1. Standard Land Pattern Dimensions

A high Q value is achieved when the PCB electrode land pattern is designed so that it does not project beyond the chip inductor (chip coil) electrode.

Land Pattern + Solder Resist Land Pattern Solder Resist

					(in mm)
Series	Standard	d Land Dimensions			
LQM18F/18P		Part Number	а	b	С
LQM21D/21F/21P		LQM18F Flow		2.2-2.6	
LQM2HP LQM2MP		/18P Reflow	0.7	1.8-2.0	0.7
LQM31F		LQM21D/21F/21P	1.0	3.0-4.0	1.2
LQM31P		LQM2HP	1.5	3.0	1.6
LQH2MC		LQM2MP	1.8	2.4	0.8
LQH32P	<u> </u>	LQM31F/31P	1.2	4.2-5.2	2.0
LQH31C	a	LQH2MC	1.0	2.6	0.8
LQH55D/66S LQH44P	· · · · · · · · · · · · · · · · · · ·	LQH32P	2.0	3.8	1.3
LQH5BP	c	LQH31C	1.5	4.5	1.0
LQW15C	b	LQH55D/66S	3.5	8.0	2.0
LQW18C		LQH44P	3.0	4.4	1.3
		LQH5BP	4.1	5.5	1.8
		LQW15C	0.6	1.4	0.4
		LQW18C	1.0	2.2	0.7
	0.00 1.0 1.3 1.0				
LQH3NP	0.7 2.4 0.7 0.45 0.45 0 1.15 1.0 1.15				
LQH43C	7.5				
LQH55P					

Attention should be paid to potential magnetic coupling effects when using the inductor (coil) as a resonator.

Continued on the following page.

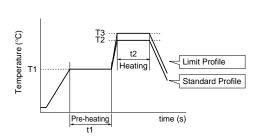
2. Standard Soldering Conditions

(1) Soldering method

Chip inductor (Chip coils) can be flow or reflow soldered. Please contact Murata regarding other soldering methods.

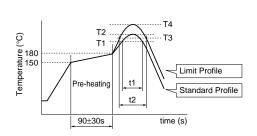
As for LQH2MC/55D/66S/32P/3NP/44P/5BP/55P, LQW15C/18C series, please use reflow soldering. Solder: Use Sn-3.0Ag-0.5Cu solder.

Flux: Use rosin-based flux, but not strongly acidic flux (with chlorine content exceeding 0.2wt%).


Do not use water-soluble flux.

The flux used for LQW15C/18C series should use the rosin-based flux that includes middle activator equivalent to 0.06wt% to 0.1wt% chlorine.

For additional mounting methods, please contact Murata.


(2) Soldering profile

 Flow Soldering profile (Sn-3.0Ag-0.5Cu solder)

	Pre-heating		Standard Profile			Limit Profile		
Series			Heating		Cycle	Heating		Cycle
	Temp. (T1)	Time. (t1)	Temp. (T2)	Time. (t2)	of flow	Temp. (T3)	Time. (t2)	of flow
LQM18F/18P LQM21D/21F/21P/2HP/2MP LQM31F/31P LQH31C	150°C	60s min.	250°C	4 to 6s	2 times max.	265±3°C	5s max.	2 times max.
LQH32C LQH43C	150°C	60s min.	250°C	4 to 6s	2 times max.	265±3°C	5s max.	1 times

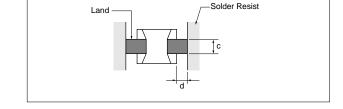
● Reflow Soldering profile (Sn-3.0Ag-0.5Cu solder)

	Standard Profile				Limit Profile			
Series	Heating		Peak temperature	Cycle	Heating		Peak temperature	Cycle
	Temp. (T1)	Time. (t1)	(T2)	of reflow	Temp. (T3)	Time. (t2)	(T4)	of reflow
LQM18F/18P LQM21D/21F/21P/2HP/2MP LQM31F/31P, LQH2MC LQH31C LQH32P/3NP/44P/5BP/55P LQW15C/18C	220°C	30 to 60s	245±3°C	2 times max.	230°C	60s max.	260°C/10s	2 times max.
LQH32C LQH43C LQH55D, LQH66S	220°C	30 to 60s	245±3°C	2 times max.	230°C	60s max.	260°C/10s	1 time

Continued on the following page.

(3) Reworking with Soldering Iron

Preheating at 150°C for 1 minute is required. Do not directly touch the ceramic element with the tip of the soldering iron. The reworking soldering conditions are as follows:

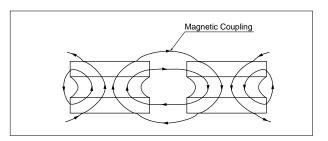

Soldering iron power output: 80W max. Temperature of soldering iron tip: 350°C Diameter of soldering iron end: 3.0mm max.

Soldering time: within 3 s

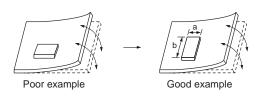
3. Mounting Instructions

(1) Land Pattern Dimensions

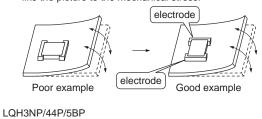
Large lands reduce Q of the mounted chip. Also, large protruding land areas (bordered by lines having dimensions 'c' and 'd' shown) cause floating and electrode leaching.



(2) Magnetic Coupling


Since some chip inductors (chip coils) are constructed like an open magnetic circuit, narrow spacing between inductors (coils) may cause magnetic coupling. LQM, LQH66S and LQH_P series have a magnetically shielded structure. The structure makes their coupling coefficient smaller than that of conventional chip inductors (chip coils).

PCB should be designed so that products are not subjected to the mechanical stress caused by warping the board.

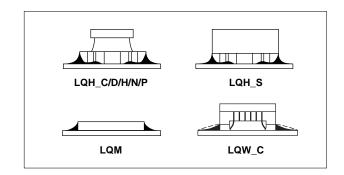


Products should be located in the sideways direction (Length: a<b) to the mechanical stress.

except LQH3NP/44P/5BP

The electrode part of the product should be located like the picture to the mechanical stress.

Continued on the following page.


(4) Amount of Solder Paste

Excessive solder causes electrode corrosion, while insufficient solder causes low electrode bonding strength. Adjust the amount of solder paste as shown on the right so that solder is applied.

- Guideline of solder paste thickness
- LQW15C: 50 to 100μm · LQM, LQW18C, LQH2MC,
- LQH44P/5BP/55P: 100 to 150μm
- · LQHs except for ones written above: 200 to 300μm

(5) Amount of Adhesive

If too much adhesive is applied, then it may overflow into the land or termination areas and yield poor solderability. In contrast, if insufficient adhesive is applied, or if the adhesive is not sufficiently hardened, then the chip may become detached during flow soldering. Apply the adhesive in accordance with the conditions shown in chart.

LQH_C/H/M/N	LQM
Part Number	Typical Application Amount (in:mg)
Part Number	IR-100
LQM18F/18P	0.06-0.07
LQM21D/21F/21P/2MP	0.20-0.25
LQM31F/31P/2HP	0.25-0.30
LQH31C	0.20-0.25
LQH32C	0.27-0.35
LQH43C	0.60-0.80

4. Cleaning

The following conditions should be observed when cleaning chip inductors (chip coils):

- (1) Cleaning Temperature: 60°C max. (40°C max. for alcohol cleaning agents)
- (2) Ultrasonic

Output: 20W/I max. Duration: 5 minutes max. Frequency: 28 to 40kHz

Care should be taken not to cause resonance of the

PCB and mounted products.

(3) Cleaning agent

The following cleaning agents have been tested on individual components. Evaluation in complete assembly should be done prior to production.

- (a) Alcohol cleaning agents Isopropyl alcohol (IPA)
- (b) Aqueous cleaning agents

Pine Alpha ST-100S

LQH66S series: Aqueous agents should not be used because they may cause quality deterioration or damage to appearance.

(4) Ensure that flux residue is completely removed. Component should be thoroughly dried after aqueous agents have been removed with deionized water.

For additional cleaning methods, please contact Murata.