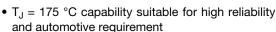
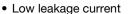

Surface Mount PAR® Transient Voltage Suppressors


High Temperature Stability and High Reliability Conditions



PRIMARY CHARACTERISTICS				
V_{BR}	27 V			
P _{PPM} (10 x 1000 μs)	6600 W			
P_{D}	8 W			
I _{RSM}	130 A			
I _{FSM}	700 A			
T_J max.	175 °C			

FEATURES

- · Low forward voltage drop
- High surge capability
- Meets ISO7637-2 surge specification
- Meets MSL level 1, per J-STD-020, LF maximum peak of 245 °C
- AEC-Q101 qualified
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

TYPICAL APPLICATIONS

Use in sensitive electronics protection against voltage transients induced by inductive load switching and lighting, especially for automotive load dump protection application.

MECHANICAL DATA

Case: DO-218AB

Molding compound meets UL 94 V-0 flammability rating Base P/NHE3 - RoHS compliant, AEC-Q101 qualified

Terminals: Matte tin plated leads, solderable per

J-STD-002 and JESD 22-B102

HE3 suffix meets JESD 201 class 2 whisker test

Polarity: Heatsink is anode

MAXIMUM RATINGS (T _C = 25 °C unless otherwise noted)					
PARAMETER	SYMBOL	VALUE	UNIT		
Peak pulse power dissipation with 10/1000 μs waveform	P _{PPM}	6600	W		
Power dissipation on infinite heatsink at T _C = 25 °C (fig. 1)	P _D	8.0	W		
Non-repetitive peak reverse surge current for 10 $\mu s/10$ ms exponentially decaying waveform	I _{RSM}	130	А		
Maximum working stand-off voltage	V _{WM}	22.0	V		
Peak forward surge current 8.3 ms single half sine-wave	I _{FSM}	700	Α		
Operating junction and storage temperature range	T _J , T _{STG}	- 55 to + 175	°C		

ELECTRICAL CHARACTERISTICS (T _C = 25 °C unless otherwise noted)								
PARAMETER	TEST CONDITIONS		SYMBOL	MIN.	TYP.	MAX.	UNIT	
Reverse Zener voltage	$I_Z = 10 \text{ mA}$		V _Z	24.0	-	30.0	V	
Zener voltage temperature coefficient	I _Z = 10 mA		V _{ZTC}	-	-	36	mV/°C	
Clamping voltage for 10 µs/10 ms exponentially decaying waveform	I _{PP} = 75 A		V _C	-	-	40.0	V	
Instantaneous forward voltage	I _F = 6.0 A I _F = 100 A		V _F ⁽¹⁾	-	-	0.98	V	
Instantaneous forward voltage				=	0.93	-		
Reverse leakage current	Rated V _{WM}	T _J = 25 °C	- I _R		-	-	1.0	μA
		T _J = 175 °C		-	-	50.0	μΛ	

Note

⁽¹⁾ Measured on a 300 µs square pulse width

THERMAL CHARACTERISTICS (T _C = 25 °C unless otherwise noted)					
PARAMETER		VALUE	UNIT		
Typical thermal resistance, junction to case	$R_{\theta JC}$	0.90	°C/W		

ORDERING INFORMATION (Example)					
PREFERRED P/N	UNIT WEIGHT (g)	BASE QUANTITY	DELIVERY MODE		
SM8A27HE3/2D ⁽¹⁾	2.605	2D	750	13" diameter plastic tape and reel, anode towards the sprocket hole	

Note

RATINGS AND CHARACTERISTICS CURVES

(T_A = 25 °C unless otherwise noted)

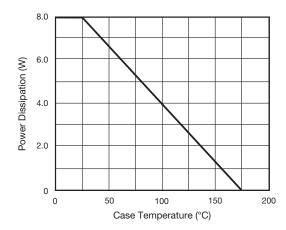


Fig. 1 - Power Derating Curve

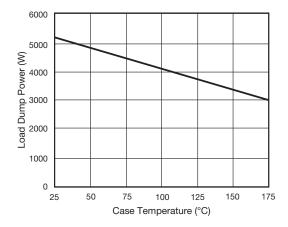


Fig. 2 - Load Dump Power Characteristics (10 ms Exponential Waveform)

⁽¹⁾ AEC-Q101 qualified

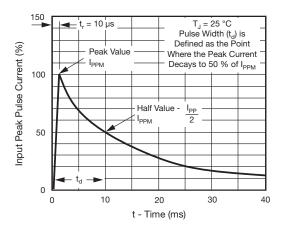


Fig. 3 - Pulse Waveform

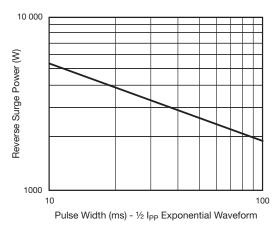


Fig. 4 - Reverse Power Capability

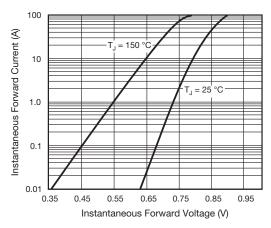


Fig. 5 - Typical Instantaneous Forward Characteristics

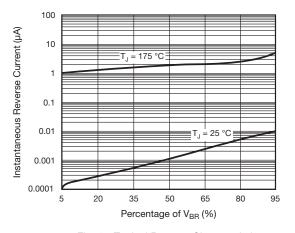


Fig. 6 - Typical Reverse Characteristics

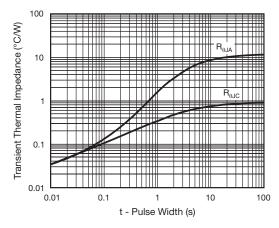
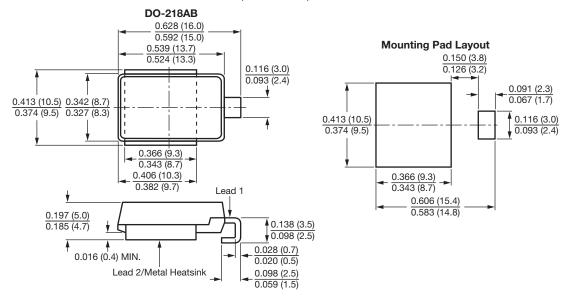



Fig. 7 - Typical Transient Thermal Impedance

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1