Panasonic Choke Coils

Power Choke Coil for Automotive application

Series: PCC-M0754M (MC)
PCC-M0854M (MC)
PCC-M0850M (MC)
PCC-M1054M (MC)
PCC-M1050M (MC)

Realize high heat resistance and high reliability with metal composite core(MC)

Industrial Property: patents 21 (Registered 2/Pending 19)

■ Features

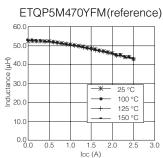
High heat resistance: Operation up to 150 °C

High-reliability : High vibration resistance due to newly developed integral

construction and severe reliability condition of automotive

application is covered

● High bias current : Excellent inductance stability by using ferrous alloy magnetic

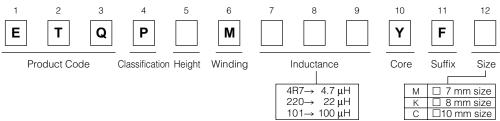

material(Fig.1)

■ Temp. stability : Excellent inductance stability in wide temp. range (Fig.1)

Low buzz noise : New metal composite core technology

■ High efficiency : Low Roc of winding and low eddy-current loss of the core

Fig.1 Inductance v.s.
 DC current, Temp.


■ Recommended Applications

- Noise filter for various drive circuitry requiring high temp. operation and peak current handling capability
- DC-DC converters

■ Standard Packing Quantity

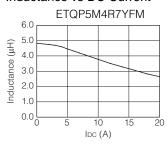
• 500 pcs./Reel

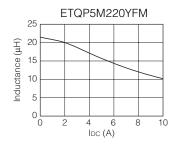
■ Explanation of Part Numbers

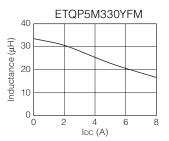
■ Temperature rating

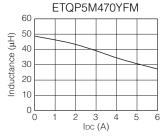
Operating temperature range		To 1.40 °C to 1.150 °C (Including self-temperature rise)
Storage condition	After PWB mounting	Tc:-40°C to +150°C(Including self-temperature rise)
	Before PWB mounting	Ta:-5 °C to +35 °C 85%RH max.

1. PCC-M0754M Series (ETQP5M□□□YFM)

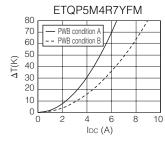

■ Standard Parts

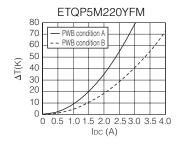

Series	Part No.	Inductance *1		Rated current Reference current		DC resistance	
		L0 (μΗ)	Tolerance (%)	△T=15K*2 (A)	△T=40K ^{*3} (A)	Typ. $(m\Omega)$	Tolerance (%)
PCC-M0754M [7.5×7.0×5.4(mm)]	ETQP5M4R7YFM	4.7	±20	2.8	4.5	20.4	±10
	ETQP5M220YFM	22.7	±20	1.3	2.2	92	±10
	ETQP5M330YFM	34	±20	1.1	1.9	120	±10
	ETQP5M470YFM	48	±20	1.0	1.6	156	±10

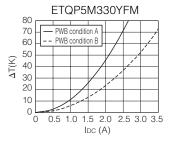

- (*1) Inductance is measured at 100 kHz.
- (*2) Rated current defines actual value of DC current which is case temperature rise becomes 15 K.
- (*3) Reference current defines actual value of DC current which is case temperature rise becomes 40 K.

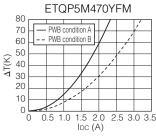

■ Performance Characteristics (Reference)

Inductance vs DC Current





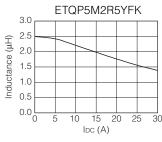


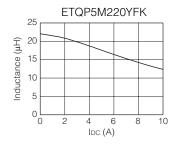

Case Temperature vs DC Current*

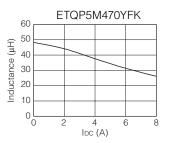
PWB condition A: FR4, single layer PWB, t=1.6mm *our specification PWB condition B: FR4, four layer PWB, t=1.6mm

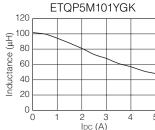
^{*} Our temperature rise is specified with measurement of single layer PWB(condition A). Please refer to temperature rise curve V.S. current for the rated current (ΔT=15K) and Reference value (ΔT=40K). and when four layer PWB (condition B) is used, temperature rise is different from single layer PWB(conditionA). Even we specify the rated current at our condition, the actual temperature rise of PCC may have different result due to thermal dissipation condition. We recommend customers to measure PCC temperature rise at application to confirm it.

2. PCC-M0854M/PCC-M0850M Series (ETQP5MDDTYFK/ETQP5MDDTYGK)

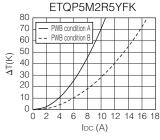

■ Standard Parts

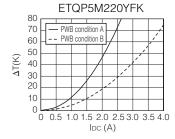

Series	Part No.	Inductance *1			Reference current	DC resistance	
		L0 (µH)	Tolerance (%)	△T=15K*2 (A)	△T=40K ^{*3} (A)	Typ. $(m\Omega)$	Tolerance (%)
PCC-M0854M [8.5×8.0×5.4(mm)]	ETQP5M2R5YFK	2.45	±20	4.5	7.5	7.6	±10
	ETQP5M220YFK	22	±20	1.6	2.6	63	±10
	ETQP5M470YFK	48	±20	1.1	1.8	125	±10
PCC-M0850M [8.5×8.0×5.0(mm)]	ETQP5M101YGK	100	±20	0.74	1.2	302	±10

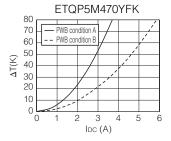

- (*1) Inductance is measured at 100 kHz.
- (*2) Rated current defines actual value of DC current which is case temperature rise becomes 15 K.
- (*3) Reference current defines actual value of DC current which is case temperature rise becomes 40 K.

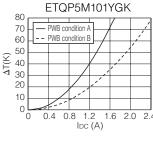

■ Performance Characteristics (Reference)

Inductance vs DC Current





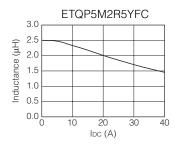


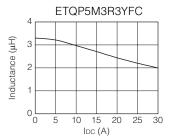

Case Temperature vs DC Current*

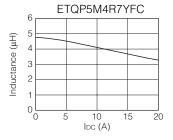
PWB condition A: FR4, single layer PWB, t=1.6mm *our specification PWB condition B: FR4, four layer PWB, t=1.6mm

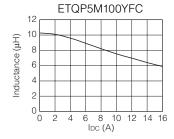
* Our temperature rise is specified with measurement of single layer PWB(condition A). Please refer to temperature rise curve V.S. current for the rated current (ΔT=15K) and Reference value (ΔT=40K). and when four layer PWB (condition B) is used, temperature rise is different from single layer PWB(conditionA). Even we specify the rated current at our condition, the actual temperature rise of PCC may have different result due to thermal dissipation condition. We recommend customers to measure PCC temperature rise at application to confirm it.

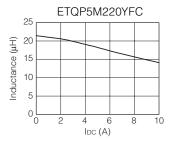
3. PCC-M1054M/PCC-M1050M Series (ETQP5M PC/ETQP5M PC/ETQ

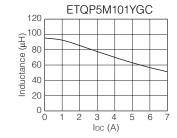

■ Standard Parts

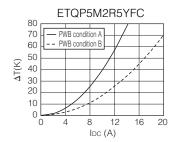

Series	Part No.	Inductance *1			Reference current	DC resistance	
		L0 (μΗ)	Tolerance (%)	△T=15K ^{*2} (A)	△T=40K*³ (A)	Typ. $(m\Omega)$	Tolerance (%)
PCC-M1054M [10.5×10.5×5.4(mm)]	ETQP5M2R5YFC	2.5	±20	6.0	10	5.3	±10
	ETQP5M3R3YFC	3.3	±20	5.1	8.6	7.1	±10
	ETQP5M4R7YFC	4.7	±20	4.4	7.2	10.2	±10
	ETQP5M100YFC	10	±20	2.9	4.7	23.8	±10
	ETQP5M220YFC	21.5	±20	2.1	3.4	45	±10
PCC-M1050M [10.5×10.5×5.0(mm)]	ETQP5M101YGC	97	±20	1.0	1.6	208	±10

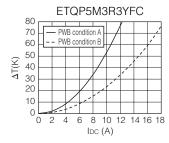

- (*1) Inductance is measured at 100 kHz.
- (*2) Rated current defines actual value of DC current which is case temperature rise becomes 15 K.
- (*3) Reference current defines actual value of DC current which is case temperature rise becomes 40 K.

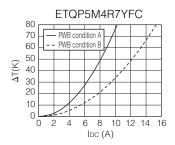

■ Performance Characteristics (Reference)

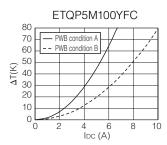

Inductance vs DC Current

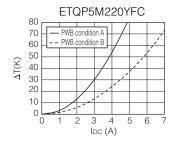


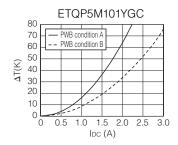


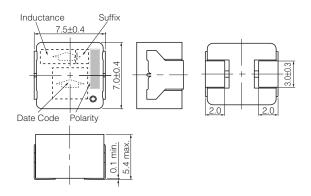


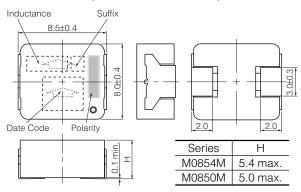



Case Temperature vs DC Current*

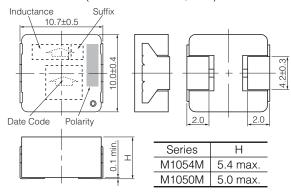

PWB condition A: FR4, single layer PWB, t=1.6mm *****our specification PWB condition B: FR4, four layer PWB, t=1.6mm



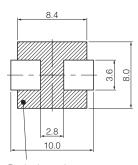



* Our temperature rise is specified with measurement of single layer PWB(condition A). Please refer to temperature rise curve V.S. current for the rated current (ΔT=15K) and Reference value (ΔT=40K). and when four layer PWB (condition B) is used, temperature rise is different from single layer PWB(conditionA). Even we specify the rated current at our condition, the actual temperature rise of PCC may have different result due to thermal dissipation condition. We recommend customers to measure PCC temperature rise at application to confirm it.

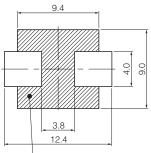
■ Dimensions in mm (not to scale) Dimensional tolerance unless noted : ±0.5


PCC-M0754M Series (ETQP5M□□□YFM)

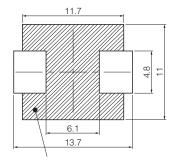
PCC-M0854M Series PCC-M0850M Series (ETQP5M CTQF)



PCC-M1054M Series PCC-M1050M Series (ETQP5M DTFC/YGC)


■ Recommended Land Pattern in mm (not to scale) Dimensional tolerance unless noted: ±0.5

PCC-M0754M Series (ETQP5M□□□YFM)


Don't wire on the pattern on shaded portion the PWB.

PCC-M0854M Series PCC-M0850M Series (ETQP5MDDDTFK/YGK)

The same as the left.

PCC-M1054M Series PCC-M1050M Series (ETQP5M□□□YFC/YGC)

The same as the left.

■Packaging Methods

Please see Pages 202 to 203

■Soldering Conditions

Please see Page 204

■ A Safety Precautions

Please see Pages 177 to 178