
PIC1XF1XXX Software Migration
INTRODUCTION
After years of success, the PIC12/16 mid-range
microcontroller has been refreshed to be more suited
for C and increase the performance for many typical
applications.

These changes include:

• Additional instructions
• More memory
• New indirect addressing modes

Every effort was taken to assure the forward
compatibility of the legacy code base but in a few
cases, there are differences that must be reconciled by
adjustments to the software. This PIC1XF1XXX
Software Migration document has three sections
describing the new design, teaching how to migrate
existing software and introducing many software
optimizing techniques.

ARCHITECTURE

New Features
The enhanced PIC12/16 extends the architecture with
the following features:

• Program memory extended to 32KW (56KB)
• Data memory extended to 2KB
• 14 new instructions
• Linear mapping
• Simplified core register map
• Enhanced indirect addressing functions
• Automatic interrupt context save

These enhancements can increase the performance of
many applications while remaining largely compatible
with existing software.

Core Registers
The PIC12/16 has always had a core set of registers
that are present in every device. One of the goals for
the enhanced version was to collect the core registers
into a standard location. The first 12 SFR addresses of
every bank are now the core registers, as shown in
Table 1.

Note: This device has been designed to
perform to the parameters of its data
sheet. It has been tested to an electri-
cal specification designed to deter-
mine its conformance with these
parameters. Due to process differ-
ences in the manufacture of this
device, this device may have different
performance characteristics than its
earlier version. These differences
may cause this device to perform
differently in your application than the
earlier version of this device.

Note: The user should verify that the device
oscillator starts and performs as
expected. Adjusting the loading
capacitor values and/or the oscillator
mode may be required.
© 2009 Microchip Technology Inc. DS41375A-page 1

TABLE 1: SFR ADDRESSES

The core registers in the enhanced PIC12/16 are the
same as the legacy registers with the addition of a
second FSR/INDF, the BSR and mapping the W
register in WREG. The IRP, RP0 and RP1 bits are no
longer present in the STATUS because the BSR is now
available and the FSRs are now 16 bits wide.

New Instructions
The new instructions improve arithmetic, simplify
paging and banking, and extend the capabilities of the
indirect addressing modes.

TABLE 2: NEW INSTRUCTIONS

These instructions were designed to fit inside the
“holes” in the existing 14-bit instruction word. By fitting
the existing memory design, the cost of the enhanced
devices was kept similar to the existing PIC12/16,
simplifying the decision to use the new features.

Address Register Description
0x00 INDF0 Indirect File Register 0

0x01 INDF1 Indirect File Register 1

0x02 PCL Program Counter Low

0x03 STATUS ALU Status Register

0x04 FSR0L Indirect Address for INDF0, Low Byte

0x05 FSR0H Indirect Address for INDF0, High Byte

0x06 FSR1L Indirect Address for INDF1, Low Byte

0x07 FSR1H Indirect Address for INDF1, High Byte

0x08 BSR Bank Select Register

0x09 WREG W Register

0x0A PCLATH Program Counter High Byte Latch

0x0B INTCON Interrupt Control Register

Mnemonic Operands Description Cycles(1) Status
Affected

ADDFSR k Add literal to FSRn 1 —

ADDWFC f,d Add W and F with Carry 1 C,DC,Z

SUBWFB f,d Subtract W from F with Borrow 1 C,DC,Z

ASRF f,d Arithmetic Shift Right 1 C

BRA k Branch Relative 2 —

BRW - Branch Relative with W 2 —

CALLW - Call Absolute with W 2 —

LSRF f,d Logical Shift Right 1 C

LSLF/ASRF f,d Logical Shift Left 1 C

MOVLB k Move Literal to BSR 1 —

MOVLP k Move Literal to PCLATH 1 —

MOVIW * Move INDFn to W 1 Z

MOVWI * Move W to INDFn 1 —

RESET - CPU Reset 1 C,DC,Z

Note 1: All cycle counts increase by 1 if the file address points to INDF (0 or 1) and FSR points to program
memory.
DS41375A-page 2 © 2009 Microchip Technology Inc.

Stack
The legacy 8-level stack has been extended to a 16-level
stack. This stack behaves exactly as the legacy stack
wrapping on an over or underflow. The stack can be
configured to cause a Reset on over or underflow, and the
stack is accessible via stack access registers in Bank 31.

STACK OPERATION
The Stack Pointer always points at the last value placed
on the stack. If a call or an interrupt occurs, the stack is
incremented and then the next Program Counter (PC)
value is saved.
© 2009 Microchip Technology Inc. DS41375A-page 3

FIGURE 1: STACK OPERATION

INITIAL STACK CONFIGURATION
After Reset, the stack is empty. The
empty stack is initialized so the Stack
Pointer is pointing at 0x1F. If the Stack
Overflow Reset if enabled, the TOSH/
TOSL registers will return ‘0’.

If the Stack Overflow Reset is disabled,
the TOSH/TOSL registers will return the
contents of Stack Address 0x0F.

0x0000

0x0F

0x0E

0x0D

0x0C

0x0B

0x0A

0x09

0x08

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

0x1F

Return Address

0x0F

0x0E

0x0D

0x0C

0x0B

0x0A

0x09

0x08

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

This figure shows the stack
configuration after the first call or
a single interrupt. If a return
instruction is executed, the return
address will be placed in the
Program Counter and the Stack
Pointer decremented to the
empty state (0x1F).

STKPTR 0X1F

STKPTR 0X00

STKPTR 0X1F

Stack Reset Disabled (STVREN = 0)

Stack Reset Enabled (STVREN = 1)
DS41375A-page 4 © 2009 Microchip Technology Inc.

FIGURE 2: STACK OPERATION
After seven calls or six calls and one
interrupt, the stack looks like the figure
on the left. A series of return
instructions will repeatedly place the
return addresses into the Program
Counter.

When the stack is full, the next call or
interrupt will set the Stack Pointer to
0x10. This is identical to address 0x00
so the stack will wrap. If the Overflow
Reset is enabled, a Reset will occur.

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

0x0F

0x0E

0x0D

0x0C

0x0B

0x0A

0x09

0x08

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

0x0F

0x0E

0x0D

0x0C

0x0B

0x0A

0x09

0x08

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

STKPTR 0x06

STKPTR 0x10
© 2009 Microchip Technology Inc. DS41375A-page 5

OVERFLOW/UNDERFLOW
The new stack has 16 entries but a 5-bit Stack Pointer.
This Stack Pointer is visible as the STKPTR register in
Bank 31. When the MSb of STKPTR is set after a call
or interrupt, the stack is considered in overflow. If the
optional Reset is enabled, the Program Counter will go
immediately to ‘0’ and the reset condition flag in PCON
will indicate a Stack Reset. If the STKPTR reads 31 (all
bits set) then the stack is considered empty. A return
(RETURN, RETLW, RETFIE) when the stack is empty is
an underflow. If the optional Reset is enabled, the Pro-
gram Counter will go immediately to 0x0000 and the
Reset condition flag in PCON will indicate a Stack
Reset. If the optional Reset is not enabled, the stack
will continue to operate but underflow and overflows
will simply wrap around the 16 entry stack. The Stack
Overflow and Underflow bits can be checked to deter-
mine if a stack is out of bounds.

DEBUGGING ACCESS
The legacy PIC12/16 shared the 8 levels of stack
with the in-circuit debugging firmware. This could be
very restrictive. The enhanced PIC12/16 has an
additional stack reserved for the debugging firm-
ware. This eliminates the possibility of running out of
stack when using Debug mode. When debugging,
the Stack Reset option becomes a break point to
help determine the cause of the stack problem. The
stack access mechanism is also used by the debug-
ger to provide the engineer visibility to the call chain
that led the software to its present state.

USER ACCESS
The user has full access to the 16 levels of user stack.
The debug stack is unavailable. Access to the stack is
through three registers; Stack Pointer (STKPTR), Top-
of-Stack High (TOSH) and Top-of-Stack Low (TOSL).
These registers are located in Bank 31.

MODIFYING THE STACK
Modifying the stack requires that the STKPTR be
adjusted to point to the entry that needs updating, and
TOSH/TOSL be changed to reflect the modification.
The STKPTR register always points at the last entry
placed on the stack. When a call or interrupt is
executed, the STKPTR register is incremented and the
PC is stored at the new TOSH/TOSL location. Make
sure that interrupts are disabled before modifying the
stack.

Relative Branching
Relative branching is branching to a target address that
is based upon the current address. With the legacy
PIC12/16, we often wrote code such as the following:

When we write the $-1 we are requesting a relative
branch, except the assembler is converting that into an
absolute branch. The payload size of CALL and GOTO
created the 2k page size so CALL and GOTO contribute
to the paging problem.

The enhanced PIC12/16 adds a BRA and BRW relative
branch. The BRA allows you to branch +256 or -255
instructions from the current program counter. The pre-
vious code example would look like this.

Because Label is an absolute address, the assembler
will convert the absolute address to a relative address
by subtracting the current Program Counter from the
destination address. If the $-1 syntax is used, it will
work in the same way. If the constant -1 is supplied to
BRA it will not work because -1 specifies an address at
the end of the program memory and that will most likely
be out of range.

FASTER TABLE READS
The BRW instruction is also a relative branch but the
reach is from 0 to 255. The relative address for BRW is
contained in the W register. This allows the traditional
table read method to execute much faster without
regard for table location.

EXAMPLE 1:

In the example above, the letter ‘t’ is returned to the
calling function.

Label
DECFSZ delay

GOTO $-1

Label

DECFSZ delay

BRA Label

Table

MOVLW 3

BRW

RETLW ‘a’

RETLW ‘ ‘

RETLW ‘s’

RETLW ‘t’

RETLW ‘r’

RETLW ‘i’

RETLW ‘n’

RETLW ‘g’
DS41375A-page 6 © 2009 Microchip Technology Inc.

NO PAGING SURPRISES
The primary advantage to using relative branches is to
eliminate the possibility of software that works until
additional code is added. Sometimes, a simple delay
loop will fail because code inserted ahead of the loop
pushed the loop across a page boundary. These
surprises are eliminated with the use of a relative
branch.

Indirect Addressing
Indirect addressing allows an address to be computed
at run time and the data modified. Accessing arrays
and other memory buffers often requires indirect
addressing. The legacy PIC12/16 has very rudimentary
support for indirect addressing with a single FSR/INDF.
The enhanced PIC12/16 has extensive support for indi-
rect addressing.

FIGURE 3: FSR MEMORY MAP

FSR MEMORY MAP
The large addressing space of the new FSRs provides
the ability to access additional memory besides the
GPR and SFR memory spaces (see Figure 3). The
FSR memory map includes the legacy GPR/SFR
space. In addition, the GPR memory is mirrored into a
linear region to allow large memory blocks to be
accessed via the indirect addressing modes. Lastly, the
low byte of each program memory address is also
mapped into the FSR address space. These two addi-

tions to the memory map allow large memory blocks,
and pointers that access RAM and Flash. The result of
these changes is a large improvement in performance
for large data applications.

0x0000

FSR Addresses

0x0FFF

SRFs
&

GPRs

0x0000

BSR + File
Register

Addresses

0x0FFF
0x1000
0x1FFF

RESERVED

0x2000

0x29FF

LINEAR GPR
Region Accessible by

FSR Only

0x2A00
0x7FFF

RESERVED

0x8000

FSR Addresses(1)

0xFFFF

PROGRAM
MEMORY

0x0000

Program
Counter

 Addresses (1)

0x7FFF

Note 1: Accessing these addresses via FSR causes the instructions to use 1 additional cycle.
© 2009 Microchip Technology Inc. DS41375A-page 7

FSR INSTRUCTION SUPPORT
Indirect addressing on the enhanced PIC12/16 con-
sists of two 16-bit File Select Registers (FSRs) and 2
Indirect File Registers (INDFs). In addition to the extra
FSR/INDF there are three new instructions designed to
improve the efficiency of indirect operations. The three
new instructions are:

1. ADDFSR – Add a literal between -32 and 31 to
the specified FSR.

2. MOVIW – Move a value from the specified INDF
register into W.

3. MOVWI – Move a value from W into the specified
INDF register.

The MOVIW and MOVWI instructions are special
because they have the ability to perform pre/post
increment/decrement on the FSR. They can also
perform relative indirect addressing.

USING MOVIW/MOVWI
MOVIW and MOVWI have the following syntax:

EXAMPLE 2: MOVIW AND MOVWI

The pre/post, increment/decrement are very simple
enhancements. The relative offset is slightly more com-
plex. In the relative offset case, a constant between -32
and +31 is added to the FSR to produce an effective
address. The INDF accesses the effective address.
After the access is complete (either read or write) the
effective address is lost and the FSR remains
unchanged.

LINEAR RAM ACCESS
To simplify the use of large memory blocks, the FSRs
also provide a method of remapping the data memory
into a contiguous block of RAM. The FSR can provide
an alternate mapping by taking advantage of the 64-
Kbyte address space to locate a different mapping of
the GPR into a different memory region.

The GPRs and SFRs are mapped into the first 2 Kbytes
of address space in the FSR. Following the GPR/SFR
mapping, there is a reserved area (read as ‘0’) and then
comes a new view of the GPR data space at address
0x2000, as shown in Figure 4.

FIGURE 4: LINEAR MEMORY ACCESSING

MOVIW ++FSR0 ; Preincrement FSR0 then INDF0 -> W

MOVIW FSR0++ ; INDF0 -> W then postincrement FSR0

MOVIW --FSR0 ; Predecrement FSR0 then INDF0 -> W

MOVIW FSR0-- ; INDF0 -> W then postdecrement FSR0

MOVIW 4[FSR0] ; FSR0+4 INDF0 -> W. FSR0 unchanged

Core SFRs

Device SFRs

Common

GPRs
DS41375A-page 8 © 2009 Microchip Technology Inc.

In the new view, the 80-byte blocks of GPR memory are
stacked without the common memory or the SFRs to
separate them. This allows a 90-byte data structure to
span two banks of memory without concern for
overwriting unrelated memory locations. To use this
view of GPR memory, simply point an FSR at a location
after 0x2000.

PROGRAM MEMORY READ VIA FSR
Another useful feature of the indirect addressing
system is access to the low 8-bits of the program
memory.

Access to the program memory starts at FSR address
0x8000. The following code example shows how to
access a memory table with the FSR.

EXAMPLE 3:

The compiler knows when a label references a
program memory address. If a program memory
address is the target of the high directive, the high
directive will return the high part of the address with the
MSB set. This will assure that the FSR address is a
proper address for accessing the program memory.

When accessing program memory with the FSR, each
read of the INDF register will take 2 cycles. The second
cycle is needed to fetch the data.

Banking and Paging
Banking and paging have always been a complication
of PIC12/16 microcontrollers. To further enhance the
new PIC12/16, new instructions were added to simplify
paging and banking. These new instructions also allow
the number of pages and banks to increase to 32 banks
and 16 pages.

BANKING INSTRUCTION
Increasing the number of banks to 32 was impossible
with the RP0, RP1 bits in the STATUS register. These
bits were removed and replaced with a BSR register.
Along with BSR, a new instruction was added to load

the BSR from a literal. The MOVLB instruction does in
one cycle what the BANKSEL macro currently does in
one or two instructions depending upon the device
memory size. By making banking one instruction, the
penalty for banking was reduced by up to 50%.

PAGING INSTRUCTION
The need for paging is due to the CALL and GOTO
instructions. These two instructions can reach any
address inside of a 2K word window. To leave this
window, the PCLATH must be updated before the call
or GOTO can take place. To increase the efficiency of
editing PCLATH, a new instruction, MOVLP, has been
added. MOVLP is the instruction equivalent of the
PAGESEL macro. In the enhanced PIC12/16, every
CALL or GOTO could be preceded by a MOVLP for a 2-
word, 3-cycle operation that can reach the entire
program memory.

MATH
Arithmetic on the PIC12/16 has always been very easy
but multi-byte operations could be made easier by add-
ing support for carry and arithmetic shifts.

ARITHMETIC WITH CARRY
Add and subtract have been extended to support carry
or borrow. Only adds and subtracts with file registers
are supported with the Carry or Borrow. The new
instructions work exactly as the legacy instructions
except the Carry/Borrow flag is included in the opera-
tion. The original add and subtract instructions are still
present in the enhanced PIC12/16. All existing algo-
rithms will work unchanged but a speed-up is possible
by selectively replacing some instruction sequences
with the new instructions.

SHIFTS INSTEAD OF ROTATES
The legacy PIC12/16 has a pair of 9-bit rotate instruc-
tions. These instructions rotate through the Carry flag
so 9 rotates will result in the original value. In addition
to the rotates, the new PIC12/16 has 3 shift instruc-
tions.

1. ASRF – Arithmetic Right Shift
2. LSRF – Logical Right Shift
3. LSLF – Logical Left Shift
4. ASLF – Arithmetic Left Shift is assembled as

LSLF

Code
MOVLW high table_label
MOVWF FSR0H
MOVLW low table_label
MOVWF FSR0L
MOVF FSR0,W
...
Lots More Code
...

table_label
MOVLW 0xAA
MOVLW 0xAB

.. More Table Data ...
© 2009 Microchip Technology Inc. DS41375A-page 9

Shifts are similar to rotates with the exception that the
incoming digit is not drawn from the Carry flag but it is
either a ‘0’ or a sign extension. An arithmetic shift per-
forms sign extension, while logical shifts bring in zero.
Sign extension means the Most Significant bit (MSb) is
duplicated. This is a very useful feature because a neg-
ative number that is right shifted remains a negative
number. If a multi-byte value is being shifted, then the
first byte is shifted and the remaining bytes are rotated.
That will utilize the Carry flag correctly so all the bits
propagate across the bytes. Rotates and Shifts are now
more functional because the W register is mapped as
the file register WREG. This allows rotates and shifts to
directly operate on the W register.

TABLE 3: LOGICAL SHIFT OPERATIONS

Table 3 above shows the differences between the
different shift operations.

Interrupts
Interrupts on the enhanced PIC12/16 are essentially
unchanged but for the addition of a hardware context-
save. This reduces the interrupt overhead by
eliminating the essential task of saving key registers
such as the W, or STATUS at the beginning of the
Interrupt Service Routine (ISR) and restoring them at
the end.

HARDWARE CONTEXT SAVING
The hardware context-save system consists of a
number of registers located in Bank 31. These registers
contain the backup copy of the saved context and are
the source of the restored context. The registers saved
are shown in Table 4.

TABLE 4: HARDWARE CONTEXT
SHADOW LOCATIONS

If the context needs to be dynamically adjusted, then
the context-save registers are necessary to accomplish
this.

Starting Value Operation Final Value
0x7F ASRF 0x3F, C = 1
0x80 ASRF 0xC0, C = 0
0x7F LSRF 0x3F, C = 1
0x80 LSRF 0x40, C = 0
0x7F LSLF/ASLF 0xFE, C = 0
0x80 LSLF/ASLF 0x00, C = 1

Register Context-Saved
Register

Bank 31
Address

WREG WREG_SHAD 0xFE5

STATUS STATUS_SHAD 0xFE4

FSR0L FSR0L_SHAD 0xFE8

FSR0H FSR0H_SHAD 0xFE9

FSR1L FSR1L_SHAD 0xFEA

FSR1H FSR1H_SHAD 0xFEB

BSR BSR_SHAD 0xFE6

PCLATH PCLATH_SHAD 0xFE7
DS41375A-page 10 © 2009 Microchip Technology Inc.

Coding Practices for the Enhanced
PIC12/16

PAGING MINIMIZATION TECHNIQUES
Minimizing paging can be accomplished by the
following:

1. Utilize relative branches whenever possible.
2. Update the RETLW tables to use BRW or the FSR/

INDF program memory read functions.

Most applications can minimize paging impact simply
by using relative branches.

RECOMMENDED PRACTICES
If your code currently uses the PAGESEL macro, it now
produces a MOVLP instruction. If your code currently
uses the BANKSEL macro, it will now produce a MOVLB
instruction. Use PAGESEL/BANKSEL to produce
migrateable code with the least effort.

ROBUST PROGRAMMING
Robust programming is an important issue in many
areas. To better support robust practices, the RESET
instruction was added, the optional Stack Reset was
included, and the ability to examine the stack was
added.

SOFTWARE RESET
The RESET instruction performs a complete system
Reset. This replaces the previous practice of waiting for
the Watchdog Timer to provide a Reset. Reset should
be placed around critical code blocks to reduce the
possibility of Program Counter upsets from causing
improper code execution.

STACK RESET
The Stack Reset allows an application to reset when
the stack overflows or underflows. In critical applica-
tions such as medical or aerospace, a stack monitor
can minimize erroneous behavior.

RESET MONITORING
With so many more ways to Reset, it can be a
challenge identifying the Reset source for proper
recovery.

The PCON register has been extended to show:

• Stack Overflow
• Stack Underflow
• Reset by Instruction
• Reset by POR
• Reset by MCLR

SOFTWARE MIGRATION
Software migration can be a tricky problem. Every effort
was made to minimize the complexities of converting
legacy code to run correctly on the enhanced PIC12/
16.

MOVING FROM PIC1XFXXX TO
PIC1XF1XXX
Migrating software from the legacy PIC12/16 devices to
the enhanced PIC12/16 consists of changes for pag-
ing/banking, adjusting the interrupt context saving and
modifying the indirect memory access functions. After
the software runs, additional changes can be made to
further improve the performance.

Banking
To adjust the banking for the new device, all references
to RP0 and RP1 must be replaced with MOVLB instruc-
tions. Usually the references to RP0 and RP1 are inside
of macros such as BANKSEL or simply BANK0.
MPASM™ assembler provides a BANKSEL macro that
inserts the correct RP0 and RP1 writes for the legacy
PIC12/16. MPASM assembler inserts the MOVLB
instruction for BANKSEL on the enhanced PIC12/16. If
your software uses a homebuilt BANKx type macro,
simply make a new version that uses MOVLB or replace
all the BANKx macros with BANKSEL macros. The
best general solution is simply to use the built-in BANK-
SEL macro.

Paging
There are two ways to handle paging issues. The first
way is to simply find all the writes to PCLATH and
adjust them. Most of them will continue to work
correctly but the MOVLP instruction will make them
faster. If your code uses the built-in MPASM assembler
macro PAGESEL then MOVLP will be used
automatically. For further acceleration, the BRA and
BRW instructions can be used to eliminate the need for
many PAGESEL/GOTO combinations.

Interrupts
Automatic Context Save

Interrupts can remain unchanged but the context time
can be dramatically improved by eliminating the con-
text save code. Most Interrupt Service Routines do not
need any additional context saved beyond the registers
saved by the hardware. Simply removing the context
saving code will improve the context switch time by
approximately 12 instruction cycles.

Return Without Context Restore
© 2009 Microchip Technology Inc. DS41375A-page 11

If your application needs to return without restoring the
context, the following code can be used:

Your application must handle context. This instruction
sequence will work because the instruction after setting
the GIE will always execute.

INDIRECT MEMORY ACCESS
Indirect memory accessing is using the FSR/INDF
registers to access parts of memory. In the legacy
PIC12/16, the FSR is 9 bits wide with the 9th bit stored
in STATUS as IRP. The enhanced PIC12/16 has a 16-
bit wide FSR with the Most Significant bits stored in the
FSRnH register. To access the entire RAM, the Most
Significant bits need to be adjusted. This is often done
with the BANKISEL macro. The BANKISEL macro
would set or clear the IRP bit as required. On the
enhanced PIC12/16, the BANKISEL macro will set or
clear each bit in FSRnH as required. This will take 8
instruction cycles. If you are willing to write to W, then
the update can be done in two cycles by MOVLW and
MOVWF or use ADDFSR, or MOVIW/WI with relative
offset.

MOVING FROM PIC18FXXX TO
PIC1XF1XXX
Moving back from the PIC18 to the enhanced PIC12/16
is different than moving forward from the legacy PIC12/
16. The enhanced PIC12/16 lacks some resources:

• 16 stack locations instead of 31
• Different FSR relative addressing mechanism

(instructions instead of registers)
• No Multiply instructions
• Shorter CALL/GOTO reach
• 2 FSRs vs 3

Banking
Banking on the PIC18 is often misunderstood. The
PIC18 does have banking for the RAM accesses. It
also has a special bank that contains nearly all of the
SFRs. Each bank on the PIC18 is larger (256 bytes), so
the amount of time spent banking is reduced. The
enhanced PIC12/16 still has the 128-byte bank size
and no Access Bank. Converting the software requires
that the BANKSEL macro be used for many SFR
accesses and RAM accesses to assure the bank is
correctly configured.

Paging
Paging is eliminated on the PIC18 by making the CALL
and GOTO two word instructions. The additional
instruction payload gives CALL and GOTO the ability to
reach any instruction in memory. Simply adding a
PAGESEL before all CALLs and GOTOs will provide the
same capability to the enhanced PIC12/16 at the cost
of one cycle. The PIC18 relative branch (BRA) is also
present on the enhanced PIC12/16. In some cases, the
BRA will need to be replaced with a GOTO because the
reach of the PIC18 BRA is longer than the reach of the
PIC12/16 BRA.

All instruction addresses on a PIC18 are even because
the 16-bit instruction memory is byte addressed. This
may have an effect on the enhanced PIC12/16 conver-
sion as its program memory is word-addressed, so all
instructions are sequentially addressed.

INTERRUPTS
The PIC18 has a 2-level interrupt structure. The
interrupts have a fast context-save but the restore is
optional, depending upon the use of a fast return from
interrupt instruction. All interrupts will need to be
adjusted to understand the flat interrupt structure of the
enhanced PIC12/16 and all context restores will need
to be removed.

INDIRECT MEMORY ACCESS
The PIC18 has 3 FSRs, special registers for
addressing, and INDF SFRs for increment and
decrement. These can be replaced with the appropriate
use of the MOVIW and MOVWI instructions on the
enhanced PIC12/16.

PROGRAM MEMORY TABLES
The PIC18 has table read instruction to retrieve 2 bytes
from program memory.

The enhanced PIC12/16 can retrieve 1 byte from pro-
gram memory by using the FSR/INDF to access the
program memory.

SOFTWARE OPTIMIZATION
After the software has been migrated to the enhanced
PIC12/16, the opportunity exists to increase the
performance by taking full advantage of the new
features. Software optimization for the enhanced
PIC12/16 can be classified as changes to the following
areas:

1. Arithmetic
2. ROM Table Access
3. RAM Buffer Access
4. Data Structures

bsf INTCON,GIE

return
DS41375A-page 12 © 2009 Microchip Technology Inc.

ARITHMETIC
Arithmetic on the PIC12/16 is a very basic function but
can be full of small frustrations when working with
multi-byte data. For example, the legacy ADD
instructions do not include an add with Carry, so multi-
byte operations require additional instructions to
precondition the next Most Significant Byte (MSB)
based upon the results of the previous add. New
instructions added to the enhanced PIC12/16 simplify
this work, shaving many instructions from common
algorithms.

Multi-byte Add
Adding two 16-bit values with a PIC12/16 is usually
done as follows:

This code works quite well but has 2 extra cycles in the
middle, due to the missing add with Carry. This code
can be converted to the enhanced PIC12/16 as follows:

The enhanced version saves two instructions. If 16-bit
values are used extensively, the savings will add up.

Multi-byte Subtract
Subtract is similar to add because the Borrow flag must
be handled in the following computations. The legacy
code is as follows:

The enhanced version is as follows:

The enhanced version of subtract saves two
instructions.

Shifting
Shifting is the fastest method to divide or multiply by a
power of two, therefore, it is often used instead of
rotates. A rotate instruction can be made to operate like
a shift simply be preconditioning the Carry flag. The
legacy code is as follows:

This code will work but the W register is overwritten by
the first rotate. The ASRF instruction simplifies this
problem by handling the sign extension in hardware.

This is faster by requiring less code. Arithmetic
_Left_Shift does not need to perform a sign exten-
sion. It simply brings zero into the LSB.

If sign extend is not required, the code is simpler.

Simply clearing the Carry flag before performing the
rotate will create a logical shift. These examples can be
converted to single enhanced PIC12/16 instructions.

Add16

MOVF lsb_a,w

ADDWF lsb_b,f

MOVF msb_a,w

BTFSC STATUS,C

ADDLW 0x01

ADDWF msb_b,f

Add16_enhanced

MOVF lsb_a,w

ADDWF lsb_b,f

MOVF msb_a,w

ADDWFC msb_b,f

Sub16

MOVF lsb_a,w

SUBWF lsb_b,f

MOVF msb_a,w

BTFSS STATUS,C

ADDLW 0xFF

SUBWF msb_b,f

Sub16_enhanced

MOVF lsb_a,w

SUBWF lsb_b,f

MOVF msb_a,w

SUBWFB msb_b,f

Arithmetic_Right_Shift

RLF val,w ;save the MSB
in the Carry
(corrupt W

RRF val,f ;rotate right
with sign extend.

ASRF val,f

Logical_Right_Shift

BCF STATUS,C

RRF val,f

Logical_Left_Shift

BCF STATUS,C

RLF val,f
© 2009 Microchip Technology Inc. DS41375A-page 13

Notice that the Arithmetic_left_shift and the
logical_left_shift are identical functions. The
enhanced PIC12/16 only provides the
logical_left_shift but the assembler will
substitute the logical_left_shift if ASLF is used
in the assembly language.

TABLE 5: SHIFT OPERATION
DIFFERENCES

Table 5 above shows the differences between the
different shift operations.

MULTI-BYTE SHIFTS
A multi-byte shift can be created simply by making the
first operation the new shift instruction and all
subsequent operations rotate. The new instructions
shift the outgoing bit into the Carry flag where the rotate
instruction will bring it into the next byte.

ROM Table Access
Accessing data tables is frequently performed in many
applications. The traditional method on a PIC12/16
device is to assemble the table into a series of RETLW
instructions. By adding a value to the PC a value at a
specific offset can be returned to the calling function.
The enhanced PIC12/16 has a few improvements.

Fast Tables with FSR
The first trick is to simply use the FSR/INDF to return
values saved in program memory. When the MSB is set
in the FSRnH register, the value returned by INDF is
the Least Significant Byte (LSB) in the program
memory address specified by the FSR register. By
using the FSR to point to data in the program memory,
the additional capabilities of the MOVIW and MOVWI
instruction can be used to keep the software short.
Generally, the setup to use the FSR takes 4 cycles,
while each fetch can take 2 because fetches to
program memory take an extra cycle. The primary
advantage to using the FSR to fetch data from program
memory is the unified pointer. Data can be located in
GPR or program memory with no change in the access
requirements.

Note: The HIGH directive will automatically set
the MSB if the label references an address
in program memory.

Starting Value Operation Final Value
0x7F ASRF 0x3F, C = 1
0x80 ASRF 0xC0, C = 0
0x7F LSRF/ASLF 0x3F, C = 1
0x80 LSRF/ASLF 0x40, C = 0
0x7F LSRF/ASLF 0xFE, C = 0
0x80 LSRF/ASLF 0x00, C = 1

LSRF val,f ; logical right shift

LSLF val,f ; logical left shift

ASLF val,f ; Arithmetic left shift

; really logical left
shift)

ASRF_16

 ASRF MSB_f

 RRF LSB_f

code

MOVLW HIGH data_table

MOVWF FSROH

MOVLW LOW data_table

ADDWF data_index

MOVWF FSR0L

CLRW

ADDWFC FSR0H

MOVF INDF0, W

data_table

RETLW ‘m’

RETLW ‘y’

RETLW ‘ ‘

RETLW ‘d’

RETLW ‘a’

RETLW ‘t’

RETLW ‘a’
DS41375A-page 14 © 2009 Microchip Technology Inc.

Fast RETLW Tables with BRW
Using the BRW instruction combined with RETLW will
assure that all instruction fetches take 4 cycles plus the
initial call. The traditional methods can also run this fast
if the data table is located to prevent problems with the
program memory page size.

If CALL data_table and data_table are not
separated by a page boundary, the PAGESEL is not
required to assure the CALL can reach. This method
never requires the data_table be aligned to any
memory address. Eliminating the alignment
requirement makes BRW very easy to use. This method
of table access requires 6 or 7 cycles, depending on the
presence of PAGESEL.

Fast RETLW Tables with CALLW
The CALLW instruction can be used to access data
tables anywhere in memory for a fixed 6-cycle time.
CALLW is a new instruction intended to make function
pointers more efficient. In addition to its intended func-
tion, CALLW can also be used to prepare tables of data.
CALLW works by concatenating the value in W with the
value in PCLATH and “calling” the resulting address.

Locating the block of RETLW instructions on a 256-word
boundary (low address byte as zero) allows a CALLW to
retrieve the data. This can be a very fast table lookup.

This method takes 6 cycles to retrieve any data.

Example
A complete code example is shown in Appendix B:
“IIR Filter Conversion Example”. In this example, an
IIR function downloaded from the internet is converted
to use the enhanced PIC12/16 features. The resulting
code runs nearly twice as fast.

code

MOVLW data_index

PAGESEL data_table

CALL data_table

data_table

BRW

RETLW ‘m’

RETLW ‘y’

RETLW ‘ ‘

RETLW ‘d’

RETLW ‘a’

RETLW ‘t’

RETLW ‘a’

code

MOVLP HIGH data_table

MOVLW data_index

CALLW

ORG 0x??00

data_table

RETLW ‘m’

RETLW ‘y’

RETLW ‘ ‘

RETLW ‘d’

RETLW ‘a’

RETLW ‘t’

RETLW ‘a’

RETLW 0
© 2009 Microchip Technology Inc. DS41375A-page 15

APPENDIX A: A SIMPLE GETHEX FUNCTION OPTIMIZATION

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

; Original code

data

hex_temp res 1

code

gethex

GLOBAL gethex

ANDLW 0x0F

MOVWF hex_temp

MOVLW high hex

MOVWF PCLATH

MOVLW low hex

ADDWF hex_temp,W

BTFSC STATUS,C

INCF PCLATH,F

MOVWF PCL

hex

dt “0123456789ABCDEF”

; Enhanced Code

data

; no data needed

code

gethex

GLOBAL gethex

ANDLW 0x0F

BRW

hex

dt “0123456789ABCDEF”
© 2009 Microchip Technology Inc. DS41375A-page 16

APPENDIX B: IIR FILTER CONVERSION EXAMPLE
The following code is a 24-bit IIR by Tony Kubek
extracted from www.piclist.org (http://www.piclist.org/
techref/microchip/dsp/iir-24b-256s-tk.htm). It is a good
example of a non-trivial algorithm that can be
accelerated by taking advantage of the new
instructions and FSR features of the enhanced PIC12/
16. The original code is presented in Appendix C: “24-
Bit 256 Step IIR Filter (Original Code)”.

This is quite a lot of code to look over. There are a few
notable code blocks that can be noticed right away.
First the ADD_FSR_FILTER macros at the beginning
need to be adjusted. The original code is using the FSR
so it should be updated to use FSR0L. After further
study it can be seen that this code is simply a 24-bit add
with the source address in the FSR. That opens the
possibility of additional optimizations. The MOVIW
instruction can be used to eliminate redundant FSR
reloads. The ADDWFC instruction can be used to
eliminate the Carry propogation.

Notice an immediate drop in instruction count from 14-
17 instructions to 8 instructions. That is a 50% size
advantage and a 2x speed-up. The multiply and divide
macros are the next interesting block of code in this
example.

ADD_FSR_FILTER MACRO

 ; 14-17 instructions

 ; add value pointed to by FSR to filter

MOVF INDF,W ; get lowest byte

 ADDWF NewFilter+3,F ; add to filter sum

;lowest byte

 DECF FSR,F

 MOVF INDF,W ; get next byte

 SKPNC ; if overflow

 INCFSZ INDF,W ; increase source

 ADDWF NewFilter+2,F ; and add to dest.

 DECF FSR,F

 MOVF INDF,W ; get next byte

 SKPNC

 INCFSZ INDF,W

 ADDWF NewFilter+1,F

 DECF FSR,F

 MOVF INDF,W ; get msb

 SKPNC

 INCFSZ INDF,W

 ADDWF NewFilter,F

 ENDM

ADD_FSR0_FILTER MACRO

 ; 8 instructions

 ; add value pointed to by FSR to filter

 moviw 0[INDF0]

ADDWF NewFilter+3,F ; add to filter sum
lowest byte

 MOVIW -1[INDF0] ; get next byte

 ADDWFC NewFilter+2,F

 MOVIW -2[INDF0] ; get next byte

 ADDWFC NewFilter+1,F

 MOVIW -3[INDF0] ; get msb

 ADDWFC NewFilter,F

 ENDM
© 2009 Microchip Technology Inc. DS41375A-page 17

;++++++++++++

;

; DIV_FILTER_BY2 - Divide NewFilter by 2

;

;

DIV_FILTER_BY2 MACRO

 ; 5 instructions

 ; right shift filter value by 1 (i.e.
divide by 2)

 BCF STATUS,C ; clear carry

 ; divide by 2

 RRF NewFilter,F

 RRF NewFilter+1,F

 RRF NewFilter+2,F

 RRF NewFilter+3,F

 ENDM

;++++++++++++

;

; MUL_NEWOLD_BY2 - Multiply OldValue and
NewSample with 2

;

;

MUL_NEWOLD_BY2 MACRO

 ; 10 instructions

 ; right shift filter value by 1 (i.e.
divide by 2)

 BCF STATUS,C ; clear carry

 ; multiply old value with 2

 RLF OldFilter+3,F

 RLF OldFilter+2,F

 RLF OldFilter+1,F

 RLF OldFilter,F

 ; multiply new value with 2

 BCF STATUS,C ; clear carry

 RLF NewSample+3,F

 RLF NewSample+2,F

 RLF NewSample+1,F

 RLF NewSample,F

 ENDM

;++++++++++++

;

; DIV_FILTER_BY2 - Divide NewFilter by 2

;

;

DIV_FILTER_BY2 MACRO

 ; 4 instructions

 ; right shift filter value by 1 (i.e.
divide by 2)

 ; divide by 2

 LSRF NewFilter,F

 RRF NewFilter+1,F

 RRF NewFilter+2,F

 RRF NewFilter+3,F

 ENDM

;++++++++++++

;

; MUL_NEWOLD_BY2 - Multiply OldValue and
NewSample with 2

;

;

MUL_NEWOLD_BY2 MACRO

 ; 8 instructions

 ; right shift filter value by 1 (i.e.
divide by 2)

 ; multiply old value with 2

 LSLF OldFilter+3,F

 RLF OldFilter+2,F

 RLF OldFilter+1,F

 RLF OldFilter,F

 ; multiply new value with 2

 LSLF NewSample+3,F

 RLF NewSample+2,F

 RLF NewSample+1,F

 RLF NewSample,F

 ENDM
DS41375A-page 18 © 2009 Microchip Technology Inc.

There is not such a dramatic speedup in this case but
the clear Carry – shift combination can be eliminated
for a 1 instruction savings. These macros are used 8
times per loop in the main TWIST24 function. That 1
instruction savings does help.

After cleaning up the macros, the next interesting code
section was the setup of the FSR in the TWIST24
function. Each time through the main loop there are 8
tests of bits to determine if the ADD_FSR_FILTER
function should add to the new value or the old value.

The switch is performed by changing the address
pointed to by the FSR. This requires a load FSR, test
and reload FSR combination 8 times in the main
function. A faster method is to conditionally execute an
ADDFSR of 4. This will change the FSR to the next value
in one instruction rather than 2. In this example, the
comments have been removed to make the
instructions more clear. The comments are left in the
original code.

This is another very minor change but it is executed
8*UPDATE_COUNT or 256 times. That is a significant
savings.

At the end of the program there is one more code pattern that can be accelerated by the enhanced instruction set.

This change eliminates a part of skip if Carry clear
instructions that implement add with Carry. This
becomes a simple sequence of add with Carry
instructions.

The changes made to this program are very simple;
yet, the effect is a function that runs nearly twice as fast
allowing improved performance or a reduced clock
speed and lower power consumption. The enhanced
PIC12/16 features can result in very high performance
gains for a rather modest effort in porting existing
software.

The complete source to the modified function is
presented in Appendix D: “24-bit 256 Step IIR filter
modified for Enhanced PIC12/16”.

MOVLW NewSample+3 MOVLW NewSample+3

MOVWF FSR MOVWF FSR0L

MOVLW OldFilter+3 btfsc FilterWeight,0

BTFSC FilterWeight,0 addfsr .4

MOVWF FSR ADD_FSR0_FILTER

ADD_FSR_FILTER ; add it MUL_NEWOLD_BY2

MUL_NEWOLD_BY2

; add one to filter to have proper
; rounding

 MOVLW 0x01

 ADDWF NewFilter+2,F

 SKPNC

 ADDWF NewFilter+1,F

 SKPNC

 ADDWF NewFilter,F

 ; add one to filter to have proper
 ; rounding

 MOVLW 0x01

 ADDWF NewFilter+2,F

 ADDWFC NewFilter+1,F

 ADDWFC NewFilter,F
© 2009 Microchip Technology Inc. DS41375A-page 19

APPENDIX C: 24-BIT 256 STEP IIR FILTER (ORIGINAL CODE)
 ************************* TWIST24 ******************************

;

; Purpose of routine is to evaluate

;

; A*X0 + B*Y

; X1 = ---------

; A + B

;

; Such as A+B = 2^n

;

; Simplified this formula will then become

;

; A*X0 + ~A*Y + Y

; X1 = ---------------

; 2^n

;

; Where:

; X1 - is new recursive lowpassed filter value
; X0 - is previous lowpassed filter value

; Y - is new value

; A,B are weight factors, if A is large relative to B

; then more emphasis is placed on the average (filtered) value.

; If B is large then the latest sample are given more weight.

; ~A is A's bitwise complement

;

;

; X0,X1,Y are 24 bit variables

; A+B = 2^8 = 256 for this routine

;

; By Tony Kübek 2000-05-23, based on routine 'twist.asm' by

; Scott Dattalo (BTW Thanks for sharing :-))

;

; **
;

; NewSample = Y (4 byte ram, 3 byte data)

; OldFilter = X0 (4 byte ram, 3 byte data)

; NewFilter = X1 (4 byte ram, 3 byte data)

; FilterWeight = A (1 byte ram, how much weight that is placed on old filtered value)

;

; * variables not really needed but used in example *

; FilterCounter = 1 byte, counter to increase step response.

; UpdateCounter = 1 byte, how many samples between 'global' updates

; AD_NewValue = 3 byte ram, last 24 bit reading from AD/or similar (copied

; to NewSample, in case AD_NewValue should be used for other purposes)

; AD_DataVal = 3 byte ram, filtered value updated after UpdateCounter samples

; _AD_DataReady = 1 bit, set when AD_DataVal is updated

;

DS41375A-page 20 © 2009 Microchip Technology Inc.

#define UPDATE_COUNT 0x20 ; 32 samples between global updates

#define FILTER_WEIGHT 0x80 ; filterweight, i.e. 'A' in example above

CBLOCK 0x020

 AD_NewValue:3

 NewSample:4 ; copy of AD_Newvalue, used locally

 OldFilter:4 ; previous value of filtering (NewFilter from last run)

 NewFilter:4 ; the new filtered value

 FilterWeight:1 ; how much weight that should be posed on old value

 FilterCounter:1 ; to increase step response

 UpdateCounter:1 ; how often we want an global update

 AD_DataVal:3 ; the global update location

 Bitvars:1

 ENDC

#define _AD_DataReady BitVars,0

;++++++++++++

;

; ADD_FSR_FILTER - Adds 32 bit value pointed to by FSR to NewFilter

; FSR must point to LEAST significant byte, FSR-3 is most significant

;

ADD_FSR_FILTER MACRO

 ; 14-17 instructions

 ; add value pointed to by FSR to filter

 MOVF INDF,W ; get lowest byte

 ADDWF NewFilter+3,F ; add to filter sum lowest byte

 DECF FSR,F

 MOVF INDF,W ; get next byte

 SKPNC ; if overflow

 INCFSZ INDF,W ; increase source

 ADDWF NewFilter+2,F ; and add to dest.

 DECF FSR,F

 MOVF INDF,W ; get next byte

 SKPNC

 INCFSZ INDF,W

 ADDWF NewFilter+1,F

 DECF FSR,F

 MOVF INDF,W ; get msb

 SKPNC

 INCFSZ INDF,W

 ADDWF NewFilter,F

 ENDM

;++++++++++++

;

; DIV_FILTER_BY2 - Divide NewFilter by 2

;

;

DIV_FILTER_BY2 MACRO

 ; 5 instructions

 ; right shift filter value by 1 (i.e. divide by 2)
© 2009 Microchip Technology Inc. DS41375A-page 21

 BCF STATUS,C ; clear carry

 ; divide by 2

 RRF NewFilter,F

 RRF NewFilter+1,F

 RRF NewFilter+2,F

 RRF NewFilter+3,F

 ENDM

;++++++++++++

;

; MUL_NEWOLD_BY2 - Multiply OldValue and NewSample with 2

;

;

MUL_NEWOLD_BY2 MACRO

 ; 10 instructions

 ; right shift filter value by 1 (i.e. divide by 2)

 BCF STATUS,C ; clear carry

 ; multiply old value with 2

 RLF OldFilter+3,F

 RLF OldFilter+2,F

 RLF OldFilter+1,F

 RLF OldFilter,F

 ; multiply new value with 2

 BCF STATUS,C ; clear carry

 RLF NewSample+3,F

 RLF NewSample+2,F

 RLF NewSample+1,F

 RLF NewSample,F

 ENDM

ORG 0x0000

 GOTO INIT

; ** interupt routine for data collection

ORG 0x0004

INT

 ; get data from AD

 CALL GET_AD_DATA ; not included !

 ; for each sample, copy to AD_NewValue

 ; and call filter once

 CALL TWIST24

 RETFIE

; cold start vector

INIT

 ; only 'dummy' code here

 BCF _AD_DataReady ; clear data ready flag

 ; Note, this will inilialize the filter to gradually use

 ; no filtering to 'full' filtering (increase once for each sample)

 ;

 MOVLW FILTER_WEIGHT

 MOVWF FilterCounter
DS41375A-page 22 © 2009 Microchip Technology Inc.

 CLRF FilterWeight

MAIN_LOOP

 ; wait for some data from AD or similar

 BTFSS _AD_DataReady ; check if data available

 GOTO MAIN_LOOP ; nope

 ; filtered data available

 ; do whatever needs to be done..

 BCF _AD_DataReady ; clear data ready flag

 GOTO MAIN_LOOP

;++++++++++++

;

; TWIST24 - Variable 24 bit lowpass filter, calculates new lowpassed value in NewFilter,

; by weighing previous filtervalue and NewSample according to FilterWeight

; If FilterWeight is large more emphasis is placed on oldfiltered value

; Maximum value for FilterWeight is 255 (i.e. 8 bit variable).

; FilterWeight = 0 -> NewFilter = 0/256 of OldFilter + 256/256 of NewSample, i.e no filtering

; FilterWeight = 255 -> NewFilter = 255/256 of OldFilter + 1/256 of NewSample, i.e. full filtering

; NOTE: Previous filtered value should be kept in NewFilter as it is used for next pass.

;

TWIST24

 ; about 252-285 instructions executed (with global update and copying of new datavalue)

 ; roufly 57 us at XTAL 20 Mhz

 ; ! uses FSR !

 ; Ramp function, uses an extra ram variable FilterCounter that

 ; increases the FilterWeight until itself zero

 ; Usage: Initialise to FilterWeight, then a speedier time to target will

 ; be accomplished (step response). During run, if for any reason an high ramp

 ; is detected (or loss of readings) this could be re-initialized to any

 ; value equal or less than FilterWeight to achive quicker step responce.

 ; NOTE : Filterweight must then ALSO be initialized so that the following

 ; is fulfilled: FilterCounter + FilterWeight = DesiredFilterWeight

 MOVF FilterCounter,F

 BTFSC STATUS,Z

 GOTO TWIST_GO

 DECFSZ FilterCounter,F

 INCF FilterWeight,F

TWIST_GO

 ; Copy previous filtered value (note previous value is multiplied by 256

 ; i.e. only copy top three bytes of source to lowest three bytes of dest.)

 MOVF NewFilter,W

 MOVWF OldFilter+1

 MOVF NewFilter+1,W

 MOVWF OldFilter+2

 MOVF NewFilter+2,W

 MOVWF OldFilter+3

 ; copy new value from AD to 'local' variable and add it it
© 2009 Microchip Technology Inc. DS41375A-page 23

 ; to filter as start value

 MOVF AD_NewValue,W ; get top byte of new reading

 MOVWF NewSample+1 ; store in local variable

 MOVWF NewFilter+1 ; also add this as start value to new filter

 MOVF AD_NewValue+1,W ;

 MOVWF NewSample+2 ;

 MOVWF NewFilter+2 ;

 MOVF AD_NewValue+2,W ;

 MOVWF NewSample+3 ;

 MOVWF NewFilter+3 ;

 CLRF NewFilter ;

 CLRF OldFilter ; clear top bytes (we only have a 24 bit filter)

 CLRF NewSample

 MOVLW NewSample+3 ; get adress for new value

 MOVWF FSR ; setup FSR

 MOVLW OldFilter+3 ; get adress for old value to W

 BTFSC FilterWeight,0 ; check if value that should be added is new or old

 MOVWF FSR ; adress for old value already in W

 ADD_FSR_FILTER ; add it

 MUL_NEWOLD_BY2 ; upshift old and new value, 10 instr.

 MOVLW NewSample+3 ; get adress for new value

 MOVWF FSR ; setup FSR

 MOVLW OldFilter+3 ; get adress for old value to W

 BTFSC FilterWeight,1 ; check if value that should be added is new or old

 MOVWF FSR ; old value added to filter, adress in W

 ADD_FSR_FILTER ; add it

 MUL_NEWOLD_BY2 ; upshift old and new value, 10 instr.

 MOVLW NewSample+3 ; get adress for new value

 MOVWF FSR ; setup FSR

 MOVLW OldFilter+3 ; get adress for old value to W

 BTFSC FilterWeight,2 ; check if value that should be added is new or old

 MOVWF FSR ; old value added to filter, adress in W

 ADD_FSR_FILTER ; add it

 MUL_NEWOLD_BY2 ; upshift old and new value, 10 instr.

 MOVLW NewSample+3 ; get adress for new value

 MOVWF FSR ; setup FSR

 MOVLW OldFilter+3 ; get adress for old value to W

 BTFSC FilterWeight,3 ; check if value that should be added is new or old

 MOVWF FSR ; old value added to filter, adress in W

 ADD_FSR_FILTER ; add it

 MUL_NEWOLD_BY2 ; upshift old and new value, 10 instr.

DS41375A-page 24 © 2009 Microchip Technology Inc.

 MOVLW NewSample+3 ; get adress for new value

 MOVWF FSR ; setup FSR

 MOVLW OldFilter+3 ; get adress for old value to W

 BTFSC FilterWeight,4 ; check if value that should be added is new or old

 MOVWF FSR ; old value added to filter, adress in W

 ADD_FSR_FILTER ; add it

 MUL_NEWOLD_BY2 ; upshift old and new value, 10 instr.

 MOVLW NewSample+3 ; get adress for new value

 MOVWF FSR ; setup FSR

 MOVLW OldFilter+3 ; get adress for old value to W

 BTFSC FilterWeight,5 ; check if value that should be added is new or old

 MOVWF FSR ; old value added to filter, adress in W

 ADD_FSR_FILTER ; add it

 MUL_NEWOLD_BY2 ; upshift old and new value, 10 instr.

 MOVLW NewSample+3 ; get adress for new value

 MOVWF FSR ; setup FSR

 MOVLW OldFilter+3 ; get adress for old value to W

 BTFSC FilterWeight,6 ; check if value that should be added is new or old

 MOVWF FSR ; old value added to filter, adress in W

 ADD_FSR_FILTER ; add it

 MUL_NEWOLD_BY2 ; upshift old and new value, 10 instr.

 MOVLW NewSample+3 ; get adress for new value

 MOVWF FSR ; setup FSR

 MOVLW OldFilter+3 ; get adress for old value to W

 BTFSC FilterWeight,7 ; check if value that should be added is new or old

 MOVWF FSR ; old value added to filter, adress in W

 ADD_FSR_FILTER ; add it

 ; 235-268 instructions to get here

 ; check for rounding

 BTFSS NewFilter+3,7 ; test top bit of lowest byte

 GOTO TWIST24_EXIT

 ; add one to filter to have proper rounding

 MOVLW 0x01

 ADDWF NewFilter+2,F

 SKPNC

 ADDWF NewFilter+1,F

 SKPNC

 ADDWF NewFilter,F

 ; 245 - 278 instructions to get here

TWIST24_EXIT

 ; check for update

 DECFSZ UpdateCounter,F

 RETURN
© 2009 Microchip Technology Inc. DS41375A-page 25

 ; update global filter

 MOVF NewFilter+2,W

 MOVWF AD_DataVal+2

 MOVF NewFilter+1,W

 MOVWF AD_DataVal+1

 MOVF NewFilter,W

 MOVWF AD_DataVal

 ; set data ready flag

 BSF _AD_DataReady

 ; reinitialise update counter

 MOVLW UPDATE_COUNT ; number of samples between global update

 MOVWF UpdateCounter

 RETURN
DS41375A-page 26 © 2009 Microchip Technology Inc.

APPENDIX D: 24-BIT 256 STEP IIR FILTER MODIFIED FOR ENHANCED PIC12/16
; ************************* TWIST24 ******************************

;

; Purpose of routine is to evaluate

;

; A*X0 + B*Y

; X1 = ---------

; A + B

;

; Such as A+B = 2^n

;

; Simplified this formula will then become

;

; A*X0 + ~A*Y + Y

; X1 = ---------------

; 2^n

;

; Where:

; X1 - is new recursive lowpassed filter value

; X0 - is previous lowpassed filter value

; Y - is new value

; A,B are weight factors, if A is large relative to B

; then more emphasis is placed on the average (filtered) value.

; If B is large then the latest sample are given more weight.

; ~A is A's bitwise complement

;

;

; X0,X1,Y are 24 bit variables

; A+B = 2^8 = 256 for this routine

;

; By Tony Kübek 2000-05-23, based on routine 'twist.asm' by

; Scott Dattalo (BTW Thanks for sharing :-))

;

; **

;

; NewSample = Y (4 byte ram, 3 byte data)

; OldFilter = X0 (4 byte ram, 3 byte data)

; NewFilter = X1 (4 byte ram, 3 byte data)

; FilterWeight = A (1 byte ram, how much weight that is placed on old filtered value)

;

; * variables not really needed but used in example *

; FilterCounter = 1 byte, counter to increase step responce.

; UpdateCounter = 1 byte, how many samples between 'global' updates

; AD_NewValue = 3 byte ram, last 24 bit reading from AD/or similar (copied

; to NewSample, in case AD_NewValue should be used for other purposes)

; AD_DataVal = 3 byte ram, filtered value updated after UpdateCounter samples

; _AD_DataReady = 1 bit, set when AD_DataVal is updated

;

#define UPDATE_COUNT 0x20 ; 32 samples between global updates

#define FILTER_WEIGHT 0x80 ; filterweight, i.e. 'A' in example above

CBLOCK 0x020

 AD_NewValue:3
© 2009 Microchip Technology Inc. DS41375A-page 27

 NewSample:4 ; copy of AD_Newvalue, used locally

 OldFilter:4 ; previous value of filtering (NewFilter from last run)

 NewFilter:4 ; the new filtered value

 FilterWeight:1 ; how much weight that should be posed on old value

 FilterCounter:1 ; to increase step responce

 UpdateCounter:1 ; how often we want an global update

 AD_DataVal:3 ; the global update location

 Bitvars:1

 ENDC

#define _AD_DataReady BitVars,0

;++++++++++++

;

; ADD_FSRx_FILTER - Adds 32 bit value pointed to by FSR to NewFilter

; FSR must point to LEAST significant byte, FSR-3 is most significant

; two versions one for each FSR

;

ADD_FSR0_FILTER MACRO

 ; 8 instructions

 ; add value pointed to by FSR to filter

 moviw 0[INDF0]

 ADDWF NewFilter+3,F ; add to filter sum lowest byte

 moviw -1[INDF0] ; get next byte

 addwfc NewFilter+2,F

 moviw -2[INDF0] ; get next byte

 addwfc NewFilter+1,F

 moviw -3[INDF0] ; get msb

 addwfc NewFilter,F

 ENDM

;++++++++++++

;

; DIV_FILTER_BY2 - Divide NewFilter by 2

;

;

DIV_FILTER_BY2 MACRO

 ; 4 instructions

 ; right shift filter value by 1 (i.e. divide by 2)

 ; divide by 2

 LSRF NewFilter,F

 RRF NewFilter+1,F

 RRF NewFilter+2,F

 RRF NewFilter+3,F

 ENDM

;++++++++++++

;

; MUL_NEWOLD_BY2 - Multiply OldValue and NewSample with 2

;

;

MUL_NEWOLD_BY2 MACRO

 ; 8 instructions

 ; right shift filter value by 1 (i.e. divide by 2)

 ; multiply old value with 2

 LSLF OldFilter+3,F

 RLF OldFilter+2,F
DS41375A-page 28 © 2009 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2009 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Hampshire, Linear Active Thermistor, MXDEV,
MXLAB, SEEVAL, SmartSensor and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP,
PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal,
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select
Mode, Total Endurance, TSHARC, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS41375A-page 29

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS41375A-page 30 © 2009 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

03/26/09

	FIGURE 1: Stack Operation
	FIGURE 2: Stack Operation
	FIGURE 3: FSR Memory Map
	FIGURE 4: Linear Memory Accessing
	Moving from PIC1XFxxx to PIC1XF1xxx
	Moving from PIC18Fxxx to PIC1XF1xxx
	Software Optimization
	Multi-byte Shifts
	Fast Tables with FSR
	Appendix A: A simple Gethex Function optimization
	Appendix B: IIR Filter Conversion Example
	Appendix C: 24-Bit 256 Step IIR Filter (Original Code)
	Appendix D: 24-bit 256 Step IIR filter modified for Enhanced PIC12/16
	Trademarks
	Worldwide Sales

