14	TIMTTC 13	TIMTTC 12	TIMTTC 11	TIMTTC 10	TIMTTC 9	TIMTTC 8

Bit Number	Bit Mnemonic	Description
7 - 0	TIMTTC15:8	High byte of TTC Timer See Figure 44.

Reset Value = 0000 0000b

Table 94. CANTTCL RegisterCANTTCL (S:A4h Read Only)CAN TTC Timer Low

7	e	6	5	4	3	2	1	0
TIMTTC 7	тімт	TC 6	TIMTTC 5	TIMTTC 4	TIMTTC 3	TIMTTC 2	TIMTTC 1	TIMTTC 0
Bit Numb	ber	Bit	Vnemonic	Description				
7 - 0		TI	MTTC7:0	Low Byte of See Figure 4				

Reset Value = 0000 0000b

4126L-CAN-01/08

Programmable Counter Array (PCA)

The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated timer/counter which serves as the time base for an array of two compare/capture modules. Its clock input can be programmed to count any of the following signals:

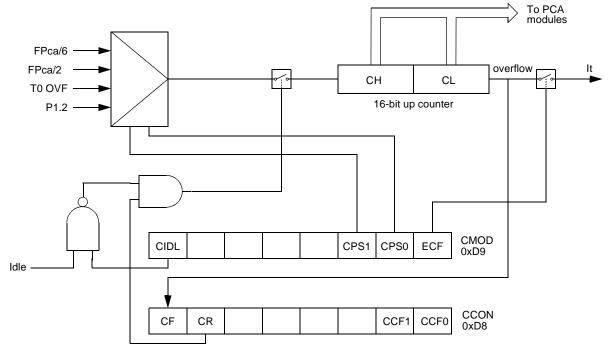
- PCA clock frequency/6 (See "clock" section)
- PCA clock frequency/2
- Timer 0 overflow
- External input on ECI (P1.2)

Each compare/capture modules can be programmed in any one of the following modes:

- Rising and/or falling edge capture,
- Software timer
- High-speed output
- Pulse width modulator

When the compare/capture modules are programmed in capture mode, software timer, or high speed output mode, an interrupt can be generated when the module executes its function. Both modules and the PCA timer overflow share one interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/Os. These pins are listed below. If the pin is not used for the PCA, it can still be used for standard I/O.


PCA Component	External I/O Pin
16-bit Counter	P1.2/ECI
16-bit Module 0	P1.3/CEX0
16-bit Module 1	P1.4/CEX1

PCA Timer

The PCA timer is a common time base for both modules (See Figure 9). The timer count source is determined from the CPS1 and CPS0 bits in the **CMOD SFR** (See Table 8) and can be programmed to run at:

- 1/6 the PCA clock frequency.
- 1/2 the PCA clock frequency.
- The Timer 0 overflow.
- The input on the ECI pin (P1.2).

Figure 46. PCA Timer/Counter

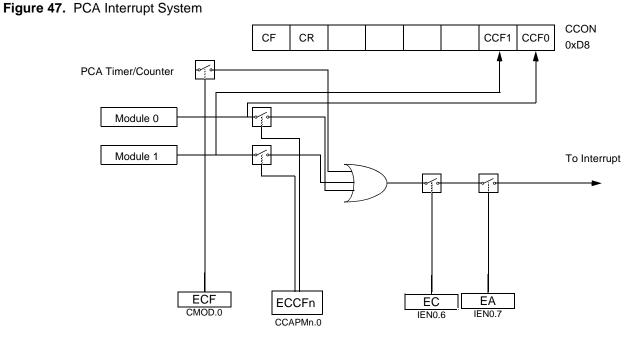
The CMOD register includes three additional bits associated with the PCA.

- The CIDL bit which allows the PCA to stop during idle mode.
- The ECF bit which when set causes an interrupt and the PCA overflow flag CF in CCON register to be set when the PCA timer overflows.

The CCON register contains the run control bit for the PCA and the flags for the PCA timer and each module.

- The CR bit must be set to run the PCA. The PCA is shut off by clearing this bit.
- The CF bit is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in CMOD register is set. The CF bit can only be cleared by software.
- The CCF0:1 bits are the flags for the modules (CCF0 for module0...) and are set by hardware when either a match or a capture occurs. These flags also can be cleared by software.

PCA Modules


Each one of the two compare/capture modules has six possible functions. It can perform:

- 16-bit Capture, positive-edge triggered
- 16-bit Capture, negative-edge triggered
- 16-bit Capture, both positive and negative-edge triggered
- 16-bit Software Timer
- 16-bit High Speed Output
- 8-bit Pulse Width Modulator.

Each module in the PCA has a special function register associated with it (CCAPM0 for module 0 ...). The CCAPM0:1 registers contain the bits that control the mode that each module will operate in.

- The ECCF bit enables the CCF flag in the CCON register to generate an interrupt when a match or compare occurs in the associated module.
- The PWM bit enables the pulse width modulation mode.
- The TOG bit when set causes the CEX output associated with the module to toggle when there is a match between the PCA counter and the module's capture/compare register.
- The match bit MAT when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the module's capture/compare register.
- The two bits CAPN and CAPP in CCAPMn register determine the edge that a capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both bits are set both edges will be enabled.
- The bit ECOM in CCAPM register when set enables the comparator function.

PCA Interrupt

PCA Capture Mode To use one of the PCA modules in capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated.

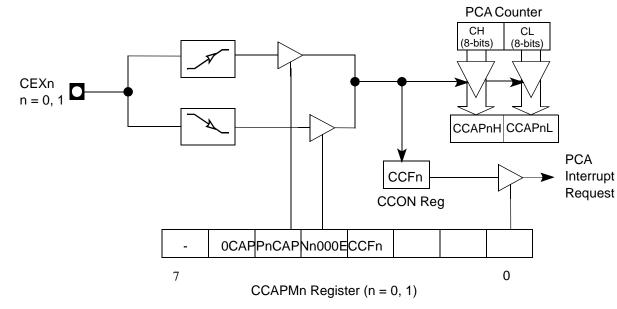
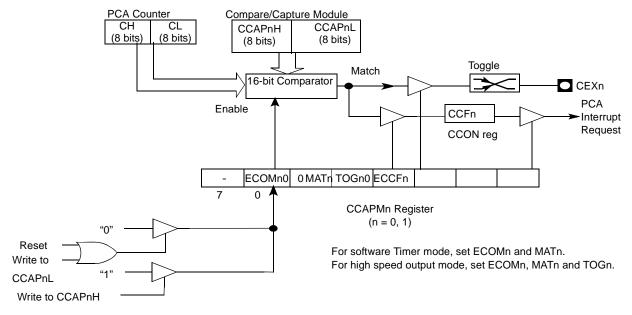
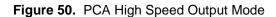


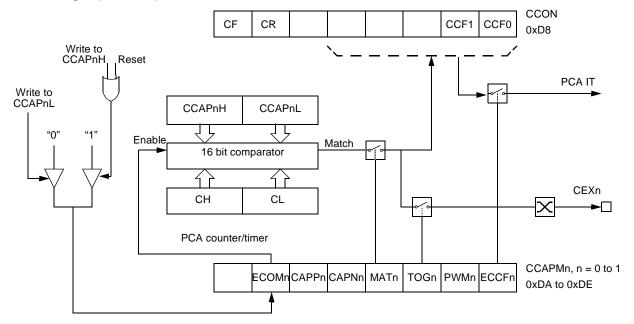
Figure 48. PCA Capture Mode


4126L-CAN-01/08

AIMEL

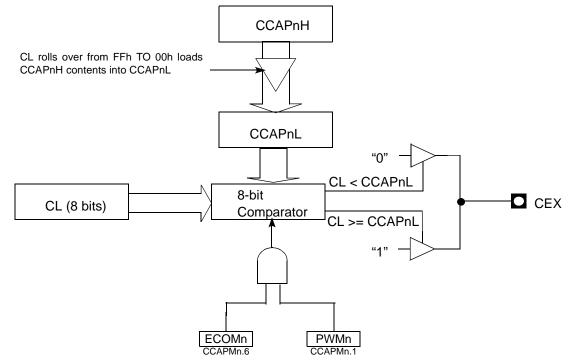
16-bit Software Timer Mode


The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set.


Figure 49. PCA 16-bit Software Timer and High Speed Output Mode

High Speed Output Mode

In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set.


Pulse Width Modulator Mode

All the PCA modules can be used as PWM outputs. The output frequency depends on the source for the PCA timer. All the modules will have the same output frequency because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than it, the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. the allows the PWM to be updated without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Figure 51. PCA PWM Mode

PCA Registers

Table 95. CMOD Register

CMOD (S:D9h) PCA Counter Mode Register

7	6	5	4	3	2	1	0	
CIDL	-	-	-	-	CPS1	CPS0	ECF	
Bit Number	Bit Mnemon	ic Descrip	tion					
7	CIDL	Clear to	PCA Counter Idle Control bit Clear to let the PCA run during Idle mode. Set to stop the PCA when Idle mode is invoked.					
6	-	Reserve The valu		nis bit is indete	erminate. Do r	not set this bit.		
5	-	Reserve The valu		nis bit is indete	erminate. Do r	not set this bit.		
4	-	Reserve The valu		nis bit is indete	erminate. Do r	not set this bit.		
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
2-1	CPS1:(CPS1 C	Interna Timer	<u>source</u> al Clock, FPca al Clock, FPca 0 overflow		ax. Rate = FPc	ca/4)	
0	ECF	Clear to	disable CF bi		errupt bit lister to generate er to generate		ot.	

Reset Value = 0XXX X000b

Table 96. CCON Register

CCON (S:D8h) PCA Counter Control Register

7	6	5	4	3	2	1	0	
CF	CR	-	-	-	-	CCF1	CCF0	
Bit Numb	er Bit	Mnemonic	Description					
7	7 CF		PCA Timer/Counter Overflow flag Set by hardware when the PCA Timer/Counter rolls over. This generates a PCA interrupt request if the ECF bit in CMOD register is set. Must be cleared by software.					
6		CR	PCA Timer/Counter Run Control bit Clear to turn the PCA Timer/Counter off. Set to turn the PCA Timer/Counter on.					
5-2		-	Reserved The value read from these bist are indeterminate. Do not set the bits.					
1		CCF1	PCA Module 1 Compare/Capture Flag Set by hardware when a match or capture occurs. This genera PCA interrupt request if the ECCF 1 bit in CCAPM 1 register is Must be cleared by software.				0	
0	CCF0		PCA Module 0 Compare/Capture Flag Set by hardware when a match or capture occurs. This generates PCA interrupt request if the ECCF 0 bit in CCAPM 0 register is se Must be cleared by software.					

Reset Value = 00xx xx00b

Table 97. CCAPnH Registers

CCAP0H (S:FAh) CCAP1H (S:FBh) PCA High Byte Compare/Capture Module n Register (n=0..1)

7	6	i	5	4	3	2	1	0
CCAPnH 7	CCAP	nH 6	CCAPnH 5	CCAPnH 4	CCAPnH 3	CCAPnH 2	CCAPnH 1	CCAPnH 0
Bit Numb	ber	Bit	Vnemonic	Description				
7:0		СС	APnH 7:0	High byte of I	EWC-PCA coi	mparison or c	apture values	

Reset Value = 0000 0000b

Table 98. CCAPnL Registers

CCAP0L (S:EAh) CCAP1L (S:EBh) PCA Low Byte Compare/Capture Module n Register (n=0..1)

7	6	6	5	4	3	2	1	0
CCAPnL 7	CCAF	PnL 6	CCAPnL 5	CCAPnL 4	CCAPnL 3	CCAPnL 2	CCAPnL 1	CCAPnL 0
Bit Numb	per	Bit	Mnemonic	Description				
7:0		CC	CAPnL 7:0	Low byte of E	EWC-PCA cor	nparison or ca	apture values	

Reset Value = 0000 0000b

Table 99. CCAPMn Registers

CCAPM0 (S:DAh) CCAPM1 (S:DBh) PCA Compare/Capture Module n Mode registers (n=0..1)

7	6	5	4	3	2	1	0	
-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	
Bit Num	ber Bit	Mnemonic	Description					
7	7 -		Reserved The Value rea	ad from this bi	it is indetermi	nate. Do not s	et this bit.	
6	6 ECOMn		Enable Compare Mode Module x bit Clear to disable the Compare function. Set to enable the Compare function. The Compare function is used to implement the software Timer, the high-speed output, the Pulse Width Modulator (PWM) and the Watchdog Timer (WDT).					
5		CAPPn		de (Positive) ble the Captur the Capture t	e function trig		C	
4		CAPNn	Capture Mode (Negative) Module x bit Clear to disable the Capture function triggered by a negative on CEXx pin. Set to enable the Capture function triggered by a negative CEXx pin.					
3		MATn	Match Module x bit Set when a match of the PCA Counter with the Compare/Captur register sets CCFx bit in CCON register, flagging an interrupt.					
2		TOGn	Toggle Module x bit The toggle mode is configured by setting ECOMx, I bits. Set when a match of the PCA Counter with the Co register toggles the CEXx pin.					
1		PWMn	Pulse Width Modulation Module x Mode bit Set to configure the module x as an 8-bit Pulse W with output waveform on CEXx pin.			Modulator		
0		ECCFn	Clear to disal request.	x Interrupt bi ble CCFx bit ir e CCFx bit in C	n CCON regist	Ū		

Reset Value = X000 0000b

Table 100. CH Register

CH (S:F9h) PCA Counter Register High value

7	6	5	4	3	2	1	0
CH 7	CH 6	CH 5	CH 4	CH 3	CH 2	CH 1	CH 0
Bit Numb	ber	it Mnemonic	Description				

Reset Value = 0000 00000b

Table 101. CL Register

CL (S:E9h) PCA counter Register Low value

7	6		5	4	3	2	1	0
CL 7	CL	6	CL 5	CL 4	CL 3	CL 2	CL 1	CL 0
Bit Numb	ber	Bit I	Mnemonic	Description				
7:0		(CL0 7:0	Low byte of T	- imer/Counter			

Reset Value = 0000 00000b

Analog-to-Digital Converter (ADC)	This section describes the on-chip 10-bit analog-to-digital converter of the T89C51CC02. Eight ADC channels are available for sampling of the external sources AN0 to AN7. An analog multiplexer allows the single ADC converter to select one from the 8 ADC channels as ADC input voltage (ADCIN). ADCIN is converted by the 10-bit-cascaded potentiometric ADC.
	Two modes of conversion are available: - Standard conversion (8 bits). - Precision conversion (10 bits).
	For the precision conversion, set bit PSIDLE in ADCON register and start conversion. The device is in a pseudo-idle mode, the CPU does not run but the peripherals are always running. This mode allows digital noise to be as low as possible, to ensure high precision conversion.
	For this mode it is necessary to work with end of conversion interrupt, which is the only way to wake the device up.
	If another interrupt occurs during the precision conversion, it will be served only after this conversion is completed.
Features	 8 channels with multiplexed inputs 10-bit cascaded potentiometric ADC Conversion time 16 micro-seconds (typ.) Zero Error (offset) ± 2 LSB max Positive External Reference Voltage Range (VAREF) 2.4 to 3.0-volt (typ.) ADCIN Range 0 to 3-volt Integral non-linearity typical 1 LSB, max. 2 LSB Differential non-linearity typical 0.5 LSB, max. 1 LSB Conversion Complete Flag or Conversion Complete Interrupt Selectable ADC Clock
ADC Port1 I/O Functions	Port 1 pins are general I/O that are shared with the ADC channels. The channel select bit in ADCF register define which ADC channel/port1 pin will be used as ADCIN. The remaining ADC channels/port1 pins can be used as general purpose I/O or as the alternate function that is available.
	A conversion launched on a channel which are not selected on ADCF register will not have any effect.
VAREF	VAREF should be connected to a low impedance point and must remain in the range specified VAREF absolute maximum range (See section "AC-DC").
	. If the ADC is not used, it is recommended to tie VAREF to VAGND.

Figure 52. ADC Description

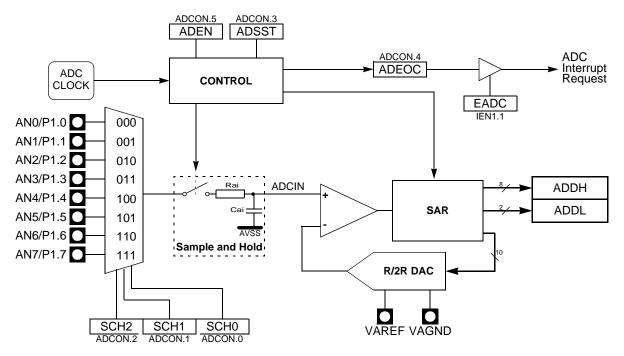
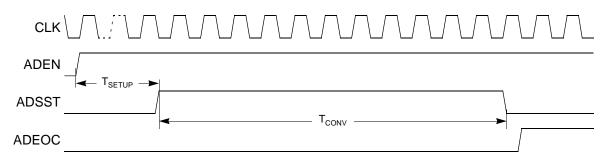



Figure 53 shows the timing diagram of a complete conversion. For simplicity, the figure depicts the waveforms in idealized form and do not provide precise timing information. For ADC characteristics and timing parameters refer to the section "AC Characteristics" of this datasheet.

Figure 53. Timing Diagram

Note: Tsetup min, see the AC Parameter for A/D conversion.

Tconv = 11 clock ADC = 1sample and hold + 10-bit conversion

The user must ensure that Tsetup time between setting ADEN and the start of the first conversion.

ADC Converter Operation

A start of single A/D conversion is triggered by setting bit ADSST (ADCON.3).

After completion of the A/D conversion, the ADSST bit is cleared by hardware.

The end-of-conversion flag ADEOC (ADCON.4) is set when the value of conversion is available in ADDH and ADDL, it must be cleared by software. If the bit EADC (IEN1.1) is set, an interrupt occur when flag ADEOC is set (See Figure 55). Clear this flag for rearming the interrupt.

Note: Always leave Tsetup time before starting a conversion unless ADEN is permanently high. In this case one should wait Tsetup only before the first conversion

4126L-CAN-01/08

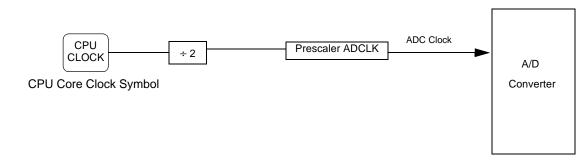
The bits SCH0 to SCH2 in ADCON register are used for the analog input channel selection.

Table 102.	Selected Analog input
------------	-----------------------

SCH2	SCH1	SCH0	Selected Analog Input	
0	0	0	AN0	
0	0	1	AN1	
0	1	0	AN2	
0	1	1	AN3	
1	0	0	AN4	
1	0	1	AN5	
1	1	0	AN6	
1	1	1	AN7	

Voltage Conversion When the ADCIN is equals to VAREF the ADC converts the signal to 3FFh (full scale). If the input voltage equals VAGND, the ADC converts it to 000h. Input voltage between VAREF and VAGND are a straight-line linear conversion. All other voltages will result in 3FFh if greater than VAREF and 000h if less than VAGND.

Note that ADCIN should not exceed VAREF absolute maximum range (See section "AC-DC").

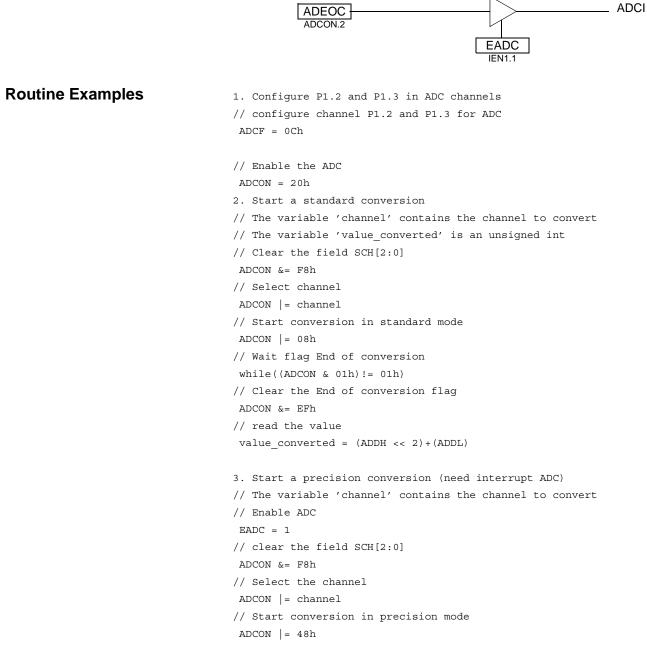

Clock Selection The ADC clock is the same as CPU.

The maximum clock frequency is defined in the DC parmeter for A/D converter. A prescaler is featured (ADCCLK) to generate the ADC clock from the oscillator frequency.

if PRS = 0 then $F_{ADC} = F_{periph} / 64$

if PRS > 0 then $F_{ADC} = F_{periph} / 2 \times PRS$

Figure 54. A/D Converter Clock


ADC Standby Mode

When the ADC is not used, it is possible to set it in standby mode by clearing bit ADEN in ADCON register. In this mode the power dissipation is reduced.

IT ADC Management

An interrupt end-of-conversion will occurs when the bit ADEOC is activated and the bit EADC is set. For re-arming the interrupt the bit ADEOC must be cleared by software.

Figure 55. ADC interrupt structure

Note: To enable the ADC interrupt: EA = 1

Registers

Table 103.ADCF RegisterADCF (S:F6h)

ADC Configuration

7	6	5	4	3	2	1	0		
CH 7	CH 6	CH 5	CH 4	CH 3	CH 2	CH 1	CH 0		
Bit Number	Bit Mnemonic	Description	Description						
7 - 0	CH 0:7		nfiguration 1.x as ADC in P1.x as stand	•					

Reset Value = 0000 0000b

Table 104.ADCON RegisterADCON (S:F3h)ADC Control Register

7	6	5	4	3	2	1	0		
-	PSIDLE	ADEN	ADEOC	ADSST	SCH2	SCH1	SCH0		
Bit Number	Bit Mnemonic	Description	Description						
7	-	Reserved The value re	ad from these	bits are indet	erminate. Do i	not set these	bits.		
6	PSIDLE	Set to put in	Pseudo Idle Mode (Best Precision) Set to put in idle mode during conversion Clear to convert without idle mode.						
5	ADEN	Enable/Stan Set to enable Clear for Sta	e ADC						
4	ADEOC	interrupt.		C result is rea re.	dy to be read.	This flag can	generate an		
3	ADSST	Start and Status Set to start an A/D conversion. Cleared by hardware after completion of the conversion							
2-0	SCH2:0	Selection of See Table 10	Channel to	Convert					

Reset Value = X000 0000b

Table 105.ADCLK RegisterADCLK (S:F2h)ADC Clock Prescaler

7	6	5	4	3	2	1	0	
-	-	-	PRS 4	PRS 3	PRS 2	PRS 1	PRS 0	
Bit Number	Bit Mnemonic	Description	Description					
7 - 5	-	Reserved The value re	Reserved The value read from these bits are indeterminate. Do not set these bits.					
4-0	PRS4:0	-)) in X1 mode in X2 mode				

Reset Value = XXX0 0000b

Table 106. ADDH RegisterADDH (S:F5h Read Only)ADC Data High Byte Register

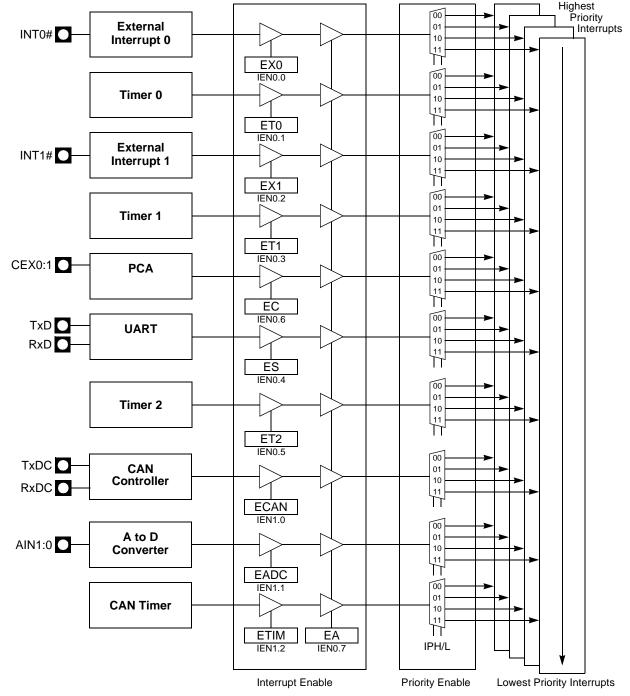
7	6	5	4	3	2	1	0
ADAT 9	ADAT 8	ADAT 7	ADAT 6	ADAT 5	ADAT 4	ADAT 3	ADAT 2
Bit Number	Bit Mnemonic	Description					
	Millenionic	Description					

Reset Value = 00h

Table 107. ADDL RegisterADDL (S:F4h Read Only)ADC Data Low Byte Register

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	ADAT 1	ADAT 0	
Bit Number	Bit Mnemonic	Description						
7 - 2	-	Reserved The value re	Reserved The value read from these bits are indeterminate. Do not set these bits.					
1-0	ADAT1:0	ADC result bits 1-0						

Reset Value = 00h



Interrupt System

Introduction

The CAN Controller has a total of 10 interrupt vectors: two external interrupts (INTO and INT1), three timer interrupts (timers 0, 1 and 2), a serial port interrupt, a PCA, a CAN interrupt, a timer overrun interrupt and an ADC. These interrupts are shown below.

Figure 56. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register. This register also contains a global disable bit which must be cleared to disable all the interrupts at the same time.

Each interrupt source can also be individually programmed to one of four priority levels by setting or clearing a bit in the Interrupt Priority registers. The Table below shows the bit values and priority levels associated with each combination.

IPH.x	IPL.x	Interrupt Level Priority		
0	0	0 (Lowest)		
0	1	1		
1	0	2		
1	1	3 (Highest)		

Table 108. Priority Level bit Values

A low-priority interrupt can be interrupted by a high priority interrupt but not by another low-priority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of the higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence, See Table 109.

Table 109.	Interrupt	Priority	Within Level	
------------	-----------	----------	--------------	--

Interrupt Name	Interrupt Address Vector	Interrupt Number	Polling Priority
External interrupt (INT0)	0003h	1	1
Timer0 (TF0)	000Bh	2	2
External interrupt (INT1)	0013h	3	3
Timer 1 (TF1)	001Bh	4	4
PCA (CF or CCFn)	0033h	7	5
UART (RI or TI)	0023h	5	6
Timer 2 (TF2)	002Bh	6	7
CAN (Txok, Rxok, Err or OvrBuf)	003Bh	8	8
ADC (ADCI)	0043h	9	9
CAN Timer Overflow (OVRTIM)	004Bh	10	10

Registers

Figure 57. IEN0 Register IEN0 (S:A8h) Interrupt Enable Register

7	6	5	4	3	2	1	0		
EA	EC	ET2	ES	ET1	EX1	ET0	EX0		
Bit Number	Bit Mnemonic	Description							
7	EA	Clear to disa Set to enable If EA=1, eacl	Enable All Interrupt bit Clear to disable all interrupts. Set to enable all interrupts. f EA=1, each interrupt source is individually enabled or disabled by setting or clearing its interrupt enable bit.						
6	EC		pt Enable ble the PCA in the PCA inte						
5	ET2	Clear to disa	Timer 2 Overflow Interrupt Enable bit Clear to disable Timer 2 overflow interrupt. Set to enable Timer 2 overflow interrupt.						
4	ES		Enable bit ble serial port e serial port in	•					
3	ET1	Clear to disa	ble timer 1 ov	pt Enable bit erflow interrup flow interrupt.	ot.				
2	EX1	Clear to disa	errupt 1 Enal ble external ir e external inte	nterrupt 1.					
1	ET0	Clear to disa	Timer 0 Overflow Interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.						
0	EX0	Clear to disa	External Interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.						

Reset Value = 0000 0000b bit addressable

Figure 58. IEN1 Register IEN1 (S:E8h) Interrupt Enable Register

7	6	5	4	3	2	1	0
-	-	-	-		ETIM	EADC	ECAN
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
6	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
5	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
3	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
2	ETIM	Clear to disa		Enable bit overrun interru errun interrupt	•		
1	EADC	ADC Interrupt Enable bit Clear to disable the ADC interrupt. Set to enable the ADC interrupt.					
0	ECAN	Clear to disa	pt Enable bit ble the CAN i e the CAN inte	nterrupt.			

Reset Value = xxxx x000b bit addressable

Table 110.IPL0 RegisterIPL0 (S:B8h)Interrupt Enable Register

7	6	5	4	3	2	1	0		
-	PPC	PT2	PS	PT1	PX1	PT0	PX0		
Bit Number	Bit Mnemonic	Description	Description						
7	-	Reserved The value re	ad from this b	oit is indetermin	nate. Do not s	et this bit.			
6	PPC	PCA Interru Refer to PPC	pt Priority bi H for priority						
5	PT2		Timer 2 Overflow Interrupt Priority bit Refer to PT2H for priority level.						
4	PS	Serial Port F Refer to PSF		evel.					
3	PT1		rflow Interru H for priority	i pt Priority bit level.					
2	PX1	External Internation Refer to PX1	errupt 1 Prio H for priority	•					
1	PT0		Timer 0 Overflow Interrupt Priority bit Refer to PT0H for priority level.						
0	PX0		External Interrupt 0 Priority bit Refer to PX0H for priority level.						

Reset Value = X000 0000b bit addressable

Table 111. IPL1 RegisterIPL1 (S:F8h)Interrupt Priority Low Register 1

7	6	5	4	3	2	1	0			
-	-	-	-		POVRL	PADCL	PCANL			
Bit Number	Bit Mnemonic	Description	Description							
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.				
6	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.				
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
3	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
2	POVRL		Timer Overrun Interrupt Priority Level Less Significant bit Refer to PI2CH for priority level.							
1	PADCL		ADC Interrupt Priority Level Less Significant bit Refer to PSPIH for priority level.							
0	PCANL		pt Priority Le H for priority	evel Less Sig level.	nificant bit					

Reset Value = XXXX X000b bit addressable

Table 112.IPH0 RegisterIPH0 (B7h)Interrupt High Priority Register

7	6	5	4	3	2	1	0
-	PPCH	PT2H	PSH	PT1H	PX1H	РТОН	PX0H
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value re	ad from this bi	it is indetermi	nate. Do not s	et this bit.	
6	РРСН		pt Priority Le <u>Priority level</u> Lowest Highest priori	<u> </u>	nificant bit		
5	PT2H		erflow Interrup Priority Leve Lowest Highest		ity bit		
4	PSH	Serial Port PSH PS 0 0 1 0 1 1	High Priority I <u>Priority Leve</u> Lowest Highest				
3	PT1H		erflow Interrup <u>Priority Leve</u> Lowest Highest		ity bit		
2	PX1H		errupt 1 High <u>Priority Leve</u> Lowest Highest				
1	РТОН		erflow Interrup Priority Leve Lowest Highest		ity bit		
0	РХОН	External Int PX0H PX0 0 0 0 1 1 0 1 1	errupt 0 High <u>Priority Leve</u> Lowest Highest	Priority bit <u>I</u>			

Reset Value = X000 0000b

Table 113.IPH1 RegisterIPH1 (S:F7h)Interrupt high priority Register 1

7	6	5	4	3	2	1	0		
-	-	-	-		POVRH	PADCH	PCANH		
Bit Number	Bit Mnemonic	Description	Description						
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
6	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
5	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
4	-	Reserved The value re-	ad from this b	it is indetermi	nate. Do not s	et this bit.			
3	-	Reserved The value re-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
2	POVRH	<u>POVRH</u> P	0 0 Lowest 0 1 1 0						
1	PADCH	PADCH PA 0 0 1 0	pt Priority Le <u>ADCL Priority</u> 0 Lowest 1 0 1 Highest		nificant bit				
0	PCANH		pt Priority Le CANLPriority 0 Lowest 1 0 1 Highest		nificant bit				

Reset Value = XXXX X000b

Electrical Characteristics

Absolute Maximum Ratings

I = industrial40°C to 85°C	Note:
Storage Temperature65°C to + 150°C	
Voltage on V_{CC} from V_{SS} 0.5V to + 6V	
Voltage on Any Pin from V_{SS} 0.5V to V_{CC} + 0.2V	
Power Dissipation1 W	

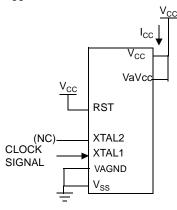
Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Power Dissipation value is based on the maximum allowable die temperature and the thermal resistance of the package.

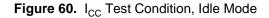
DC Parameters for **Standard Voltage**

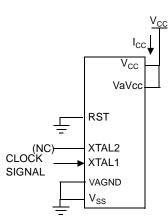
 $T_A = -40^{\circ}C$ to +85°C; $V_{SS} = 0$ V; $V_{CC} = 3$ volts to 5.5 volts; F = 0 to 40 MHz

Symbol	Parameter	Min	Typ ⁽¹⁾	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2Vcc - 0.1	V	
$V_{\rm IH}$	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1} ⁽²⁾	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 and $4^{(3)}$			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A$ $I_{OL} = 1.6 \ m A$ $I_{OL} = 3.5 \ m A$
V _{OH}	Output High Voltage, ports 1, 2, 3, 4 and 5	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -10 \ \mu A$ $I_{OH} = -30 \ \mu A$ $I_{OH} = -60 \ \mu A$ $V_{CC} = 5V \pm 10\%$
R _{RST}	RST Pulldown Resistor	50	90	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2, 3 and 4			-50	μA	Vin = 0.45V
I _{LI}	Input Leakage Current			±10	μA	0.45V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3 and 4			-650	μA	Vin = 2.0V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power-down Current		160	400	μΑ	$3V < V_{CC} < 5.5V^{(4)}$
I _{CC}	Power Supply Current $I_{CCOP}^{(6)} = 0.7$ Freq (MHz) + 3 mA $I_{CCIDLE}^{(5)} = 0.6$ Freq (MHz) + 2 mA					

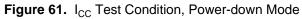

2. Flash retention is guaranteed with the same formula for V_{CC} min down to 0V. 3. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

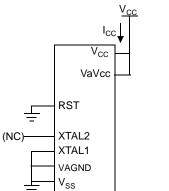
Maximum I_{OL} per port pin: 10 mA


Maximum I_{OL} per 8-bit port: Ports 1, 2 and 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

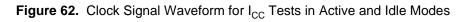

- 4. Power-down I_{CC} is measured with all output pins disconnected; XTAL2 NC.; RST = V_{SS} (See Figure 61.).
- 5. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5V$, $V_{IH} = V_{CC} 0.5V$; XTAL2 N.C; RST = V_{SS} (See Figure 60.).
- 6. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns (See Figure 62.), $V_{IL} = V_{SS} + 0.5V$, $V_{IH} = V_{CC} 0.5V$; XTAL2 N.C.; RST = V_{CC} . I_{CC} would be slightly higher if a crystal oscillator used (See Figure 59.).

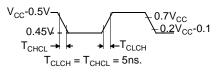
All other pins are disconnected.





All other pins are disconnected





All other pins are disconnected.

DC Parameters for A/D Converter

Table 115. DC Parameters for AD Converter in Precision Conversion

Symbol	Parameter	Min	Typ ⁽¹⁾	Мах	Unit	Test Conditions
AVin	Analog input voltage	Vss- 0.2		Max Vref + 0.6	V	
VaVcc	Analog supply voltage	Vref	Vcc	Vcc + 10%	V	
Rref ⁽²⁾	Resistance between Varef and Vss	12	16	24	KΩ	
Varef	Reference voltage	2.40		3.00	V	
Cai	Analog input Capacitance		60		pF	During sampling
Rai	Analog input Resistor			400	Ω	During sampling
INL	Integral non linearity		1	2	lsb	
DNL	Differential non linearity		0.5	1	lsb	
OE	Offset error	-2		2	lsb	

Notes: 1. Typicals are based on a limited number of samples and are not guaranteed.

2. With ADC enabled.

AC Parameters

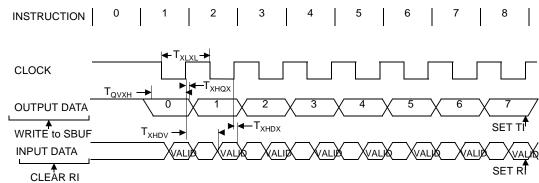
Serial Port Timing - Shift Register Mode

Table 116. Symbol Description (F = 40 MHz)

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

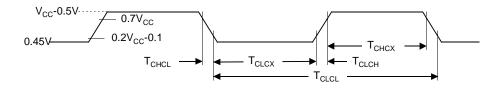
Table 117. AC Parameters for a Fix Clock (F = 40 MHz)

Symbol	Min	Max	Units
T _{XLXL}	300		ns
T _{QVHX}	200		ns
T _{XHQX}	30		ns
T _{XHDX}	0		ns
T _{XHDV}		117	ns


Table 118. AC Parameters for a Variable Clock

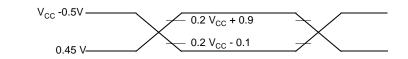
Symbol	Туре	Standard Clock	X2 Clock	x parameter for -M range	Units
T _{XLXL}	Min	12 T	6 T		ns
T _{QVHX}	Min	10 T - x	5 T - x	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	ns
T _{XHDX}	Min	х	х	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	ns

Shift Register Timing Waveforms

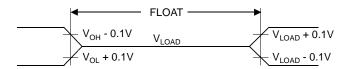


External Clock Drive Characteristics (XTAL1)

Table 119. AC Parameters


Symbol	Parameter	Min	Мах	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 Mode	40	60	%

External Clock Drive Waveforms


AC Testing Input/Output Waveforms

INPUT/OUTPUT

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

Float Waveforms

AT/T89C51CC02

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \geq \pm$ 20mA.

Clock Waveforms

Valid in normal clock mode. In X2 Mode XTAL2 must be changed to XTAL2/2.

Flash/EEPROM Memory

Table 120. Memory AC Timing

 V_{cc} = 3.0V to 5.5V, T_A = -40°C to +85°C

Symbol	Parameter	Min	Тур	Max	Unit
T _{BHBL}	Flash/EEPROM Internal Busy (Programming) Time		13	17	ms
N _{FCY}	Number of Flash/EEPROM Erase/Write Cycles	100 000			cycles
T _{FDR}	Flash/EEPROM Data Retention Time	10			years

Figure 63. Flash Memory - Internal Busy Waveforms

A/D Converter

Table 121. AC Parameters for A/D Conversion

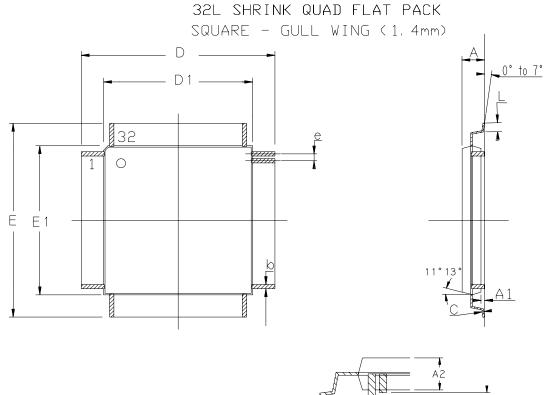
Symbol	Parameter	Min	Тур	Max	Unit
T _{SETUP}		4			μs
ADC Clock Frequency			700		KHz

Ordering Information

Part Number	Bootloader	Temperature Range	Package	Packing	Product Marking		
T89C51CC02CA-RATIM		•		•	•		
T89C51CC02CA-SISIM							
T89C51CC02CA-TDSIM							
T89C51CC02CA-TISIM							
T89C51CC02UA-RATIM		OBSOLETE					
T89C51CC02UA-SISIM							
T89C51CC02UA-TDSIM							
T89C51CC02UA-TISIM							
AT89C51CC02CA-RATUM	CAN ⁽²⁾	Industrial & Green	VQFP32	Tray	89C51CC02CA-UM		
AT89C51CC02CA-SISUM	CAN ⁽²⁾	Industrial & Green	PLCC28	Stick	89C51CC02CA-UM		
AT89C51CC02CA-TDSUM	CAN ⁽²⁾	Industrial & Green	SOIC24	Stick	89C51CC02CA-UM		
AT89C51CC02CA-TISUM	CAN ⁽²⁾	Industrial & Green	SOIC28	Stick	89C51CC02CA-UM		
AT89C51CC02UA-RATUM	UART ⁽²⁾	Industrial & Green	VQFP32	Tray	89C51CC02UA-UM		
AT89C51CC02UA-SISUM	UART ⁽²⁾	Industrial & Green	PLCC28	Stick	89C51CC02UA-UM		
AT89C51CC02UA-TDSUM	UART ⁽²⁾	Industrial & Green	SOIC24	Stick	89C51CC02UA-UM		
AT89C51CC02UA-TISUM	UART ⁽²⁾	Industrial & Green	SOIC28	Stick	89C51CC02UA-UM		

Factory default programming for T89C51CC02CA-xxxx is Bootloader CAN and HSB = BBh:

- X1 mode
- BLJB = 0 : jump to Bootloader
- LB2 = 0 : Security Level $3^{(1)}$


Factory default programming for T89C51CC02UA-xxxx is Bootloader UART and HSB = BBh:

- X1 mode
- BLJB = 0 : jump to Bootloader
- LB2 = 0 : Security Level $3^{(1)}$
- Notes: 1. LB2 = 0 is not described in Table 22 Program load bit. LB2 = 0 is equivalent to LB1 = 0: Security Level 3.
 - 2. Customer can change these modes by re-programming with a parallel programmer, this can be done by an Atmel distributor.

146 **AT/T89C51CC02**

Package Drawings

VQFP32

0.102 MAX. LEAD COPLANARITY

	М	M	INCH		
	Min	Max	Min	Max	
A	_	1, 60	_	, 063	
A 1	0, 05	0.15	. 002	, 006	
A2	1, 35	1.45	. 053	, 057	
С	0,09	0, 20	, 004	, 008	
D	9, 00	BSC	.354 BSC		
D 1	7,00	BSC	, 276 BSC		
E	9, 00	BSC	. 354	BSC	
E 1	7,00	BSC	. 276	BSC	
L	0, 45	0, 75	, 018	, 030	
e	0, 8	O BSC	. 03	15 BSC	
b	0, 30 0, 45		. 012	. 018	

STANDARD NOTES FOR PQFP/ VQFP / TQFP / DQFP

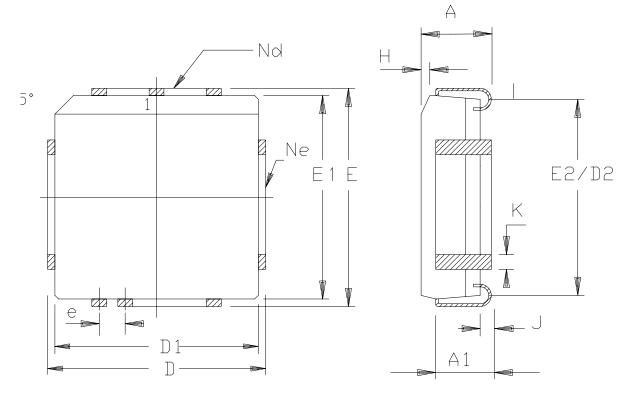
1/ CONTROLLING DIMENSIONS : INCHES

2/ ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y 14.5M - 1982.

3/ "D1 AND E1" DIMENSIONS DO NOT INCLUDE MOLD PROTUSIONS. MOLD PROTUSIONS SHALL NOT EXCEED 0.25 mm (0.010 INCH). THE TOP PACKAGE BODY SIZE MAY BE SMALLER THAN THE BOTTOM PACKAGE BODY SIZE BY AS MUCH AS 0.15 mm.

4/ DATUM PLANE "H" LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE.

5/ DATUM "A" AND "D" TO BE DETERMINED AT DATUM PLANE H.


6/ DIMENSION " f " DOES NOT INCLUDE DAMBAR PROTUSION ALLOWABLE DAMBAR PROTUSION SHALL BE 0.08mm/.003" TOTAL IN EXCESS OF THE " f " DIMENSION AT MAXIMUM MATERIAL CONDITION .

DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

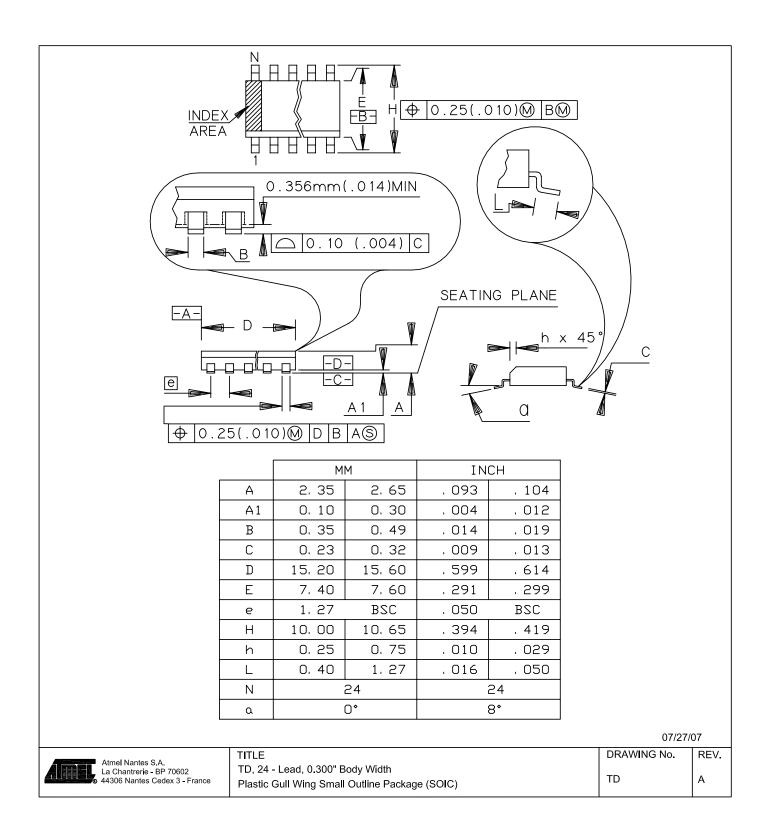
AT/T89C51CC02

PLCC28

28 PINS PLCC

	Μ	1M	IN	СН
A	4, 20	4, 57	, 165	. 180
A 1	2, 29	3. 04	, 090	. 120
D	12, 32	12, 57	, 485	, 495
D 1	11.43	11, 58	, 450	, 456
D2	9, 91	10, 92	, 390	, 430
E	12.32	12, 57	, 485	, 495
E 1	11.43	11, 58	, 450	, 456
E2	9, 91	10, 92	, 390	, 430
e	1, 27	BSC	, 050	BSC
Н	1,07	1, 42	, 042	, 056
J	0,51	_	, 020	_
К	0, 33	0, 53	, 013	, 021
Nd		7		7
Ne		7		7
P	KG STD	00		

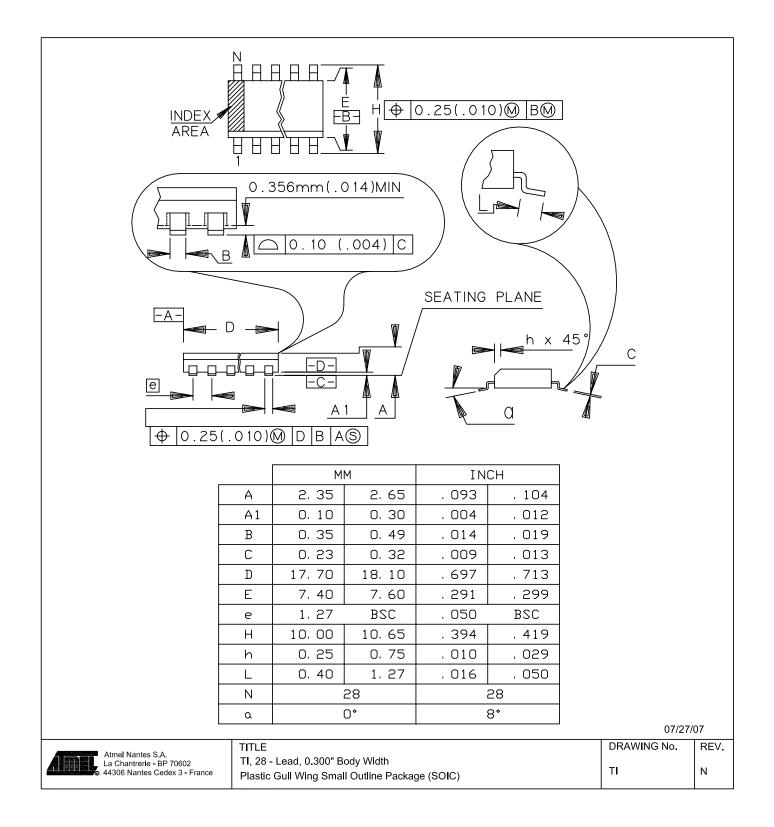
STANDARD NOTES FOR PLCC


1/ CONTROLLING DIMENSIONS : INCHES

2/ DIMENSIONING AND TOLERANCING PER ANSI Y 14.5M - 1982.

3/ "D" AND "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTUSIONS. MOLD FLASH OR PROTUSIONS SHALL NOT EXCEED 0.20 mm (.008 INCH) PER SIDE.

150 AT/T89C51CC02


SOIC24

SOIC28

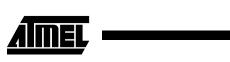
NOTES: SOIC STANDARD NOTES

1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M. - 1982.

2. "D" AND "E" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTUSIONS. MOLD FLASH OR PROTUSIONS SHALL NOT EXCEED 0.15mm (0.006 INCH) PER SIDE.

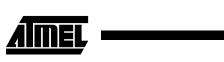
3. THE CHAMFER "h" IS OPTIONAL.

Datasheet Revision History


Changes from 4126C-	1.	Changed the endurance of Flash to 100, 000 Write/Erase cycles.
10/02 to 4126D - 04/03	2.	Added note on Flash retention formula for V _{IH1} , in Section "DC Parameters for Standard Voltage", page 141.Changes from 4129F-11/02 to 4129G-04/03
	1.	Changed the endurance of Flash to 100, 000 Write/Erase cycles.
	2.	Added note on Flash retention formula for V_{IH1} , in Section "DC Parameters for Standard Voltage", page 141.
Changes from 4126D -	1.	Updated "Electrical Characteristics" on page 140.
05/03 to 4126E - 10/03	2.	Corrected Figure 39 on page 82.
Changes from 4126E - 10/03 to 4126F - 12/03	1.	Changed value of IPDMAX to 400, Section "Absolute Maximum Ratings", page 140.
	2.	PCA, CPS0, register correction, Section "PCA Registers", page 121.
	3.	Cross Memory section added. Section "Operation Cross Memory Access", page 44.
Changes from 4126F -	1.	Figure clock-out mode modified see, Figure 30 on page 65.
12/03 4126G - 08/04	2.	Corrected error in Table 51 on page 70, (1.25ms to 1.25s) for Time-out Computation.
	3.	Added explanation on the CAN protocol, see Section "CAN Controller", page 73.
Changes from 4126G - 08/04 to 4126H - 01/05	1.	Various minor corrections throughout the document.
Changes from 4126H - 01/05 to 4126I 11/05	1.	Added Green product ordering information.
Changes from 4126I to 4126J 05/06	1.	Minor corrections throughout the document.
Changes from 4126J to 4126K 11/07	1.	Updated Package drawings.
Changes from 4126K 11/07 to 4126L 02/08	1.	Removed non-green part numbers from ordering information.

154 AT/T89C51CC02

<u>Description</u>	
Block Diagram	
Pin Configurations	
Pin Description	
I/O Configurations	
Port Structure	
Read-Modify-Write Instructions	
Quasi Bi-directional Port Operation	
SFR Mapping	
Clock	
Description	
Register	
Power Management	
Reset Pin	
Reset Pin At Power-up (cold reset)	
At Power-up (cold reset)	
At Power-up (cold reset) During a Normal Operation (Warm Reset)	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset Reset Recommendation to Prevent Flash Corruption	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset Reset Recommendation to Prevent Flash Corruption Idle Mode	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset Reset Recommendation to Prevent Flash Corruption Idle Mode Power-down Mode	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset Reset Recommendation to Prevent Flash Corruption Idle Mode Power-down Mode Registers	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset Reset Recommendation to Prevent Flash Corruption Idle Mode Power-down Mode Registers	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset Reset Recommendation to Prevent Flash Corruption Idle Mode Power-down Mode Registers Data Memory Internal Space	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset Reset Recommendation to Prevent Flash Corruption Idle Mode Power-down Mode Registers Data Memory Internal Space Dual Data Pointer Registers EEPROM Data Memory	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset Reset Recommendation to Prevent Flash Corruption Idle Mode Power-down Mode Registers Data Memory Internal Space Dual Data Pointer Registers	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset Reset Recommendation to Prevent Flash Corruption Idle Mode Power-down Mode Registers Data Memory Internal Space Dual Data Pointer Registers EEPROM Data Memory	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset Reset Recommendation to Prevent Flash Corruption Idle Mode Power-down Mode Power-down Mode Registers Data Memory Internal Space Dual Data Pointer Registers EEPROM Data Memory Write Data in the Column Latches	
At Power-up (cold reset) During a Normal Operation (Warm Reset) Watchdog Reset Reset Recommendation to Prevent Flash Corruption Idle Mode Power-down Mode Power-down Mode Registers Data Memory Internal Space Dual Data Pointer Registers EEPROM Data Memory Write Data in the Column Latches Programming	


Table of Contents

Program/Code Memory	34
Flash Memory Architecture	
Overview of FM0 Operations	
Registers	42
Operation Cross Memory Access	44
Sharing Instructions 4	45
In-System Programming (ISP)	47
Flash Programming and Erasure	
Boot Process	48
Application-Programming-Interface	48
XROW Bytes	49
Hardware Conditions	49
Hardware Security Byte	50
Serial I/O Port	51
Framing Error Detection	51
Automatic Address Recognition	52
Given Address	52
Broadcast Address	53
Registers	54
Timers/Counters	57
Timer/Counter Operations	57
Timer 0	57
Timer 1	59
Interrupt6	60
Registers	61
Timer 2	64
Auto-Reload Mode	64
Programmable Clock-Output	65
Registers	66
Watchdog Timer	69
Watchdog Programming	
Watchdog Timer During Power-down Mode and Idle	71
Register	
CAN Controller	73

Electrical Characteristics	140
-	
Registers	
Introduction	
Interrupt System	132
Registers	130
Routine Examples	129
IT ADC Management	129
ADC Standby Mode	128
Clock Selection	128
Voltage Conversion	128
ADC Converter Operation	127
VAREF	126
ADC Port1 I/O Functions	126
Features	126
Analog-to-Digital Converter (ADC)	126
	121
PCA Registers	
Pulse Width Modulator Mode	
High Speed Output Mode	
16-bit Software Timer Mode	
PCA Interrupt PCA Capture Mode	
PCA Modules PCA Interrupt	
PCA Timer PCA Modules	
PCA Timer	
Programmable Counter Array (PCA)	111
Registers	. 94
CAN SFRs	
Routine Examples	
CAN Autobaud and Listening Mode	
Time Trigger Communication (TTC) and Message Stamping	
Data and Remote Frame	
Acceptance Filter	. 87
Fault Confinement	. 86
Bit Timing and Baud Rate	
IT CAN Management	. 81
CAN Controller Management	. 80
CAN Controller Mailbox and Registers Organization	
CAN Controller Description	
CAN Protocol	. 73

Absolute Maximum Ratings	140
DC Parameters for Standard Voltage	140
DC Parameters for A/D Converter.	142
AC Parameters	143
Ordering Information	146
Package Drawings	147
VQFP32	147
PLCC28	149
	150
SOIC24	151
SOIC28	152
Datasheet Revision History	154
Changes from 4126C-10/02 to 4126D - 04/03	154
Changes from 4126D -05/03 to 4126E - 10/03	
Changes from 4126E - 10/03 to 4126F - 12/03	154
Changes from 4126F - 12/03 4126G - 08/04	154
Changes from 4126G - 08/04 to 4126H - 01/05	154
Changes from 4126H - 01/05 to 4126I 11/05	154
Changes from 4126I to 4126J 05/06	154
Changes from 4126J to 4126K 11/07	154
Changes from 4126K 11/07 to 4126L 02/08	154
Table of Contents	i

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 **RF**/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedotherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2008. All rights reserved. Atmel[®], logo and combinations thereof, and Everywhere You Are[®] are the trademarks or registered trademarks, of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

