Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

/!\ REMINDERS

■ Product information in this catalog is as of October 2008. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

Please note that Taiyo Yuden Co., Ltd. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

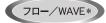
- Please contact Taiyo Yuden Co., Ltd. for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.
- All electronic components or functional modules listed in this catalog are developed, designed and intended for use in general electronics equipment. (for AV, office automation, household, office supply, information service, telecommunications, (such as mobile phone or PC) etc.). Before incorporating the components or devices into any equipment in the field such as transportation, (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network (telephone exchange, base station) etc. which may have direct influence to harm or injure a human body, please contact Taiyo Yuden Co., Ltd. for more detail in advance.

Do not incorporate the products into any equipment in fields such as aerospace, aviation, nuclear control, submarine system, military, etc. where higher safety and reliability are especially required.

In addition, even electronic components or functional modules that are used for the general electronic equipment, if the equipment or the electric circuit require high safety or reliability function or performances, a sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage.

- The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN's official sales channel"). It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.
- Please note that Taiyo Yuden Co., Ltd. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. Taiyo Yuden Co., Ltd. grants no license for such rights.
- Caution for export

Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations," and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.


Should you have any question or inquiry on this matter, please contact our sales staff.

高周波積層チップインダクタ **MULTILAYER CHIP INDUCTOR FOR HIGH FREQUENCY HK SERIES**

*HK0603. HK1005を除く *Except for HK0603, HK1005

OPERATING TEMP. -55~85°C ****** 1608 : −40~85°C

2125 : −40~85℃

0603 : −55~125°C

1005: -55~125℃**

**保証定格電流により変わります。

**Operating temperature depends on rated current.

特長 FEATURES

- ・内部導体として比抵抗値の低いAgを使用し、良好なQ特性と自己共振周 波数特性を実現
- ・積層シート工法による、高生産性、高品質、高インダクタンス値対応
- ・モノリシック構造のため、高い信頼性を有する

- · Multilayer inductor made of advanced ceramics with low-resistivity silver used as internal conductors provides excellent Q and SRF characteristics.
- Designed to address surface mount inductor needs for applications above 100MHz.
- Multilayer block structure ensures outstanding reliability, high productivity and product quality.

用途 APPLICATIONS

- ・携帯電話、PHS、無線LAN
- ・その他の高周波回路、中間周波増幅回路
- ・高周波帯域でのEMI対策

- · Portable telephones, PHS and W-LAN
- · Miscellaneous high-frequency circuits
- · EMI countermeasure in high-frequency circuits.

形名表記法 ORDERING CODE

形式 HK 高周波積層チップインダクタ

形状寸法(Li	×W) (mm)
0603 (0201)	0.6×0.3
1005 (0402)	1.0×0.5
1608 (0603)	1.6×0.8
2125 (0805)	2.0×1.2

公称イ	ンダクタンス〔nH〕
例	
3N9	3.9
10N	10
R10	100
R12	120

※R=小数点 ※N=nHとしての小数点

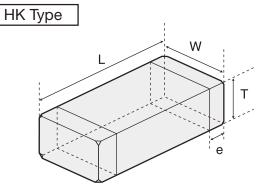
インダ	「クタンス許容差								
H ± 3%									
J	± 5%								
С	±0.2nH								
S	±0.3nH								

包装 リールテーピング

H_{K}	0	6	0	3	1	0	N	J	T	
1		2				3		4	5	

_	
Туре	
HK	Multilayer chip inductors
	for high frequency

External Dime	ensions (mm)
0603 (0201)	0.6×0.3
1005 (0402)	1.0×0.5
1608 (0603)	1.6×0.8
2125 (0805)	2.0×1.2


Nominal Inductance (nH)										
Example										
3N9	3.9									
10N	10									
R10	100									
R12	120									

*R=decimal point *N=0.0 (nH type)

Inductance Tolerances												
Н	± 3%											
J	± 5%											
С	±0.2nH											
S	±0.3nH											

Packaging Tape & Reel

外形寸法 EXTERNAL DIMENSIONS

Туре	L	W	Т	е						
HK0603	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	0.15 ± 0.05						
(0201)	(0.024 ± 0.001)	(0.012 ± 0.001)	(0.012 ± 0.001)	(0.006 ± 0.002)						
HK1005	1.00 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	0.25 ± 0.10						
(0402)	(0.039 ± 0.002)	(0.020 ± 0.002)	(0.020 ± 0.002)	(0.010 ± 0.004)						
HK1608	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	0.3 ± 0.2						
(0603)	(0.063 ± 0.006)	(0.031 ± 0.006)	(0.031 ± 0.006)	(0.012 ± 0.008)						
	2.0 + 0.3	1.25 ± 0.2	0.85 ± 0.2	0.5 ± 0.3						
HK2125	- 0.1		1.0 + 0.2							
(0805)	(0.079 + 0.012)	(0.049 ± 0.008)	(0.033 ± 0.008)	(0.020 ± 0.012)						
	- 0.004		$(0.039\ {}^{+}_{-}\ 0.008)$							
Unit: mm (inch)										

概略バリエーション AVAILABLE INDUCTANCE RANGE

Range	Туре	HK0603		HK10	05		HK1608		HK212	5	
riange		使用温度範囲 -55~	+125℃	使用温度範囲 -55~+	125°C −55	~+85°C	使用温度範囲 -4	0~+85°C	使用温度範囲 -40~+85℃		
			lmax			Imax		Imax	Imax		
	[nH]		[mA]		[mA]	[mA]		[mA]		[mA]	
	1.0	1N0□	470	1N0□		900	1N0□	1			
	1.2	1N2□	450	1N2□		900	1N2□				
	1.5	1N5□	430	1N5□		850	1N5□		1N5S	1	
	1.8	1N8	390	1N8□		700	1N8□		1N8S		
	2.2	2N2□	360	2N2□		700	2N2□		2N2S		
	2.7	2N7□	340	2N7□		650	2N7□		2N7S		
	3.3	3N3□	320	3N3□		550	3N3□		3N3S		
	3.9	3N9□	300	3N9□		500	3N9□		3N9S		
	4.7	4N7□	280	4N7□	300	500	4N7□		4N7S		
	5.6	5N6□	260	5N6□	1	430	5N6□		5N6S		
_	6.8	6N8○	250	6N8○		430	6N8○		6N8J		
Ē	8.2	8N2O	230	8N2O		380	8N2O		8N2J		
	10.0	10NO	220	10NO		340	10NO		10NJ		
nce	12.0	12NO	190	12NO		330	12NO	300 	12NJ		
inductance	15.0	15NO	180	15NO		320	15NO		15NJ		
пр	18.0	18NO	170	18NO		310	18NO		18NJ		
.=	22.0	22NO	150	22NO		300	22NO		22NJ		
	27.0	27N〇	120	27NO	\forall	300	27N〇		27NJ	300	
	33.0	33NO	110	33NO	A	250	33NO		33NJ		
	39.0	39NO	100	39NO	200	250	39NO		39NJ		
	47.0	47NO	100	47NO	200	230	47N〇		47NJ		
	56.0	56NO	80	56NO	\	220	56NO		56NJ		
	68.0	68NO	80	68NO	180		68NO		68NJ		
	82.0	82NO	70	82NO			82NO		82NJ		
	100.0	R10〇	60	R10〇	150		R10○		R10J		
	120.0			R12〇	\forall	000	R12〇		R12J		
	150.0			R15〇	140	200	R15○		R15J		
	180.0			R18〇	130		R18〇		R18J		
	220.0			R22O	120		R22〇	\downarrow	R22J		
	270.0			R27〇	110	\downarrow	R27〇	À	R27J		
	330.0					•	R33〇		R33J		
	390.0						R39〇	150	R39J		
	470.0						R47〇	\downarrow	R47J	↓	

信 les	Inductance	Imax [mA]	Rdcmax [Ω]	Imax - 55 ~+ 125°C		Rdcmax [Ω]	Imax [mA]	Rdcmax [Ω]	Imax [mA]	Rdcmax [Ω]
# du	1.5nH	430	0.13	300	850	0.1	300	0.1	300	0.1
∜ × ×	10.0nH	220	0.51	300	340	0.31	300	0.26	300	0.3
	100.0nH	60	3.74 150 200 1.5		300	1	300	0.9		

※形名の□、○にはインダクタンス許容差記号が入ります。±0.3nH(□)、±5%(○)以下の許容差も対応可能ですので、お問い合わせ下さい。 \square , \bigcirc mark indicates the Inductance tolerance code. The product with tolerance less than ± 0.3 nH (\square), $\pm 5\%$ (\bigcirc) is also available. Please contact your local sales office.

セレクションガイド Selection Guide **₹** P.14

アイテム一覧 Part Numbers 特性図 Electrical Characteristics P.204

梱包 Packaging P.244

信頼性 Reliability Data P.246 使用上の注意 Precautions P.254

アイテム一覧 PART NUMBERS

HK0603-

	=::0									白 コ ##5	田池粉	古法	抵抗	中投票法	厚さ
T/ 45	EHS	インダクタンス		LQ測定周波数	Q (Typical)					自己共振周波数 Self-resonant				定格電流	
形名	(Environmental	Inductance	Q	U Massurina francianau		周波数 Frequency [MHz]					ency	DC.Resistance		Rated	Thickness
Ordering code	Hazardous	(nH)	min.	[MHz]	PS//X XX F TEQUETICY [IVII IZ]					[MF	lz]	(Ω)		current [mA]	(mm)
	Substances)	(nn)		[IVIHZ]	100	300	500	800	1000	min.	Тур.	max.	Тур.	max.	(inch)
HK 0603 1N0□	RoHS	1.0±0.3nH *	4	100	6	12	17	22	27	10000			0.088	470	
HK 0603 1N2□	RoHS	1.2±0.3nH %	4	100	6	12	16	21	25	10000	>13000	0.12	0.089	450	
HK 0603 1N5	RoHS	1.5±0.3nH ※	4	100	6	12	15	20	23	10000	>13000	0.13	0.11	430	
HK 0603 1N8□	RoHS	1.8±0.3nH ※	4	100	6	12	15	20	23	10000	>13000	0.16	0.12	390	
HK 0603 2N0□	RoHS	2.0±0.3nH %	4	100	6	12	15	20	22	10000	>13000	0.17	0.13	380	
HK 0603 2N2□	RoHS	2.2±0.3nH %	4	100	6	12	15	20	22	8800	12500	0.19	0.14	360	
HK 0603 2N4□	RoHS	2.4±0.3nH %	4	100	6	12	15	20	22	8300	11700	0.20	0.15	350	
HK 0603 2N7□	RoHS	2.7±0.3nH %	5	100	7	12	15	20	22	7700	11000	0.21	0.16	340	
HK 0603 3N0	RoHS	3.0±0.3nH %	5	100	7	12	15	20	22	7200	11000	0.22	0.18	330	
HK 0603 3N3	RoHS	3.3±0.3nH **	5	100	7	12	15	20	22	6700	9600	0.23	0.19	320	
HK 0603 3N6	RoHS	3.6±0.3nH %	5	100	7	12	15	20	22	6400	9100	0.25	0.20	310	
HK 0603 3N9	RoHS	3.9±0.3nH **	5	100	7	12	15	20	22	6000	8600	0.27	0.20	300	
HK 0603 4N3	RoHS	4.3±0.3nH %	5	100	7	12	15	19	21	5700	8100	0.30	0.22	280	
HK 0603 4N7	RoHS	4.7±0.3nH ※	5	100	7	12	15	19	21	5300	7600	0.30	0.24	280	
HK 0603 5N1	RoHS	5.1±0.3nH **	5	100	7	12	15	19	21	5000	7100	0.33	0.26	270	0.30±0.03
HK 0603 5N6	RoHS	5.6±0.3nH **	5	100	7	12	15	19	21	4600	6600	0.36	0.27	260	(0.012±0.001)
HK 0603 6N2	RoHS	6.2±0.3nH %	5	100	7	11	14	18	20	4200	6100	0.38	0.29	250	(0.012_0.001)
HK 0603 6N8O	RoHS	6.8±5% %	5	100	7	11	14	18	20	3900	5600	0.39	0.30	250	
HK 0603 7N5O	RoHS	7.5±5% **	5	100	7	11	14	18	19	3600	5300	0.41	0.34	240	
HK 0603 8N2O	RoHS	8.2±5% ※	5	100	7	11	14	18	19	3400	4900	0.45	0.34	230	
HK 0603 9N1O	RoHS	9.1±5% %	5	100	7	11	14	17	18	3200	4600	0.48	0.40	220	
HK 0603 10NO	RoHS	10±5% ※	5	100	7	11	14	17	18	2900	4200	0.51	0.41	220	
HK 0603 12NO	RoHS	12±5% ※	5	100	7	11	14	17	18	2700	3800	0.68	0.45	190	
HK 0603 15NO	RoHS	15±5% ※	5	100	7	11	13	16	17	2300	3300	0.71	0.5	180	
HK 0603 18NO	RoHS	18±5% ※	5	100	7	11	13	16	17	2100	3000	0.81	0.57	170	
HK 0603 22NO	RoHS	22±5% ※	5	100	7	11	13	15	16	1800	2600	1	0.71	150	
HK 0603 27NO	RoHS	27±5% ※	4	100	6	10	12	14	15	1800	2600	1.35	1.11	120	
HK 0603 33NO	RoHS	33±5% **	4	100	6	10	12	14	14	1700	2400	1.47	1.33	110	
HK 0603 39NO	RoHS	39±5% ※	4	100	6	10	12	13	12	1500	2100	1.72	1.51	100	
HK 0603 47NO	RoHS	47±5% **	4	100	6	10	11	12	11	1300	1800	1.90	1.74	100	
HK 0603 56NO	RoHS	56±5% **	4	100	6	10	11	11	10	1100	1600	2.27	1.85	80	
HK 0603 68NO	RoHS	68±5% **	4	100	6	10	11	11	10	1100	1500	2.66	2.30	80	
HK 0603 82NO	RoHS	82±5% **	4	100	6	10	11	10	8	1000	1400	3.37	2.60	70	
HK 0603 R10 O	RoHS	100±5% *	4	100	6	9	10	9	6	900	1200	3.74		60	

[※]形名の□、○にはインダクタンス許容差記号が入ります。±0.3nH(□)、±5%(○)以下の許容差も対応可能ですので、お問い合わせ下さい。 \square , \bigcirc mark indicates the Inductance tolerance code. The product with tolerance less than ± 0.3 nH (\square), $\pm 5\%$ (\bigcirc) is also available. Please contact

HK1005

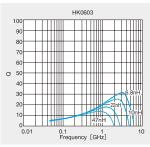
HK1005————																
形名 Ordering code	EHS (Environmental Hazardous	インダクタンス Inductance	Q min.	LQ測定周波数 Measuring frequency	周波		(Typic	al) ncy[Ml	Hz]			DC.Res	抵抗 sistance 2〕	定格 Rated (m	current (A)	厚さ Thickness 〔mm〕
	Substances)	(nH)		[MHz]	100	300	500	800	1000			max.	Тур.	-55∼ +125℃	-55~ +85℃	(inch)
HK 1005 1N0□	RoHS	1.0±0.3nH ※	8	100	11	25	34	43	52	10000	>13000	0.08	0.04	300	900	
HK 1005 1N2□	RoHS	1.2±0.3nH ※	8	100	11	25	35	44	52	10000	>13000	0.09	0.04	300	900	
HK 1005 1N5□	RoHS	1.5±0.3nH ※	8	100	11	24	33	44	48	6000	>13000	0.1	0.05	300	850	
HK 1005 1N8□	RoHS	1.8±0.3nH ※	8	100	11	23	30	36	42	6000	11000	0.12	0.06	300	700	
HK 1005 2N0□	RoHS	2.0±0.3nH **	8	100	11	21	27	34	39	6000	10500	0.12	0.06	300	700	
HK 1005 2N2□	RoHS	2.2±0.3nH ※	8	100	10	18	25	31	36	6000	10000	0.13	0.07	300	700	
HK 1005 2N4□	RoHS	2.4±0.3nH ※	8	100	10	18	24	31	35	6000	9500	0.13	0.07	300	650	
HK 1005 2N7□	RoHS	2.7±0.3nH **	8	100	10	18	24	31	34	6000	9000	0.13	0.08	300	650	
HK 1005 3N0□	RoHS	3.0±0.3nH **	8	100	10	18	24	31	35	6000	8500	0.16	0.09	300	600	
HK 1005 3N3□	RoHS	3.3±0.3nH **	8	100	10	18	24	31	35	6000	8000	0.16	0.1	300	550	
HK 1005 3N6□	RoHS	3.6±0.3nH **	8	100	10	18	24	31	35	5000	7500	0.2	0.11	300	500	
HK 1005 3N9□	RoHS	3.9±0.3nH **	8	100	10	18	24	31	35	4000	7000	0.21	0.12	300	500	
HK 1005 4N3□	RoHS	4.3±0.3nH **	8	100	10	18	24	31	35	4000	6500	0.2	0.12	300	500	
HK 1005 4N7□	RoHS	4.7±0.3nH ※	8	100	10	18	24	31	34	4000	6000	0.21	0.12	300	500	
HK 1005 5N1□	RoHS	5.1±0.3nH ※	8	100	10	18	24	31	34	4000	5800	0.21	0.13	300	450	
HK 1005 5N6□	RoHS	5.6±0.3nH **	8	100	10	18	24	30	35	4000	5700	0.23	0.15	300	430	
HK 1005 6N2□	RoHS	6.2±0.3nH ※	8	100	10	18	24	30	34	3900	5600	0.25	0.16	300	430	
HK 1005 6N8O	RoHS	6.8±5% ※	8	100	10	18	23	29	32	3900	5500	0.25	0.17	300	430	0.50±0.05
HK 1005 7N5○	RoHS	7.5±5% ※	8	100	10	18	23	29	32	3700	5200	0.25	0.18	300	400	(0.020±0.002)
HK 1005 8N2O	RoHS	8.2±5% ※	8	100	10	18	23	29	31	3600	4900	0.28	0.21	300	380	(0.020±0.002)
HK 1005 9N1 O	RoHS	9.1±5% ※	8	100	10	18	23	29	31	3400	4500	0.3	0.22	300	360	
HK 1005 10NO	RoHS	10±5% ※	8	100	10	18	23	29	31	3200	4300	0.31	0.23	300	340	
HK 1005 12NO	RoHS	12±5% ※	8	100	11	18	23	29	31	2700	3900	0.4	0.28	300	330	
HK 1005 15NO	RoHS	15±5% ※	8	100	11	18	23	28	30	2300	3500	0.46	0.31	300	320	
HK 1005 18NO	RoHS	18±5% ※	8	100	11	18	23	28	30	2100	3100	0.55	0.35	300	310	
HK 1005 22NO	RoHS	22±5% ※	8	100	11	17	22	26	27	1900	2800	0.6	0.42	300	300	
HK 1005 27NO	RoHS	27±5% ※	8	100	11	17	21	25	26	1600	2300	0.7	0.47	300	300	
HK 1005 33NO	RoHS	33±5% ※	8	100	11	16	20	23	22	1300	1900	0.8	0.5	200	250	
HK 1005 39NO	RoHS	39±5% ※	8	100	11	16	20	23	21	1200	1700	0.9	0.52	200	250	
HK 1005 47NO	RoHS	47±5% ※	8	100	11	16	19	21	18	1000	1500	1	0.58	200	230	
HK 1005 56NO	RoHS	56±5% ※	8	100	11	16	18	18	16	750	1300	1	0.61	200	220	
HK 1005 68NO	RoHS	68±5% ※	8	100	11	15	17	18	11	750	1200	1.2	0.7	180	200	
HK 1005 82NO	RoHS	82±5% ※	8	100	10	14	16	15	6	600	1100	1.3	0.81	150	200	
HK 1005 R10	RoHS	100±5% ※	8	100	10	14	14	12	_	600	1000	1.5	0.94	150	200	
HK 1005 R12O	RoHS	120±5% ※	8	100	10	12	10	_	_	600	800	1.6	1.1	150	200	
HK 1005 R15O	RoHS	150±5% ※	8	100	12	17	17	_	_	550	920	3.2	2.57	140	200	
HK 1005 R18O	RoHS	180±5% ※	8	100	12	16		_	_	500	810	3.7	2.97	130	200	
HK 1005 R22O	RoHS	220±5% ※	8	100	12	16	_	_	_	450	700	4.2	3.29	120	200	
HK 1005 R27	RoHS	270±5% ※	8	100	12	14	_	_	_	400	600	4.8	3.92	110	200	

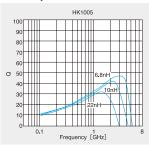
[※]形名の□、○にはインダクタンス許容差記号が入ります。±0.3nH (□)、±5% (○)以下の許容差も対応可能ですので、お問い合わせ下さい。□, ○mark indicates the Inductance tolerance code. The product with tolerance less than ±0.3nH (□), ±5% (○) is also available. Please contact your local sales office.

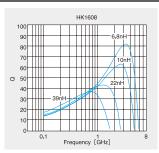
HK1608 -

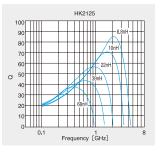
形名	EHS (Environmental	インダクタンス		LQ測定周波数		Q	(Typic	cal)		自己共 Self-re	+		抵抗	定格電流 Rated	厚さ Thickness
	Hazardous	Inductance	Q	Measuring frequency	周沙		equer		Hz]	frequ	ency		sistance	current	
Ordering code		(nH)	min.	[MHz]						[M	Hz]	[]	Ω)	(mA)	(mm)
	Substances)	` ´		[1411 12]	100	300	500	800	1000		Тур.	max.	Тур.	max.	(inch)
HK 1608 1N0	RoHS	1.0±0.3nH ※	8	100	14	30	40	70	90	10000	>13000	0.05	0.015	300	
HK 1608 1N2	RoHS	1.2±0.3nH ※	8	100	14	30	40	70	90		>13000		0.015	300	
HK 1608 1N5	RoHS	1.5±0.3nH ※	8	100	14	26	34	47	50	6000			0.03	300	
HK 1608 1N8	RoHS	1.8±0.3nH ※	8	100	10	18	24	30	34	6000			0.06	300	
HK 1608 2N2□	RoHS	2.2±0.3nH ※	8	100	12	22	29	37	40	6000	12000		0.06	300	
HK 1608 2N7□	RoHS	2.7±0.3nH ※	10	100	13	24	32	41	45	6000	11000		0.06	300	
HK 1608 3N3	RoHS	3.3±0.3nH ※	10	100	14	25	33	42	47	6000	9000	0.12	0.06	300	
HK 1608 3N9□	RoHS	3.9±0.3nH ※	10	100	13	25	33	42	46	6000	8000	0.14	0.07	300	
HK 1608 4N7□	RoHS	4.7±0.3nH ※	10	100	13	25	33	42	47	4000	6500	0.16	0.08	300	
HK 1608 5N6□	RoHS	5.6±0.3nH ※	10	100	14	25	33	42	46	4000	5800	0.18	0.09	300	
HK 1608 6N8O	RoHS	6.8±5% **	10	100	14	25	33	43	47	4000	5600	0.22	0.11	300	
HK 1608 8N2O	RoHS	8.2±5% **	10	100	14	26	34	44	48	3500	5200	0.24	0.13	300	
HK 1608 10NO	RoHS	10±5% ※	12	100	14	26	34	43	47	3400	4600	0.26	0.16	300	
HK 1608 12NO	RoHS	12±5% ※	12	100	14	27	35	45	49	2600	4000	0.28	0.17	300	
HK 1608 15NO	RoHS	15±5% ※	12	100	15	28	37	46	51	2300	3400	0.32	0.20	300	
HK 1608 18NO	RoHS	18±5% ※	12	100	15	27	36	44	48	2000	3000	0.35	0.21	300	001045
HK 1608 22NO	RoHS	22±5% ※	12	100	16	28	36	44	47	1600	2900	0.40	0.25	300	0.8±0.15
HK 1608 27NO	RoHS	27±5% ※	12	100	16	29	37	45	46	1400	2200	0.45	0.28	300	(0.031±0.006)
HK 1608 33NO	RoHS	33±5% ※	12	100	17	31	40	46	47	1200	1800	0.55	0.35	300	
HK 1608 39NO	RoHS	39±5% ※	12	100	18	31	39	44	44	1100	1600	0.60	0.38	300	
HK 1608 47NO	RoHS	47±5% ※	12	100	17	28	34	35	34	900	1600	0.70	0.45	300	
HK 1608 56NO	RoHS	56±5% ※	12	100	17	28	34	34	31	900	1400	0.75	0.50	300	
HK 1608 68NO	RoHS	68±5% ※	12	100	18	29	34	30	22	700	1200	0.85	0.55	300	
HK 1608 82NO	RoHS	82±5% ※	12	100	18	28	33	27	_	600	1100	0.95	0.60	300	
HK 1608 R10O	RoHS	100±5% **	12	100	18	27	28	16	_	600	1000	1.00	0.65	300	
HK 1608 R12O	RoHS	120±5% ※	8	50	16	24	23	_	_	500	800	1.20	0.68	300	
HK 1608 R15O	RoHS	150±5% ※	8	50	13	19	16	_	_	500	800	1.20	0.73	300	
HK 1608 R18O	RoHS	180±5% ※	8	50	13	18	12	_	_	400	700	1.30	0.85	300	1
HK 1608 R22O	RoHS	220±5% **	8	50	12	16	 —	 —	_	400	600	1.50	0.95	300	1
HK 1608 R27O	RoHS	270±5% **	8	50	14	15		_	_	400	550	1.9	1.34	150	1
HK 1608 R33O	RoHS	330±5% **	8	50	14			_	_	350	480	2.1	1.53	150	1
HK 1608 R39O	RoHS	390±5% **	8	50	13	_	_	_	_	350	410	2.3	1.72	150	
HK 1608 R470	RoHS	470±5% ※	8	50	13		_	_	_	300	360	2.6	2.04	150	

[※]形名の□、○にはインダクタンス許容差記号が入ります。±0.3nH(□)、±5%(○)以下の許容差も対応可能ですので、お問い合わせ下さい。

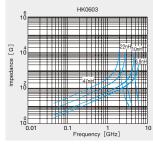

HK2125 -

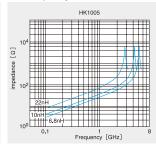

形名 Ordering code	EHS (Environmental Hazardous	インダクタンス Inductance	Q min.	LQ測定周波数 Measuring frequency	周沙		Q Typica requer		Hz]	Self-re Frequ	辰周波数 sonant uency Hz]	直流 DC-Res		定格電流 Rated current	厚さ Thickness 〔mm〕
Ordering code	Substances)	(nH)		[MHz]		300		800			н <u>гј</u> Тур.	max.	_	(mA)	(inch)
HK 2125 1N5S	RoHS	1.5±0.3nH	10	100	21	39	57	61	68	4000	>6000	0.10	0.02	300	
HK 2125 1N8S	RoHS	1.8±0.3nH	10	100	18	35	49	55	59	4000	>6000	0.10	0.02	300	
HK 2125 2N2S	RoHS	2.2±0.3nH	10	100	18	33	46	53	58	4000	>6000	0.10	0.03	300	1
HK 2125 2N7S	RoHS	2.7±0.3nH	12	100	19	36	50	56	60	4000	>6000	0.10	0.03	300	1
HK 2125 3N3S	RoHS	3.3±0.3nH	12	100	16	29	40	47	51	4000	>6000	0.13	0.04	300	
HK 2125 3N9S	RoHS	3.9±0.3nH	12	100	18	33	46	54	60	4000	>6000	0.15	0.05	300	1
HK 2125 4N7S	RoHS	4.7±0.3nH	12	100	18	34	46	55	60	3500	>6000	0.20	0.05	300	1
HK 2125 5N6S	RoHS	5.6±0.3nH	15	100	20	38	51	60	66	3200	5400	0.23	0.05	300	
HK 2125 6N8J	RoHS	6.8±5%	15	100	20	39	52	63	69	2800	4200	0.25	0.06	300	0.85±0.2
HK 2125 8N2J	RoHS	8.2±5%	15	100	21	40	54	63	70	2400	3700	0.28	0.07	300	(0.033±0.008)
HK 2125 10NJ	RoHS	10±5%	15	100	20	38	51	60	67	2100	3100	0.30	0.09	300	1
HK 2125 12NJ	RoHS	12±5%	15	100	21	39	52	60	67	1900	3000	0.35	0.10	300	
HK 2125 15NJ	RoHS	15±5%	15	100	22	42	55	63	72	1600	2600	0.40	0.11	300]
HK 2125 18NJ	RoHS	18±5%	15	100	24	44	57	63	72	1500	2300	0.45	0.13	300	1
HK 2125 22NJ	RoHS	22±5%	18	100	23	43	55	60	69	1400	2100	0.50	0.16	300]
HK 2125 27NJ	RoHS	27±5%	18	100	23	42	53	58	68	1300	1800	0.55	0.17	300	
HK 2125 33NJ	RoHS	33±5%	18	100	24	43	54	55	60	1200	1700	0.60	0.19	300	
HK 2125 39NJ	RoHS	39±5%	18	100	23	41	50	47	47	1000	1400	0.65	0.25	300	1
HK 2125 47NJ	RoHS	47±5%	18	100	23	41	49	43	41	900	1200	0.70	0.26	300	
HK 2125 56NJ	RoHS	56±5%	18	100	23	42	48	39	38	800	1100	0.75	0.28	300	
HK 2125 68NJ	RoHS	68±5%	18	100	25	42	45	30	_	700	900	0.80	0.33	300	
HK 2125 82NJ	RoHS	82±5%	18	100	24	41	41		_	600	800	0.90	0.37	300]
HK 2125 R10J	RoHS	100±5%	18	100	23	37	37	_	_	600	800	0.90	0.40	300	+02
HK 2125 R12J	RoHS	120±5%	13	50	22	33	29	_	_	500	700	0.95	0.43	300	1.00+0.2
HK 2125 R15J	RoHS	150±5%	13	50	22	34	26	_	_	500	700	1.00	0.46	300	(0.039 +0.008)
HK 2125 R18J	RoHS	180±5%	13	50	23	34	20		_	400	600	1.10	0.50	300	-0.012
HK 2125 R22J	RoHS	220±5%	12	50	20	23	_	_	_	350	550	1.20	0.75	300	1
HK 2125 R27J	RoHS	270±5%	12	50	20	19	_	_	_	300	480	1.30	0.85	300]
HK 2125 R33J	RoHS	330±5%	12	50	22	15	_	_	_	250	400	1.40	0.90	300	1
HK 2125 R39J	RoHS	390±5%	10	50	17	12	_	—	_	250	400	1.30	0.85	300	1
HK 2125 R47J	RoHS	470±5%	10	50	17		_		<u> </u>	200	350	1.50	0.95	300	1

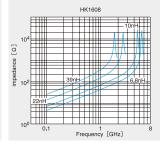

 $[\]square$, \bigcirc mark indicates the Inductance tolerance code. The product with tolerance less than ± 0.3 nH (\square), $\pm 5\%$ (\bigcirc) is also available. Please contact your local sales office.

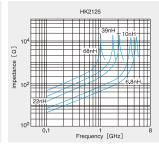

特性図 ELECTRICAL CHARACTERISTICS

Q-周波数特性例 Q-Characteristics (Measured by HP8719C)

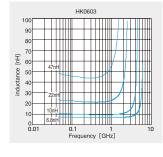


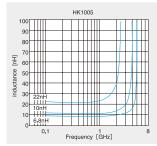


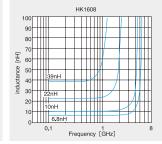


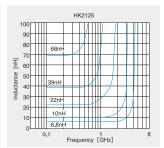


インピーダンス周波数特性例 Impedance-vs-Frequency characteristics (Measured by HP8719C)

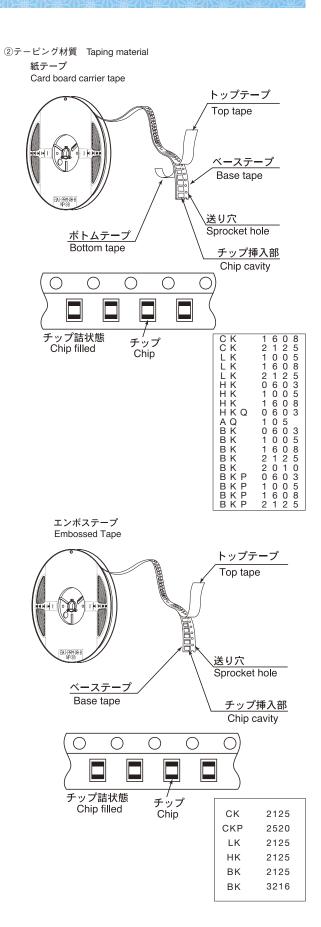


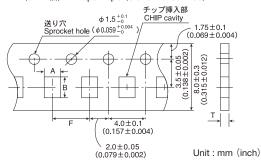




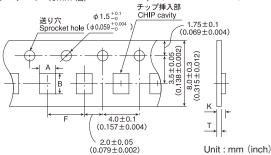


インダクタンス周波数特性例 Inductance-vs-Frequency characteristics (Measured by HP8719C)

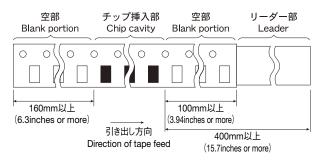



①最小受注単位数 Minimum Quantity ■テーピング梱包 Tape & Reel Packaging

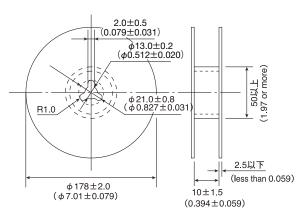
形式	製品厚み		文量 [pcs] rd Quantity
	Thickness [mm]		
Туре	(inch)	紙テープ Paper Tape	エンボステープ Embossed Tape
CK1608(0603)	0.8 (0.031)	4000	_
CK010E (000E)	0.85 (0.033)	4000	_
CK2125 (0805)	1.25 (0.049)	_	2000
CKP2520 (1008)	0.9 (0.035)	_	3000
ORT 2320 (1000)	1.1 (0.043)	_	2000
LK1005(0402)	0.5 (0.020)	10000	_
LK1608(0603)	0.8 (0.031)	4000	_
L KO405 (2005)	0.85 (0.033)	4000	_
LK2125 (0805)	1.25 (0.049)	_	2000
HK0603(0201)	0.3 (0.012)	15000	_
HK1005(0402)	0.5 (0.020)	10000	_
HK1608 (0603)	0.8 (0.031)	4000	_
	0.85	_	4000
HK2125 (0805)	1.0 (0.039)	_	3000
HKQ0603S(0201)	0.3 (0.012)	15000	_
AQ105(0402)	0.5 (0.020)	10000	_
BK0603(0201)	0.3 (0.012)	15000	_
BK1005(0402)	0.5 (0.020)	10000	_
BK1608 (0603)	0.8 (0.031)	4000	_
DV0105 (0005)	0.85 (0.033)	4000	_
BK2125 (0805)	1.25 (0.049)	_	2000
BK2010 (0804)	0.45 (0.018)	4000	_
BK3216(1206)	0.8 (0.031)	_	4000
BKP0603(0201)	0.3 (0.012)	15000	_
BKP1005(0402)	0.5 (0.020)	10000	_
BKP1608(0603)	0.8 (0.031)	4000	_
BKP2125 (0805)	0.85 (0.033)	4000	_
	(0.033)		


③テーピング寸法 Taping Dimensions

・紙テープ (8mm幅) Paper tape (0.315 inches wide)

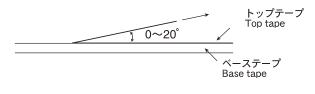

形 式 Type	製品厚み Thickness (mm)	チップ Chip・		挿入ピッチ Insertion Pitch	テープ厚み Tape Thickness
	(inch)	A	В	F	Т
CK1608 (0603)	0.8 (0.031)	1.0±0.2 (0.039±0.008)	1.8±0.2 (0.071±0.008)	4.0±0.1 (0.157±0.004)	1.1m a x (0.043max)
CK2125(0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1m a x
	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)
LK1005 (0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8ma x
	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
LK1608 (0603)	0.8 (0.031)	1.0±0.2 (0.039±0.008)	1.8±0.2 (0.071±0.008)	4.0±0.1 (0.157±0.004)	1.1m a x (0.043max)
LK2125 (0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1m a x
	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)
HK0603 (0201)	0.3	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
	(0.012)	(0.016±0.002)	(0.028±0.002)	(0.079±0.002)	(0.018max)
HK1005(0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8ma x
	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
HK1608 (0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1m a x
	(0.031)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
HKQ0603S(0201)	0.3	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
	(0.012)	(0.016±0.002)	(0.028±0.002)	(0.079±0.002)	(0.018max)
AQ105(0402)	0.5	0.75±0.1	1.15±0.1	2.0±0.05	0.8ma x
	(0.020)	(0.030±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
BK0603(0201)	0.3 (0.012)	0.40±0.06 (0.016±0.002)	0.70±0.06 (0.028±0.002)	2.0±0.05 (0.079±0.002)	0.45max (0.018max)
BK1005(0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8ma x
	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
BK1608 (0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1m a x
	(0.031)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
BK2125 (0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1m a x
	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)
BK2010 (0804)	0.45	1.2±0.1	2.17±0.1	4.0±0.1	0.8ma x
	(0.018)	(0.047±0.004)	(0.085±0.004)	(0.157±0.004)	(0.031max)
BKP0603(0201)	0.3 (0.012)	0.40±0.06 (0.016±0.002)	0.70±0.06 (0.028±0.002)	2.0±0.05 (0.079±0.002)	0.45max (0.018max)
BKP1005(0402)	0.5 (0.020)	0.65±0.1 (0.026±0.004)	1.15±0.1 (0.045±0.004)	2.0±0.05 (0.079±0.002)	0.8ma x (0.031max)
BKP1608(0603)	0.8 (0.031)	1.0±0.2 (0.039±0.008)	1.8±0.2 (0.071±0.008)	4.0±0.1 (0.157±0.004)	1.1m a x (0.043max)
BKP2125 (0805)	0.85 (0.033)	1.5±0.2 (0.059±0.008)	2.3±0.2 (0.091±0.008)	4.0±0.1 (0.157±0.004)	1.1m a x (0.043max)

・エンボステープ (8mm 幅) Embossed Tape (0.312 inches wide)



形 式 Type	製品厚み Thickness (mm)	チップ Chip	挿入部 cavity	挿入ピッチ Insertion Pitch	テーフ Ta Thick	ре
	(inch)	Α	В	F	K	Т
CK2125(0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
CN2 123 (0603)	(0.049)	(0.059±0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.079)	(0.012)
	0.9				1.4	
CKP2520(1008)	(0.035)	2.3±0.1	2.8±0.1	4.0±0.1	(0.055)	0.3
GRP2320 (1006)	1.1	(0.091±0.004)	(0.110±0.004)	(0.157±0.004)	1.7	(0.012)
	(0.043)				(0.067)	
LK2125 (0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
LN2 123 (0003)	(0.049)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)
	0.85				1.5	
HK2125(0805)	(0.033)	1.5±0.2	2.3±0.2	4.0±0.1	(0.059)	0.3
HK2123(0003)	1.0	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	2.0	(0.012)
	(0.039)				(0.079)	
BK2125(0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
DN2123(U8U3)	(0.049)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)
BK3216(1206)	0.8	1.9±0.1	3.5±0.1	4.0±0.1	1.4	0.3
DN3210(1200)	(0.031)	(0.075±0.004)	(0.138±0.004)	(0.157±0.004)	(0.055)	(0.012)

④リーダー部・空部 LEADER AND BLANK PORTION



⑤リール寸法 Reel Size

⑥トップテープ強度 Top tape strength

トップテープの剥離力は、下図矢印方向にて0.1~0.7Nとなります。 The top tape requires a peel-off force of $0.1 \sim 0.7 N$ in the direction of the arrow as illustrated below.

⚠Please read the "Notice for TAIYO YUDEN products" before using this catalog.

											Specif	ied Valu	ıe										
Item					AR	RAY																	Test Methods and Remarks
	BK0603	BK1005	BK1608	BK2125	BK2010	BK3216	BKP0603	BKP1005	BKP1608	BKP2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603S	AQ105	
1. Operating Temperature Range		-	-55~-	- 125°C				-55~	+85°C				-40~	+85°C			-55~	+125℃	-40~	+85°C	-55~	+125℃	
Storage Temperature Range			-55~-	⊦125°C				-55~	+85°C				−40 ~	+85°C			-55~	+125℃	_40~	+85°C	-55~	+125℃	
3. Rated Current	100~	150~		200~	100mA	100~	1.0A	1.0A	1.0~	2.0~	50~	60~	1.1~	10~	1~	5~	60~	110~	150~		130~	280~	
	500mA DC	1000mA D C	1500mA D C	1200mA D C	DC	200mA DC	DC	DC	3.0A DC	4.0A D C	60mA DC	500mA DC	1.4 DC	25mA DC	50mA DC	300mA DC	470mA DC	300mA DC	300mA DC	300mA DC	600mA DC	710mA DC	
4. Impedance	10~ 600Ω ±25%	10~ 1000Ω ±25%	22~ 2500Ω ±25%	15~ 2500Ω ±25%	5~ 600Ω ±25%	68~ 1000Ω ±25%	22~ 33Ω ±25%	120Ω ±25%	33~ 390Ω ±25%	33~ 2200 ±25%													BK0603 Series: BKP0603 Series: Measuring frequency:100±1MHz Measuring equipment:HP4291A Measuring ijg:16193A BK1005 Series: BKP1005 Series: BKP1005 Series: Measuring frequency:100±1MHz Measuring equipment:HP4291A Measuring ijg:16192A, 16193A BK1608, 2125 Series: BKP1608, 2125 Series: BKP1608, 2125 Series: Measuring frequency:100±1MHz Measuring frequency:100±1MHz Measuring ijg:16092A or 16192A (HW)
5. Impedance											4.7~ 10.0μH : ±20%	0.1~ 10.0μH : ±20%		0.12~ 2.2μH : ±10%	0.047~ 33.0μH :±20%	0.047~ 33.0μH : ±20%		1.0~ 6.2nH :±0.3nH	1.0~ 5.6nH :±0.3nH	1.0~ 5.6nH :±0.3nH	0.6~ 6.2nH :±0.3nH	1.0~ 6.2nH :±0.3nH	BK2010, 3216 Series: Measuring frequency: 100±1MHz Measuring equipment: HP4291A, HP4195A Measuring jig: 16192A CK Series: Measuring frequency: 2 to 4MHz (CK1608) Measuring frequency: 2 to 25MHz (CK2125)
					_									Q 0.12~ 2.2μH :±30%	0.10~ 12.0µH :±10% 0 0.12~ 22.µH :±30%	0.10~ 12.0μH :±10% 0 0.12~ 2.2μH :±30%	6.8~ 100nH : ±5%	6.8~ 270nH :±5%	6.8~ 470nH :±5%	6.8∼ 470nH :±5%	6.8∼ 22nH :±5%	6.8∼ 15nH :±5%	Measuring frequency : 1MHz (CKP2520) LK Series : Measuring frequency : 10 to 25MHz (LK1005) Measuring frequency : 10 to 50MHz (LK1008) Measuring frequency : 1 to 50MHz (LK1008) Measuring equipment, ijig : HP4194 + 160958 + 16092A (or its equivalent) HP4195 + 14951 + 16092A (or its equivalent) HP4294 + 16192A HP4291A-16193A (LK1005) HP4291A-16193A (LK1005) HP4285A-42841A-42842C+42851-61100 (CKP2520) Measuring current : ImA rms (0.047 to 4.7μH) O.1mA rms (5.6 to 33μH) HK, AQ Series : Measuring frequency : 100MHz (HK0603 + HK1005 - AQ105) Measuring frequency : 50/100MHz (HK1608 + HK2125) Measuring frequency : 50/100MHz (HK1608 - HK2125) Measuring requipment, ijig : HP4291A + 16197A (HK0603 - AQ105)

^{*} Definition of rated current: In the CK and BK Series, the rated current is the value of current at which the temperature of the element is increased within 20°C.

In the BK Series P type and CK Series P type, the rated current is the value of current at which the temperature of the element is increased within 40°C.

In the LK,HK,HKQ,and AQ Series, the rated current is either the DC value at which the internal L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within $20\,^\circ\!\text{C}$.

											Specifi	ied Valu	ie										
Item	BK0603	BK1005	BK1608	BK2125	-	RAY BK3216	- BKP0603	BKP1005	BKP1608	BKP2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603S	AQ105	Test Methods and Remarks
6. Q					_						20 min.	15~20 min.		10~20 min.	10~35 min.	15~50 min.	4∼5 min.	8 min.	8~12 min.	10~18 min.	10~13 min.	8 min.	CK Series: Measuring frequency: 2 to 4MHz (CK1608) Measuring frequency: 2 to 25MHz (CK2125) LK Series: Measuring frequency: 10 to 25MHz (LK1005) Measuring frequency: 10 to 25MHz (LK1005) Measuring frequency: 10 to 50MHz (LK1608) Measuring frequency: 0.4 to 50MHz (LK2125) Measuring equipment, jig: HP4194 + 16085B + 16092A (or its equivalent)
7. DC Resistance	0.07~ 1.50Ω max.	0.05~ 0.80Ω max.	0.05~ 1.10Ω max.	0.05~ 0.75Ω max.	0.10~ 0.90Ω max.	0.15~ 0.80Ω max.	0.065~ 0.070Ω max.	0.140Ω max.	0.025~ 0.140Ω max.	0.020~ 0.050Ω max.		0.16~ 0.65Ω max.	0.08~ 0.15 max.	0.7~ 1.70Ω max.	0.2~ 2.2Ω max.	0.1~ 1.1Ω max.	0.11~ 3.74Ω max.	0.08~ 4.8Ω max.	0.05~ 2.6Ω max.	0.10~ 1.5Ω max.	0.06~ 1.29Ω max.	0.07~ 0.45Ω max.	Measuring equipment: VOAC-7412 (made by Iwasaki Tsushinki) VOAC-7512 (made by Iwasaki Tsushinki)
8. Self Resonance Frequency (SRF)					_	_					17~ 25MHz min.	24~ 235MHz min.		40~ 180MHz min.	9~ 260MHz min.	13~ 320MHz min.	900~ 10000MHz min.	400~ 10000MHz min.	300~ 10000MHz min.	200~ 4000MHz min.	1900~ 10000MHz min.	2300~ 10000MHz min.	LK Series: Measuring equipment: HP4195A Measuring jig: 41951+16092A (or its equivalent) HK, HKQ, AQ Series: Measuring equipment: HP8719C HP8753D (HK2125)
Temperature Characteristic					_	_							_	_			1	±10%	hange	:	•		HK, HKQ, AQ Series: Temperature range: -30 to +85°C Reference temperature: +20°C
10. Resistance to Flexure of Substrate	No me	echanic	al dam	age.																			Warp : 2mm Testing board : glass epoxy-resin substrate Thickness : 0.8mm Board R-230 Warp 45 45 45 (Unit. mm)

										Specifi	ied Valu	ıe										
Item	BK0603	BK1005	BK1608	BK2125	ARRAY BK2010 BK32		BKP1005	BKP1608	BKP2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603S	AQ105	Test Methods and Remarks
11. Solderability	At leas	st 75% o	of term	inal ele	ctrode is c	overed b	y new s	older.		At leas	t 75%	of termi	nal elec	ctrode i	s cove	red by r	new sol	der.				Solder temperature : 230±5°C
																						Duration: 4±1 sec.
12. Resistance to	Appea	ırance	: No sig	gnifican	t abnorma	lity.				No med	hanical d	amage.	No	No meci	nanical	No me	chanic	al dama	age.			Solder temperature : 260±5°C
Soldering	Imped	ance ch	nange	: With	in ±30%					Remaini	ing termin	nal	mechanical	damag	е.	Remair	ning terr	ninal ele	ctrode	: 70% r	min.	Duration: 10±0.5 sec.
										electroc	le : 70%	min.	damage.	Remair	ing							Preheating temperature: 150 to 180°C
											Remaining	termina	ıl	Induct	ance c	nange				Preheating time : 3 min.		
										Inducta	nce chan	ge	terminal	electro	de :	Within	±5%					Flux: Immersion into methanol solution with
										R10~4F	7: Within	±10%	electrode	70% m	iin.							colophony for 3 to 5 sec.
										6R8~10	0:Within:	±15%	: 70% min.	Inducta	ince							Recovery: 2 to 3 hrs of recovery under
										CKP252	:0:Within	±30%	Inductance	change								the standard condition after the test.
													change	47N~4	R7:							(See Note 1)
													Within	Within:	±10%							
													±15%	5R6~3	30:							
												I		Within								
13. Thermal Shock	1		,		t abnorma	lity.				No		No		chanic	al		chanic					Conditions for 1 cycle
	Imped	ance ch	nange	: With	in ±30%					mecha		mechanical	damag							in ±10	%	Step 1: Minimum operating temperature
										damag	•	damage.	Induct			Qchan	ige : V	Vithin ±	20%			+0 °C 30±3 min.
										Induct		Induc-	change									Step 2 : Room temperature 2 to 3 min.
										chang Within ±		tance change:	Within	±10% ge :								Step 3 : Maximum operating temperature ${+0\atop -3}{}^{\circ}\mathbb{C} 30{\pm}3\text{min}.$
										Qchan	ge :	Within	Within	±30%	5							Step 4: Room temperature 2 to 3 min.
										Within ±	±30%	±30%										Number of cycles : 5
																						Recovery: 2 to 3 hrs of recovery under the
																						standard condition after the test. (See Note 1)

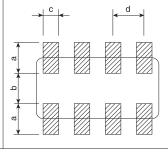
(Note 1) When there are questions concerning mesurement result ; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

													Specif	ied Valu	ie											
Item						AF	RAY				T											T				Test Methods and Remarks
	BK0603	BK1005	BI	K1608 B	K2125	BK2010	BK3216	BKF	P0603 BKP100	5 BKP160	18 BK	(P2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	H	HK2125 H	(Q0603S	AQ105	
14. Damp Heat	Appea	rance	: N	No signit	fican	t abn	ormalit	y.					No		No	No me	L chani-	No	No me	chanic	l al dam	ag	je.			BBK Series:
(Steady state)	Imped	ance c	hai	nge : Wi	ithin	±30%	6						mecha	anical	mechanical	cal da	mage.	mechanical	Induct	ance c	hange:	: w	/ithin ±	10%		Temperature: 40±2°C
													dama	ge.	damage.	Induct	ance	damage.	1	nge : W						Humidity: 90 to 95%RH Duration: 500 +24 hrs
													Induct	ance	Inductance	chang		Inductance								Recovery: 2 to 3 hrs of recovery under the
													chang		change :	Within		change:								standard condition after the removal from test
													Within		Within	±10%		Within								chamber. (See Note 1)
															±30%			±20%								LK, CK, CKP, HK, HKQ, AQ Series:
													Q cha	nae:		Q cha	nae:	Q change:								Temperature: 40±2°C (LK, CK, CKPSeries)
													Within			Within		Within								: 60±2°C (HK, HKQ, AQ Series)
																±30%		±30%								Humidity: 90 to 95%RH
																										Duration: 500±12 hrs
																										Recovery: 2 to 3 hrs of recovery under the
																										standard condition after the removal from test
																										chamber. (See Note 1)
15. Loading under	Appea	rance	: N	No signi	fican	t abn	ormalit	٧.					No		No	No	No	No	No me	chanic	al dam	aa	1e.			BK Series :
Damp Heat				nge : Wi				•					mecha	anical	mechanical	mechanical	mechanical	mechanical	1				/ithin ±	10%		Temperature: 40±2°C
	'												dama		damage.	damage.	damage.	damage.	1	nge : W						Humidity: 90 to 95%RH
																	'			-						Duration: 500 +24 hrs
													Induct	ance	Induc-	Induc-	Induc-	Induc-								Recovery : 2 to 3 hrs of recovery under the
													chang	e:	tance	tance	tance	tance								standard condition after the removal from test
													Within		change:	change:	change:	change:								chamber. (See Note 1)
															Within	Within	0.047 to	Within								LK, CK, CKP, HK, HKQ, AQ Series:
													Q cha	nge:	±30%	±10%	12.0µH:	±20%								Temperature: 40±2°C (LK, CK, CKPSeries)
													Within	±30%			Within									:60±2°C (HK, HKQ, AQ Series)
																Q	±10%	Q								Humidity: 90 to 95%RH
																change:	15.0 to	change:								Duration: 500±12 hrs
																Within	33.0µH:	Within								Recovery: 2 to 3 hrs of recovery under the
																±30%	Within	±30%								standard condition after the removal from test
																	±15%									chamber. (See Note 1)
																	Q abanas :									
																	change: Within									
																	±30%									
16. Loading at High	Appea	rance	: N	No signi	fican	t abn	ormalit	γ.					No		No	No	No	No	No me	chanic	al dam	aq	ıe.			BK Series :
Temperature				nge : Wi									mecha	anical	mechanical	mechanical	mechanical	mechanical	1				/ /ithin ±	10%		Temperature: 125±3°C
													dama	ge.	damage.	damage.	damage.	damage.	Q char	nge : W	ithin ±	20)%			Applied current : Rated current
																										Duration: 500 +24 hrs
													Induct	ance	Induc-	Induc-	Induc-	Induc-								Recovery: 2 to 3 hrs of recovery under the
													chang	e:	tance	tance	tance	tance								standard condition after the removal from test
													Within	±20%	change:	change:	change:	change:								chamber. (See Note 1)
															Within	Within	0.047 to	Within								LK, CK, CKP, HK, HKQ, AQ Series, BK Series
													Q cha	nge:	±30%	±10%	12.0µH:	±20%								P type:
													Within	±30%			Within									Temperature: 85±2°C (LK, CK, CKPSeries)
																Q	±10%	Q								:85±3°C (BK Series P type)
																change:	15.0 to	change:								:85±2°C (HK1608, 2125)
																Within	33.0µH:	Within								:85±2°C (HK1005, AQ105 operating
																±30%	Within	±30%								temperature range -55 to +85°C)
																	±15%									:125±2°C (HK0603, HK1005, HKQ0603S,
																										AQ105 operating temperature range -55 to +125°C)
																	Q									Applied current : Rated current
																	change:									Duration: 500±12 hrs
																	Within									Recovery : 2 to 3 hrs of recovery under the
																	±30%									standard condition after the test. (See Note 1)

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to $35^{\circ}\!\text{C}$ of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:


In order to provide correlation data, the test shall be conducted under condition of 20 \pm 2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

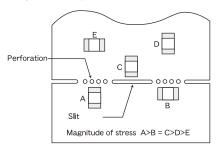
(Note 1)

measurement shall be made after 48 \pm 2 hrs of recovery under the standard condition.

(Design of Land-patterns) 1. When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist. (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns smaller than terminal electrode of chips.		Technical co	onsideratio	ons		
(Design of Land-patterns) 1. When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist. (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns smaller than terminal electrode of chips.						
(3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns smaller than terminal electrode of chips. B C	Chip indu BAA nended land dime	xcessive solder tend termination. dimensions for Land pattern ctor	er amount tions). E or a typica Solder-resi	ts (larger to examples of the control of the contro	fillets which of improper luctor land Chip induct	n extend r pattern patterns
Type	0.5~0.8 0.6~0.8	0.8~1.5 0.9~1.2	0.8~·	1.6	· mm)	
	0603 100		1608	2125	3216	2520
ži W	0.6 1.0		1.6	2.0	3.2	2520
	0.6 1.0		0.8	1.25	1.6	2.5
		0.55 0.50~0.55	0.6~0.8	0.8~1.2	1.8~2.5	1.0~1.
		0.50 0.30~0.50	0.6~0.8	0.8~1.2	0.6~1.5	0.6~1.
		0.55 0.60~0.70	0.6~0.8	0.8~1.2	1.2~2.0	1.8~2

Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns.

Recommended land dimension for Reflow-soldering (unit: mm)


		3216	2010
Size	L	3.2	2.0
že	W	1.6	1.0
á	a	0.7~0.9	0.5~0.6
k)	0.8~1.0	0.5~0.6
(;	0.4~0.5	0.2~0.3
C	t	0.8	0.5

performed to minimize stress.

Stages	Precautions		Technical cons	siderations
2.PCB Design		(2) Examples of good and bad solder application		
			Not recommended	Recommended
◆Pattern configurations (Inductor layout on panelized [breakaway] PC boards) 1. After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully	Mixed mount- ing of SMD and leaded compo- nents	Lead wire of component,	Solder-resist	
	Component placement close to the chassis	Chassis Solder(for grounding)	Solder-resist	
		Hand-soldering of leaded components near mounted components	Lead wire of component Soldering iron	Solder-resist
		Horizontal component placement		Solder-resist
	(Inductor layout on panelized [breakaway] PC boards)	tors should		and bad inductor layout; SMD induc ny possible mechanical stresses fron
	Item	Not recommended	Recommended	
	Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses that are anticipated.	

Item	Not recommended	Recommended
Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses that are anticipated.

1-2. To layout the inductors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on inductor layout. An example below should be counted for better design.

1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the inductors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD inductor layout must also consider the PCB splitting procedure.

Stages	Precautions	Technical considerations	
3.Considerations for automatic placement	◆Adjustment of mounting machine 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards. 2. The maintenance and inspection of the mounter should be conducted periodically.	1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the inductors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle: (1) The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board. (2) The pick-up pressure should be adjusted between 1 and 3 N static loads. (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins should be used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement:	
		Improper method Proper method	
		Single-sided mounting chipping or cracking supporting pins or back-up pins	
		Double-sided mounting supporting pins or back-up pins	
		As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the inductors because of mechanical impact on the inductors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance, inspection and replacement of the pin should be conducted periodically.	
	◆Selection of Adhesives 1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.	1. Some adhesives may cause reduced insulation resistance. The difference between the shrinkage percentage of the adhesive and that of the inductors may result in stresses on the inductors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect component placement, so the following precautions should be noted in the application of adhesives. (1) Required adhesive characteristics a. The adhesive should be strong enough to hold parts on the board during the mounting & solder process. b. The adhesive should have sufficient strength at high temperatures. c. The adhesive should have good coating and thickness consistency. d. The adhesive should be used during its prescribed shelf life. e. The adhesive should harden rapidly f. The adhesive must not be contaminated. g. The adhesive should not be toxic and have no emission of toxic gasses.	

Please read the "Notice for TAIYO YUDEN products" before using this catalog.

Stages	Precaution	Technical considerations		
3.Considerations for automatic placement		When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad. [Recommended conditions]		
		Figure 0805 case sizes as examples		
		a 0.3mm min		
		b 100 ~120 μm		
		c Area with no adhesive		
		Amount of adhesives After inductors are bonded		
4.Soldering	◆Selection of Flux 1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use; (1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied. (2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level. (3) When using water-soluble flux, special care should be taken to properly clean the boards.	1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.		
	◆Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	1-1. Preheating when soldering Heating: Chip inductor components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C. Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.		

Please read the "Notice for TAIYO YUDEN products" before using this catalog.

Stages	Precautions	Technical considerations
4.Soldering	◆And please contact us about peak temperature	Recommended conditions for soldering
	when you use lead-free paste.	[Reflow soldering]
		Temperature profile Temperature (°C) (Pb free soldering)
		Temperature 300 Peak 260°C max▶:
		(C) 10 sec max 10 sec max
		250 Gradually cooling
		150 Preheating
		50 150°C Heating above 230°C 60 sec min 40 sec max
		*Ceramic chip components should be preheated t
		Over 1 minute Over 1 minute Gradual cooling Wassured to be reflow soldering for 2 times. **Assured to be reflow soldering for 2 times. 10 seconds
		Caution
		1. The ideal condition is to have solder mass (fillet) controlled to 1/2 to
		1/3 of the thickness of the inductor, as shown below:
		1/ ₂ T~1/ ₃ T
		Solder T
		PC board
		2. Because excessive dwell times can detrimentally affect solderability,
		soldering duration should be kept as close to recommended times
		as possible.
		[Wave soldering]
		Temperature profile Temperature (°C) (Pb free soldering)
		Temperature 230°C Peak 260°C max▶;;◄
		(°C) 250°C 200 10 sec max 200
		250 Preheating Gradually cooling
		150
		100 50 120 sec min
		%Ceramic chip components should be preheated t within 100 to 130°C of the soldering.
		Within Sassured to be wave soldering for 1 time. 3 seconds *Except for reflow soldering type.
		Ozution
		Caution
		Make sure the inductors are preheated sufficiently.
		The temperature difference between the inductor and melted solder should
		not be greater than 100 to 130°C
		Cooling after soldering should be as gradual as possible.
		4. Wave soldering must not be applied to the inductors designated as for re-
		flow soldering only.
		[Hand soldering]
		Temperature profile
		Temperature (°C) (Pb free soldering)
		Temperature 230°C 400350°C max
		(°C) 7 280°C 300 3 sec max (Gradually Control of Cardually Control of Cardual of Cardu
		250 200 AT Gradually cooling
		150
		50 60 sec min
		0 (3216Type max), ∠T≦130°C (3225
		Over 1 minute Gradual cooling Within Type ming) With is recommended to use 20W soldering iron and 3 seconds
		*The soldering iron should not directly touch the
		components.
		Note: The above profiles are the maximum allowabl soldering condition, therefore these profiles a
		soldering condition, dereited these profiles a not always recommended.
		Courties
		Caution
		Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. The coldering iron should not directly to usb the industry.
		The soldering iron should not directly touch the inductor.
5.Cleaning	◆Cleaning conditions	The use of inappropriate solutions can cause foreign substances such
· · · · · · · · · · · · · · · · · · ·	When cleaning the PC board after the Inductors are	as flux residue to adhere to the inductor, resulting in a degradation of the
	all mounted, select the appropriate cleaning solu-	inductor's electrical properties (especially insulation resistance).
	tion according to the type of flux used and pur-	
	pose of the cleaning (e.g. to remove soldering flux or other materials from the production process.)	

263

Stages	Precautions	Technical considerations
5.Cleaning	Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics.	2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors. (1) Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked; Ultrasonic output Below 20 w/l Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6. Post cleaning processes	 ◆Application of resin coatings, moldings, etc. to the PCB and components. 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance. 2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess heat may lead to inductor damage or destruction. 3. Stress caused by a resin's temperature generated expansion and contraction may damage inductors. The use of such resins, molding materials etc. is not recommended. 	
7. Handling	 ◆Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. ◆General handling precautions 1. Always wear static control bands to protect against ESD. 2. Keep the inductors away from all magnets and magnetic objects. 3. Use non-magnetic tweezers when handling inductors. 4. Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded. 5. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes. 6. Keep inductors away from items that generate magnetic fields such as speakers or coils. ◆Mechanical considerations 1. Be careful not to subject the inductors to excessive mechanical shocks. (1) If inductors are dropped on the floor or a hard surface they should not be used. (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components. 	

Stages	Precautions	Technical considerations
8. Storage conditions	◆Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40 °C Humidity Below 70% RH The ambient temperature must be kept below 30 °C. Even under ideal storage conditions inductor electrode solderability decreases as time passes, so inductors should be used within 6 months from the time of delivery.	If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors
	*The packaging material should be kept where no chlorine or sulfur exists in the air.	