
大容量積層セラミックコンデンサ HIGH VALUE MULTILAYER CERAMIC CAPACITORS

	code	Temp.characteristics	operating Temp. range
		В	-25~+85°C
\$600	BJ	X7R	-55~+125°C
		X5R	-55~+85°C
		С	-25~+85°C
OPERATING TEMP.	С	X5S	-55~+85°C
OF ETBYTHIO TENII .		X6S	-55~+105°C
	Е	E	-25~+85°C
	E	Y5U	-30~+85°C
	F	F	-25~+85°C
	-	Y5V	-30~+85°C

特長 FEATURES

- ・電極にNi金属を使用し、端子電極部にメッキをしてあることにより、はんだ付け性および耐熱性にすぐれ、マイグレーションもほとんど発生せず、高い信頼性を示します
- ・等価直列抵抗(ESR)が小さく、ノイズ吸収性にすぐれています。特にタンタルおよびアルミ電解コンデンサに比較した場合
- ・高い許容リップル電流値
- ・高い定格電圧でありながら小型形状
- ・絶縁抵抗、破壊電圧が高く信頼性にすぐれる 等の特徴があります

- The use of Nickel(Ni) as material for both the internal and external electrodes improves the solderability and heat resistance characteristics. This almost completely eliminates migration and raises the level of reliability significantly.
- Low equivalent series resistance(ESR) provides excellent noise absorption characteristics.
- Compared to tantalum or aluminum electrolytic capacitors these ceramic capacitors offer a number of excellent features, including:
 - Higher permissible ripple current values
 - Smaller case sizes relative to rated voltage
 - Improved reliability due to higher insulation resistance and breakdown voltage.

用途 APPLICATIONS

- ・デジタル回路全般
- ・電源バイパスコンデンサ 液晶モジュール用 液晶駆動電圧ライン用 電源電圧の高いLSI、IC、OPアンプ用
- ・平滑コンデンサ DC-DCコンバータ(入力、出力側用) スイッチング電源(2次側用)

- · General digital circuit
- Power supply bypass capacitors
 Liquid crystal modules
 Liquid crystal drive voltage lines
 LS I, I C, converters(both for input and output)
- Smoothing capacitors
 DC-DC converters (both for input and output)
 Switching power supplies (secondary side)

形名表記法 ORDERING CODE

2	
シリー	·ズ名
М	積層コンデンサ

| 3 | 端子電極 | K | メッキ品

形狀寸法 (EIA)L×W(mm) 107(0603) 1.6×0.8 212(0805) 2.0×1.25 316(1206) 3.2×1.6 325(1210) 3.2×2.5

4.5×3.2

432(1812)

5 温度特性[%] △F -80 △C ±20 △E ±58 BJ ±10 △= スペース

6 公称静電容量 (pF) 例 473 47,000 105 1,000,000
 容量許容差

 K
 ±10
 %

 M
 ±20
 %

 Z
 -28
 %

8 製品厚み (mm) K 0.45 V 0.5 A 0.8 D 0.85 F 1.15 G 1.25 H 1.5 L 1.6 N 1.9 Y 2.0max M 2.5 9 個別仕様 - 標準 10 包装 B 単品(袋づめ)

B 単品(終70の) T リールテーピング

11

当社管理記号

△ 標準品

△= スペース

J.M.K.3.1.6.B.J.1.0.6.M.L.-.T.

2	
Serie	s name
М	Multilayer Ceramic Capacitors

End termination

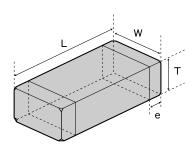
K Plated

Dimensions(case size)(mm)
107(0603) 1.6×0.8
212(0805) 2.0×1.25
316(1206) 3.2×1.6
325(1210) 3.2×2.5
432(1812) 4.5×3.2

Temperature characteristics code -30~+85°C $\triangle F$ Y5V +22/-82% -55~+125℃ ΒЈ X7R ±15% -55~+85°C BJX5R ±15% −55~ ±22% ~+85°C △C X5S -55~+105℃ X6S $\triangle C$ ±22% −30~+85℃ ±22/−56% ΔΕ Y5U △=Blank space

8
Thickness(mm)

K 0.45
V 0.5
A 0.8
D 0.85
F 1.15
G 1.25
H 1.5
L 1.6
N 1.9
Y 2.0max


Specia	al code
_	Standard products

Internal code

△ Standard products

△=Blank space

外形寸法 EXTERNAL DIMENSIONS

Type (EIA)	L	w	Т		е
			0.45±0.05 (0.018±0.002)	к	
□MK107 (0603)	1.6±0.10 (0.063±0.004)	0.8±0.10 (0.031±0.004)	0.50±0.05 (0.020±0.002)	V	0.35±0.25 (0.014±0.010)
			0.8±0.10 (0.031±0.004)	А	
			0.45±0.05 (0.018±0.002)	к	
□MK212 (0805)	2.0±0.10*1 (0.079±0.004)	1.25±0.10*1 (0.049±0.004)	0.85±0.10 (0.033±0.004)	D	0.5±0.25 (0.020±0.010)
(/	(**************************************	(0.0.0_0.00)	1.25±0.10 *1 (0.049±0.004)	G	(414_4
			0.85±0.10 (0.033±0.004)	D	
□MK316	3.2+0.15	1.6+0.15	1.15±0.10 (0.045±0.004)	F	0.5 +0.35
(1206)	(0.126±0.006)	(0.063±0.006)	1.25±0.10 (0.049±0.004)	G	(0.020 ^{+0.014} _{-0.010})
			1.6±0.20 (0.063±0.008)	L	
-			0.85±0.10 (0.033±0.004)	D	
			1.15±0.10 (0.045±0.004)	F	
		2.5+0.20*2	1.5±0.10 (0.059±0.004)	н	0.6±0.3 (0.024±0.012)
□MK325 (1210)	3.2±0.30 (0.126±0.012)	(0.098±0.008)	1.9±0.20 (0.075±0.008)	N	(====,
			1.9 ^{+0.1} _{-0.2} (0.075 ^{+0.004})	Y	
			2.5±0.20 *2 (0.098±0.008)	м	
			1.9 +0.1	Y	
□MK432	4.5±0.40	3.2±0.30	(0.075 ^{+0.004} _{-0.008})		0.9+0.6
(1812)	(0.177±0.016)	(0.126±0.012)	(0.098±0.008)	М	(0.035±0.024)
			3.2±0.30 (0.125±0.012)	U	

Unit: mm (inch)

注: *1.±0.15mm公差あり *2.±0.3mm公差あり Note: *1. Including dimension tolerance±0.15mm (±0.006inch). Note: *2. Including dimension tolerance±0.3mm (±0.012inch).

概略バリエーション AVAILABLE CAPACITANCE RANGE

		_														_																														_																_								_
Cap								10								1							212							\perp								16	_	_						\perp								25			_					┸				432				
	TC	; E	3/X7	R		В/.	X5F	1		X5	R	DX5S	F	/Y5	١V	1		B	/X7	R		В	/X5	R_	_	(5R	F.	/Y5	V	\perp		B/X	(7R	_	\perp	В	X5	3	X	5R	CX5S		F/Y	′5V	_	\perp	B/>	X7F	3	L,	B/	X5	R_		X5	R	YSU		FΛ	′5V	_	┖	B/>	(5R		C/2	K5S	3 000	68 F/	Y5V
	VDC		5 16	10	50 3	5 25	16	10	6.3	6.3	4	25	0 2	5 1	6 1	0 5	0 3	5 25	16	10	50	35 2	5 16	10	6.3	6.35	0 1	6 1	0 6.	3 50	35	25	16	106	3.3 2	25 1	6 10	6.3	6.3	4	25	50 3	5 25	5 1	6 10	50	0 25	16	10	35	25	16	10	6.3	3.3	4 6	.3 5	0 3	15	6 1	0 6.	3 25	16	10	6.3	50 2	25 6.	.36.	.3 10) 6.3
	3[digit					\perp					_	_	1	1	4	1	L	┸			_	4	\perp	╙	Ц	4	4	\perp	\perp	\perp				_	4	4	┸					\perp	\perp	\perp	\perp	\perp	\perp	\perp	Ш				_		4	4	1	1	1	\perp	\perp	L	┖			_	4	\perp	\perp	4
0.022			۱.			\perp						\perp		\perp	\perp	Т		┸				_	\perp	Ш			\perp	\perp	Ш						\perp								\perp		\perp		\perp						\perp		\perp		\perp		\perp	\perp	\perp	Ш					Ш		\perp	┸
0.033			Α		A	۹_						\perp		1		1		L			\perp	\perp	\perp	Ш			\perp		Ш					\perp	\perp								\perp		\perp		\perp						\perp		\perp		1		1	\perp	\perp	L					Ш		\perp	┸
0.047	473	3	Α		A	٩								Ι		(Т																													Ι		Ι	T										L
0.068	683	3	Α			Α								\perp		(Т																													I		Ι	T										L
0.1	104	4	Α		Α	Α							A	\perp		(Т																													Ι		I	T										L
0.15	154	4		П	Т	Α	Α				П	П		Т	Т	70	à	Т			П	Т		П	П	П	Т	Т	Т	F		П		П	Т	Т		П			П	Т	Т	Т	Т	Т	Т	Т	П		П		П		Т	Т	Т	Т	Т	Т	Т	Т			П		Т	Т	Т	Т
0.22	224	4	Т	П	Т	Α	Α			П	П	П	T	7	٩	Т	Т	Т	П	П	G	Т	Т	П	П	Т	Т	Т	Т	L		F	П	П	Т	Т	Т	Т		П	П	Т	Т	Т	Т	Т	Т	Т	П	П	П	П	Т	П	Т	Т	Т	Т	Т	Т	Т	Т	Г	П	П	Т	Т	Т	Т	П
0.33	334	4	Т	П	Т	A	Α	Α		П	П	П	Т	Т	Т	Т	G	1	П	П	П	Т	Т	Т	П	Т	Т	Т	Т	Т		F		Т	Т	Т	Т	Т		П	П	Т	Т	Т	Т	Т	Т	Т	П	П	П	П	Т	П	Т	Т	Т	Т	Т	Т	Т	Т		П	П	Т	Т	Т	Т	П
0.47	474	4	Т	П	Т	A	Α	Α		П	П	П	1	4 /	4	Т	Т	Т	П	П	G	G	Т	Т	П		зT	Т	Т	L		Г	П	Т	Т	Т	Т	Т		П	П	Т	Т	Т	Т	Т	Т	Т	П	П	П	П	Т	П	Т	Т	Т	Т	Т	Т	Т	Т		П	П	Т	Т	Т	Т	П
0.68	684	4	Т	П	Т	Т	П	Α		П	П	П	Т	Т	Т	Т	Т	Т	G	П	П	Т	Т	П	П	Т	Т	Т	Т	Т	L	L	F	Т	Т	Т	Т	Т		П	П	Т	Т	Т	Т	Т	Т	Т	П	П	П	П	Т	П	Т	Т	Т	Т	Т	Т	Т	Т	Г	П	П	Т	Т	Т	Т	П
1	105	5	Α	Α		A	Α	Α		П	T	А	Т	1	4 /	A	Т	G	G	G	T		a G		П		3	Т	Т	Т	L	Г	F	T	T	T	Т	Т		П		T	Т	Т	Т	Н	1	Т	П	П	П		T	T	T	T	T	T	T	Т	Т	Т	Г	П	П		Т	Т	Т	Т
1.5	155	5		П		Т		П		П	T	\neg	Т	T	Т	Т	Т	Т		П		T	Т	Т	П	T	T	Т	Т	Т		Г		T	T	T	Т	Т		П		T	Т	Т	Т	Т	Т	Т	П	П	П		T	T	T	T	T	T	T	Т	Т	Т	Г	П	П		Т	Т	Т	Т
2.2	225	5		П		Т		Α	Α		\neg		Т	1	A /	١	Т	Т		G			a G	G		T		3	Т			L	L	T	T	T	Т	Т				G	Т	Т	Т	Т	Н	ı	П	Ν	П		T		T	T	T	T	T	Т	Т	Т	Г	П	П		Т	Т	Т	Т
3.3	335	5		П		Т				Α	\neg	\neg	Т	T	Т	Т	Т	Т		П		T	Т	G		T	Т	Т	Т				L	L		LI	1	Т				T	Т	T	Т	Т	N	ı	П		П		T	T	T	T	T	T	T	Т		Т			П		Т	T	Т	Т
4.7	475	5		П	T	Т				Α	\neg	T	Т	T	Т	Т	Т	Т		П		T	G	G	G	T	Т	(3	Т			L	L	1	LI		Т				(3	Т	Т	Т	Т	N	П	П	N	Ν	T	T	T	T	ŀ	Н	T	Т	Т	Т		П	П		Т	T	Т	Т
6.8	685	5				\top							1	T	\top	T	Ť			П		1	\top			\neg	\top	T						\neg	1	1	T	F	T			1	\top	Ť				T	П						1	1	T	T	1	T	\top	T						T	\top	Т
10	106	3		П							Α		1	T	T		T						G	G	G		1	(G	1			П	L	L	LI	L	LF			L	ı	_ L	L	. F	:	М	1	N		M.N	Ν			1	1	1	ı	1	=		N			П	М				Т
22	226	3											1	T	1	T	Ť					1	\top			G	1	T						\neg	L	1	L	L				1		Ť	L				П			M	М		1	1	1	1	1	N	.F	T	М	М		-	И	T		T
47	476	3											1	1	1	T	Ť					1	\top				1	T							1		T		L	L				Ť					П				М	М			1	T	1	T	N	ı			М	-	И		N	1
100	107	7	Т	П	T	Т	T					T	Ť	Ť	Ť	Ť	T	T	T		T	T	T	Т	П	T	1	Ť	T	Т		T	П	T	T	T	T	T	T			T	Т	Ť	T	T	T	T	П		П		T		М	Y	И	Ť	T	Ť	N	1	T		U	T	T	N	Л	М
220	227	7		П	\top	\top	Т				\neg	\dashv	+	$^{+}$	$^{+}$	$^{+}$	T	\top	т		\neg	\top	\top	T	П	\top	\top	$^{+}$		T			П	\dashv	\top	+	T	T			\forall	$^{+}$		\top	\top	†		\top	П	П	П	\neg	\neg	_	_	+	$^{+}$	_	$^{+}$	$^{+}$	\top	\top		П		_	l	1	\top	\top

■低背積層セラミックコンデンサ Low profile Multilayer Ceramic Capacitors

Cap	Type			107									212										316						325			432
	TC	B/>	(5R	X:	5R	F/Y5V		B/)	(7R			B/2	K5R		X	5R		F/Y5V		B/X7R		B/X	(5R		F/1	/5V	B/X7R		B/X5R		E/Y5U	C/X55
	VDC	10	6.3	6.3	4	6.3	50	25	16	10	25	16	10	6.3	10	6.3	50	10	6.3	10	25	16	10	6.3	10	6.3	25	16	10	6.3	6.3	6.3
μF	3[digits]																															
0.022	223						D																									
0.033	333						D																									
0.047	473							D																								
0.068	683							D																								
0.100	104																															
0.150	154																			D												
0.220	224												K				D															
0.330	334																															
0.470	474		K						D		D																					
0.680	684								D																							
1.000	105	K	K			K				D	D	D	K	K							D						D					
1.500	155											D										D										
2.200	225			V	V							D	D					D		D		D										
3.300	335																						D						D			
4.700	475												D	D		K			D				D		D				D			
6.800	685																													D		
10.000	106														D	D							D	D		D		D	D			
22.000	226																													Y		_
47.000	476																															
82.000	826																														N	
100.000	107							1	_							I —								_			1				l —	Y

温度特性コード			温度特性 Temperature chara			静電容量許容差[%]	tan∂[%]
Temp. char.Code	準接	1. 規格	温度範囲(℃)	基準温度(℃)	静電容量変化率(%)	Capacitance tolerance	Dissipation factor
	Applicable	e standard	Temperature range	Ref. Temp.	Capacitance change		
BJ	JIS	В	−25~85	20	±10		2.5%max.**
	EIA	X7R*	−55~125	25	±15	±20(M)	Z.J /oillax.
	JIS	С	−25~85	20	±20	±10(K)	
С	EIA	X5S	−55~85	25	±22	±10(It)	7.0%max.**
	EIA	X6S	−55~105	25	±22		
_	JIS	E	−25~85	20	+20/-55		
E	EIA	Y5U	−30~85	25	+22/-56	+80 -20(Z)	7.0%max.**
F	JIS	F	−25~85	20	+30/-80	-20(2)	7.0%max.***
Г	EIA	Y5V	-30 ~85	25	+22/-82		

- *: X5Rのみ対応するアイテムがあります。詳細はアイテム一覧を参照ください。
- **: 代表的な値を記載しています。詳細はアイテム一覧表を参照ください。
- * : Some of the parts are only applicable to X5R. Please refer to PART NUMBERS table.
- **: The figure indicates typical value. Please refer to PART NUMBERS table.

セレクションガイド Selection Guide ✓ P.10

アイテム一覧 Part Numbers P.40

特性図 Electrical Characteristics

梱包 Packaging P.78 信頼性 Reliability Data P.80

使用上の注意 Precautions P.86

アイテム一覧 PART NUMBERS

■107TYPE

定 格	形名	公称	温度特性	$ an \delta$	実装条件	静電容量 許容差	厚み
電圧		静電容量	Temperature	Dissipation	Soldering method		Thickness
RatedVoltage	Oudering seeds	Capacitance	characteristics	Dissipation factor	R:リフロー Reflow soldering	Capacitance	f1
nateuvoitage	Ordering code	[μF]	Characteristics	[%]Max.	W:フロー Wave soldering	tolerance	[mm]
50V	UMK107 BJ104□A*	0.1	B/X5R	3.5			0.8±0.1
051/	GMK107 BJ333□A	0.033	B/X5R	2.5			0.8±0.1
35V	GMK107 BJ473□A	0.047	B/X5R	2.5			0.8±0.1
	TMK107 BJ223□A	0.022	B/X7R	2.5			0.8±0.1
	TMK107 BJ683□A	0.068	B/X5R	3.5	R/W		0.8±0.1
	TMK107 BJ104□A	0.1	B/X5R	3.5			0.8±0.1
25V	TMK107 BJ154□A	0.15	B/X5R	3.5			0.8±0.1
25 V	TMK107 BJ224□A	0.22	B/X5R	3.5			0.8±0.1
	TMK107 BJ334□A	0.33	B/X5R	3.5			0.8±0.1
	TMK107 BJ474□A*	0.47	B/X5R	3.5	R		0.8±0.1
	TMK107 BJ105□A*	1	B/X5R	5	11		0.8±0.1
	EMK107 BJ333□A	0.033	B/X7R	3.5			0.8±0.1
	EMK107 BJ473□A	0.047	B/X7R	3.5			0.8±0.1
	EMK107 BJ683□A	0.068	B/X7R	3.5	R/W		0.8±0.1
	EMK107 BJ104□A	0.1	B/X7R	3.5	Γ1/ V V	±10%	0.8±0.1
16V	EMK107 BJ154□A	0.15	B/X5R	3.5		±20%	0.8±0.1
	EMK107 BJ224□A	0.22	B/X5R	3.5			0.8±0.1
	EMK107 BJ474□A	0.47	B/X5R	3.5			0.8±0.1
	EMK107 BJ105□A*	1	B/X7R*	5	R		0.8±0.1
	EMK107 BJ105□A*	1	B/X5R	5	n		0.8±0.1
	LMK107 BJ105□K*	1	B/X5R	10			0.45±0.05
	LMK107 BJ334□A	0.33	B/X5R	3.5	R/W		0.8±0.1
10V	LMK107 BJ474□A	0.47	B/X5R	3.5			0.8±0.1
	LMK107 BJ684□A	0.68	B/X5R	5			0.8±0.1
	LMK107 BJ105□A*	1	B/X7R	5			0.8±0.1
	LMK107 BJ225□A*	2.2	B/X5R	10			0.8±0.1
	JMK107 BJ225□V*	2.2	X5R	10			0.5±0.05
	JMK107 BJ474□K	0.47	B/X5R	5	_		0.45±0.05
6.3V	JMK107 BJ105□K*	1	B/X5R	10	R		0.45±0.05
	JMK107 BJ225□A*	2.2	B/X5R	10	-		0.8±0.1
	JMK107 BJ335□A*	3.3	X5R	10			0.8±0.1
	JMK107 BJ475MA*	4.7	X5R	10		±20%	0.8±0.1 0.8±0.1
4V	AMK107 BJ106MA*	10	X5R	10	-	14004	
	AMK107 BJ225 V*	2.2	X5R	10	-	±10%	0.5±0.05
50V	UMK107 C105□A* UMK107 F104ZA	0.1	C/X5S F/Y5V	10 7		±20%	0.8±0.1 0.8±0.1
25V	TMK107 F104ZA		F/Y5V F/Y5V	7	-	-	0.8±0.1
25 V	EMK107 F474ZA	0.47 0.22	F/Y5V F/Y5V	7	R/W		0.8±0.1
	EMK107 F224ZA EMK107 F474ZA	0.22	F/Y5V F/Y5V	7	1		0.8±0.1
16V	EMK107 F474ZA	1	F/Y5V F/Y5V	16		+80%	0.8±0.1
	EMK107 F105ZA EMK107 F225ZA	2.2	F/Y5V F/Y5V	16	+	-20%	0.8±0.1
	LMK107 F225ZA	1	F/Y5V F/Y5V	16	R		0.8±0.1
10V	LMK107 F105ZA LMK107 F225ZA	2.2	F/Y5V F/Y5V	16	n		0.8±0.1
6.3V	JMK107 F225ZA	1	F/Y5V F/Y5V	16	1		0.45±0.05
U.U V	OWNTO F TOOLK	ı	1/130	10			0.70±0.00

[※]品名末尾にRが付きます。

^{*} Internal code shall be R.

定格 形 名	■212TYPE							
######################################	定格	形名		温度特性	$ an \delta$	実装条件		厚み
Rated Voltage		/// [Dissination			Thickness
UMC21E BJ223_D 0.0022 BJXFR 2.5 0.85±0.1 UMC21E BJ333_D 0.033 BXXFR 2.5 UMC21E BJ333_D 0.033 BXXFR 2.5 UMC21E BJ473_G 0.0047 BJXFR 2.5 UMC21E BJ473_G 0.0047 BJXFR 2.5 UMC21E BJ46_G 0.016 BJXXFR 2.5 UMC21E BJ46_G 0.016 BJXXFR 2.5 UMC21E BJ46_G 0.016 BJXXFR 3.5 UMC21E BJ46_G 0.022 BJXSR 3.5 UMC21E BJ46_G 0.022 BJXSR 3.5 UMC21E BJ474_G 0.047 BJXSR 3.5 UMXFR 3.5	RatedVoltage	Ordering code			factor	R:リフロー Reflow soldering W:フロー Wave soldering		[mm]
UMIC212 BJ433 D		IIMK212 B.I223□D		B/X7B				0.85+0.1
UMIC212 B183SIG 0.047 BIXTR 2.5 1.25±0.1 1.						1		
SOV						1		
SOV UMK212 BJ154G G						1		
UMK212 BJ474_G	50V	UMK212 BJ104□G		B/X7R	2.5	1		
UMMC212_B1474_G O.47 D.YSSR 3.5		UMK212 BJ154□G	0.15	B/X7R	3.5	DA4		1.25±0.1
SEV GMK/21 BJ334/IG 0.33 BXXPR 3.5 1.25±0.1 1.25±0		UMK212 BJ224□G	0.22	B/X5R	3.5	H/VV		1.25±0.1
Section Sect		UMK212 BJ474□G*	0.47	B/X5R	3.5			1.25±0.1
Timk/21 B.J475 D	251/	GMK212 BJ334□G	0.33	B/X7R	3.5			1.25±0.1
TMK212 BJ4374 D	357							
TMK212 BJ105□0' 1 1 BX/SFR 5 5 R 1.25±0.1 1.25±								
TMK212 BJ105\(\tilde{\text{D}}\)								
TMX212 BJ105 GG 1 1 BX7R 5 5 R 1.25±0.1 TMX212 BJ225 GG 2.2 BX5R 5 1.25±0.1 TMX212 BJ225 GG 2.2 BX5R 5 1.25±0.1 TMX212 BJ225 GG 2.2 BX5R 5 RW EMX212 BJ684 DD 0.47 BX7R 3.5 RW 0.85±0.1 EMX212 BJ105 DD 1 D 1 BX5R 5 R 0.85±0.1 TMX212 BJ105 DD 1 D 1.5 BX5R 5 R 0.85±0.1 TMX212 BJ105 DD 1 D 1.5 BX5R 5 R 1.25±0.1 TMX212 BJ105 DD 1 D 1.5 BX5R 5 R 1.25±0.1 TMX212 BJ105 DD 1 D 1.5 BX5R 5 R 1.25±0.1 TMX212 BJ105 DD 1 D 1.5 BX5R 5 R 1.25±0.1 TMX212 BJ105 DD 1 D 1.5 BX5R 5 R 1.25±0.1 TMX212 BJ105 DD 1 D 1 BX7R 3.5 TMX212 BJ105 DD 1 D X5R DD								
TMK212 BJ105□G	25V					_		
TMK212 BJ225[G' 2.2 BYSR 5 0.85±0.1						Į R		
EMK212 BJ474□D						-		
EMK212 BJ165 D								
EMK212 BJ105 D						R/W		
Table Tabl								
Table						-		
EMK212 BJ684						, n	+10%	
EMK212 BJ25□G 1 B/X7R 3.5 H/W 1.25±0.1	16V							
EMK212 BJ25□G						R/W		
EMK212 BJ475□G* EMK212 BJ106□G* 10 BX5R 10 LMK212 BJ105□K 1 BX25R 3.5 LMK212 BJ105□K 1 BX5R 5 LMK212 BJ105□K 1 BX5R 5 LMK212 BJ105□D 1 BX5R 5 LMK212 BJ105□D 1 BX5R 5 LMK212 BJ25□D* 2.2 BX5R 5 LMK212 BJ25□D* 10 LMK212 BJ25□D* 10 X5R 10 LMK212 BJ105□G 1 BX7R 3.5 LMK212 BJ25□G 2.2 BX7R 5 LMK212 BJ335□G 3.3 BX5R 5 LMK212 BJ335□G 3.3 BX5R 5 LMK212 BJ335□G* 4.7 BX5R 10 JMK212 BJ475□D* 4.7 BX5R 5 JMK212 BJ106□G* 10 BX5R 10 0.85±0.1 1.25±0.15 0.45±0.05 1.25±0.15 1.25±0.								
EMK212 BJ106□C¢¹ 10						1		
LMK212 BJ224□K 0.22 B/X5R 3.5 R						1		
LMK212 BJ105□K						1		
LMK212 BJ105□D						R		
LMK212 BJ106		LMK212 BJ105□D	1			1		
10V		LMK212 BJ225□D*	2.2	B/X5R	5	1		0.85±0.1
LMK212 BJ105□G 1 B/X7R 3.5 R/W 1.25±0.1 LMK212 BJ25□G 2.2 B/X7R 5 LMK212 BJ335□G 3.3 B/X5R 5 LMK212 BJ375□G* 4.7 B/X5R 10 LMK212 BJ475□K* 1 BJX5R 5 JMK212 BJ475□K* 4.7 X5R 10 JMK212 BJ475□K* 4.7 B/X5R 10 JMK212 BJ475□C* 4.7 B/X5R 10 JMK212 BJ475□C* 4.7 B/X5R 10 JMK212 BJ475□G* 4.7 B/X5R 10 JMK212 BJ475□G* 4.7 B/X5R 10 JMK212 BJ475□G* 4.7 B/X5R 10 JMK212 BJ26MG* 22 X5R 10 JMK212 BJ26MG* 22 X5R 10 JMK212 BJ26MG* 22 X5R 10 LMK212 F247D 0.22 F/Y5V 7 JMK212 F247D 0.47 F/Y5V 7 LMK212 F325C 1 1 F/Y5V 7 LMK212 F325C 2 2.2 F/Y5V 7 LMK212 F325C 3 4.7 F/Y5V 9 LMK212 F475ZG 4.7 F/Y5V 9 LMK212 F475ZG 4.7 F/Y5V 16 LMK212 F475ZD 4.7 F/Y5V 16 LMK212		LMK212 BJ475□D*	4.7	B/X5R	10			0.85±0.1
LMK212 BJ225□G 2.2 B/X7R 5 LMK212 BJ335□G 3.3 B/X5R 5 LMK212 BJ475□G* 4.7 B/X5R 5 LMK212 BJ106□G* 10 B/X5R 5 JMK212 BJ106□G* 1 B/X5R 5 JMK212 BJ475□F* 4.7 X5R 10 JMK212 BJ106□D* 4.7 B/X5R 10 JMK212 BJ106□D* 10 X5R 10 JMK212 BJ106□G* 10 B/X5R 5 JMK212 BJ26MG* 22 X5R 10 JMK212 BJ226MG* 22 X5R 10 JMK212 BJ226MG* 22 X5R 10 JMK212 F24ZD 0.22 F/Y5V 7 JWK212 F474ZG 0.47 F/Y5V 7 JWK212 F474ZG 0.47 F/Y5V 7 JWK212 F25ZG 2.2 F/Y5V 7 LWK212 F25ZG 2.2 F/Y5V 7 LWK212 F475ZG 4.7 F/Y5V 9	10V	LMK212 BJ106□D*	10	X5R	10			
LMK212 BJ335□G 3.3 B/X5R 5 LMK212 BJ475□G* 4.7 B/X5R 5 LMK212 BJ106□G* 10 B/X5R 10 JMK212 BJ105□K* 1 B/X5R 5 JMK212 BJ475□K* 4.7 X5R 10 JMK212 BJ475□D* 4.7 B/X5R 10 JMK212 BJ106□D* 10 X5R 10 JMK212 BJ106□G* 10 B/X5R 5 JMK212 BJ106□G* 10 B/X5R 10 JMK212 BJ26MG* 22 X5R 10 UMK212 F224ZD 0.22 F/Y5V 7 50V UMK212 F474ZG 0.47 F/Y5V 7 UMK212 F105ZG 1 F/Y5V 7 10V LMK212 F25ZG 2.2 F/Y5V 7 LMK212 F25ZG 2.2 F/Y5V 9 10V LMK212 F475ZG 4.7 F/Y5V 9 LMK212 F475ZG 4.7 F/Y5V 9 LMK212 F475ZG 4.7 F/Y5V 9 LMK212 F475ZG 4.7 F/Y5V						R/W		
LMK212 BJ475□G* 4.7 B/X5R 5 LMK212 BJ106□G* 10 B/X5R 10 JMK212 BJ105□K 1 B/X5R 5 JMK212 BJ475□K* 4.7 X5R 10 JMK212 BJ475□D* 4.7 B/X5R 10 JMK212 BJ475□G* 4.7 B/X5R 10 JMK212 BJ106□G* 10 X5R 10 JMK212 BJ106□G* 10 B/X5R 5 JMK212 BJ26MG* 22 X5R 10 JMK212 BJ26MG* 22 X5R 10 UMK212 F24ZD 0.22 F/Y5V 7 50V UMK212 F474ZG 0.47 F/Y5V 7 UMK212 F105ZG 1 F/Y5V 7 10V EMK212 F25ZG 2.2 F/Y5V 7 10V LMK212 F475ZG 4.7 F/Y5V 9 LMK212 F4								
LMK212 BJ106□G* 10 B/X5R 10 JMK212 BJ105□K 1 B/X5R 5 JMK212 BJ475□K* 4.7 X5R 10 6.3V JMK212 BJ475□D* 4.7 B/X5R 10 JMK212 BJ475□G 4.7 B/X5R 10 JMK212 BJ475□G 4.7 B/X5R 5 JMK212 BJ106□G* 10 B/X5R 10 JMK212 BJ266MG* 22 X5R 10 JMK212 BJ266MG* 22 X5R 10 LMK212 F24ZD 0.22 F/Y5V 7 50V UMK212 F474ZG 0.47 F/Y5V 7 UMK212 F105ZG 1 F/Y5V 7 16V EMK212 F25ZG 2.2 F/Y5V 7 LMK212 F25ZG 2.2 F/Y5V 9 LMK212 F475ZG 4.7 F/Y5V 9 LMK212 F475ZG 4.7 F/Y5V 16 B 1.25±0.1 1.25±0.1 1.25±0.1 1.25±0.1 0.88±0.1								
JMK212 BJ105□K								
JMK212 BJ475□K* 4.7 X5R 10 R 0.45±0.05 0.85±0.1 0						-		
JMK212 BJ475□D*						_		
6.3V JMK212 BJ106□D* 10 X5R 10						ļ R		
JMK212 BJ475□G						-		
JMK212 BJ106□G* 10 B/X5R 10 JMK212 BJ226MG* 22 X5R 10 UMK212 F24ZD 0.22 F/Y5V 7 50V UMK212 F474ZG 0.47 F/Y5V 7 UMK212 F105ZG 1 F/Y5V 7 16V EMK212 F225ZG 2.2 F/Y5V 7 LMK212 F25ZG 2.2 F/Y5V 7 10V LMK212 F25ZG 2.2 F/Y5V 9 10V LMK212 F475ZG 4.7 F/Y5V 9 LMK212 F106ZG 10 F/Y5V 16 B 1.25±0.1 LMK212 F475ZD 4.7 F/Y5V 16 B 1.25±0.1 0.85±0.1 0.85±0.1	6.3V					-		
JMK212 BJ226MG* 22 X5R						-	-	
UMK212 F224ZD 0.22 F/Y5V 7						+	+20%	
50V UMK212 F474ZG 0.47 F/Y5V 7 R/W 1.25±0.1 <							120/0	
UMK212 F105ZG	50\/					1		
The boundary of the boundary	30 V	-	_			R/W		
LMK212 F225ZD 2.2 F/Y5V 9 LMK212 F475ZG 4.7 F/Y5V 9 LMK212 F106ZG 10 F/Y5V 16 R 6 3V JMK212 F475ZD 4.7 F/Y5V 16	16\/					1		
10V LMK212 F475ZG 4.7 F/Y5V 9 1.25±0.1 LMK212 F106ZG 10 F/Y5V 16 R 1.25±0.1								
LMK212 F106ZG 10 F/Y5V 16 R 1.25±0.1 6 3V JMK212 F475ZD 4.7 F/Y5V 16 0.85±0.1	10V					1		
6.2V JMK212 F475ZD 4.7 F/Y5V 16 0.85±0.1	.01					1 R		
	0.01/					1		
	6.3V	JMK212 F106ZG	10	F/Y5V	16]		

[※]品名末尾にRが付きます。

形名の \square には静電容量許容差記号が入ります。 \square Please specify the capacitance tolerance code.

^{*}高温負荷試験の試験電圧は定格電圧の1.5倍 * Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

^{*} Internal code shall be R.

アイテム一覧 PART NUMBERS

■316TYPE

■316TYPE							
定格	形名	公 称	温度特性	$tan \delta$	実装条件	静電容量	厚み
電圧	/// 1	静電容量	Temperature		Soldering method	許容差	Thickness
_		Capacitance		Dissipation	R:リフロー Reflow soldering	Capacitance	
RatedVoltage	Ordering code	[μ F]	characteristics	factor [%]Max.	W:フロー Wave soldering	tolerance	[mm]
	UMK316 BJ154□F	0.15	B/X7R	2.5			1.15±0.1
50V	UMK316 BJ224 L	0.22	B/X7R	2.5			1.6±0.2
30 V	UMK316 BJ474 L	0.47	B/X7R	3.5	-		1.6±0.2
	GMK316 BJ684 L	0.68	B/X7R	3.5			1.6±0.2
35V	GMK316 BJ105 L	1	B/X7R	3.5	R/W		1.6±0.2
	TMK316 BJ154 D	0.15	B/X7R	2.5			0.85±0.1
	TMK316 BJ224 F	0.22	B/X7R	2.5			1.15±0.1
	TMK316 BJ334 F	0.33	B/X7R	2.5			1.15±0.1
	TMK316 BJ684 L	0.68	B/X7R	3.5			1.6±0.2
25V	TMK316 BJ105 D	1	B/X5R	3.5			0.85±0.1
	TMK316 BJ225□L	2.2	B/X7R	3.5			1.6±0.2
	TMK316 BJ335□L	3.3	B/X5R	3.5			1.6±0.2
	TMK316 BJ475□L*	4.7	B/X5R	5	R		1.6±0.2
	TMK316 BJ106□L*	10	B/X5R	5			1.6±0.2
	EMK316 BJ155□D	1.5	B/X5R	3.5		±10%	0.85±0.1
	EMK316 BJ225□D	2.2	B/X5R	3.5		±20%	0.85±0.1
	EMK316 BJ684□F	0.68	B/X7R	3.5			1.15±0.1
	EMK316 BJ105□F	1	B/X7R	3.5	R/W		1.15±0.1
16V	EMK316 BJ225□L	2.2	B/X7R	3.5			1.6±0.2
	EMK316 BJ335□L	3.3	B/X7R	3.5		İ	1.6±0.2
	EMK316 BJ475□L*	4.7	B/X7R%	5			1.6±0.2
	EMK316 BJ475□L	4.7	B/X5R	5			1.6±0.2
	EMK316 BJ106□L*	10	B/X5R	5			1.6±0.2
	LMK316 BJ335□D	3.3	B/X5R	5			0.85±0.1
	LMK316 BJ475□D	4.7	B/X5R	5]		0.85±0.1
	LMK316 BJ106□D*	10	B/X5R	10]		0.85±0.1
10V	LMK316 BJ335□L	3.3	B/X7R	3.5			1.6±0.2
100	LMK316 BJ475□L	4.7	B/X7R	5			1.6±0.2
	LMK316 BJ106□L*	10	B/X7R%	5			1.6±0.2
	LMK316 BJ106□L*	10	B/X5R	5	R		1.6±0.2
	LMK316 BJ226ML*	22	B/X5R	10	n n	±20%	1.6±0.2
	JMK316 BJ685□F	6.8	B/X5R	10			1.15±0.1
	JMK316 BJ106□F	10	B/X5R	5		±10%	1.15±0.1
	JMK316 BJ106□D*	10	B/X5R	10		±20%	0.85±0.1
6.3V	JMK316 BJ106□L	10	B/X7R	5			1.6±0.2
	JMK316 BJ226ML*	22	B/X7R*	10			1.6±0.2
	JMK316 BJ226ML*	22	B/X5R	10		±20%	1.6±0.2
	JMK316 BJ476ML*	47	X5R	10			1.6±0.2
4V	AMK316 BJ476ML*	47	X5R	10			1.6±0.2
25V	TMK316 C106□L	10	C/X5S	10		±10% ±20%	1.6±0.2
50V	UMK316 F225ZG	2.2	F/Y5V	7	R/W		1.25±0.1
35V	GMK316 F475ZG	4.7	F/Y5V	7			1.25±0.1
	GMK316 F106ZL	10	F/Y5V	9			1.6±0.2
25V	TMK316 F106ZL	10	F/Y5V	9		+80%	1.6±0.2
16V	EMK316 F106ZL	10	F/Y5V	9	R	-20%	1.6±0.2
401/	LMK316 F475ZD	4.7	F/Y5V	9			0.85±0.1
10V	LMK316 F106ZF	10	F/Y5V	9			1.15±0.1
	LMK316 F226ZL	22	F/Y5V	16			1.6±0.2
6.3V	JMK316 F106ZD	10	F/Y5V	16			0.85±0.1

[※]品名末尾にRが付きます。

^{*} Internal code shall be R.

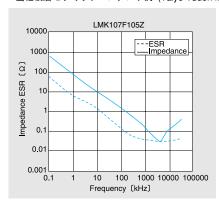
325TYPE							
定格	形名	公称	温度特性	$tan \delta$	実装条件	静電容量 許容差	厚み
電圧		静電容量	Temperature	Dissipation	Soldering method		Thickness
RatedVoltage	Ordering code	Capacitance	characteristics	factor	R:リフロー Reflow soldering	Capacitance	[mm]
lated voltage	Ordering code	[μF]	onaraotonotioo	[%]Max.	W:フロー Wave soldering	tolerance	[mm]
50V	UMK325 BJ105□H	1	B/X7R	3.5	R/W	±10%±20%	1.5±0.1
35V	GMK325 BJ225MN	2.2	B/X5R	3.5			1.9±0.2
	TMK325 BJ105MD	1	B/X7R	3.5			0.85±0.1
	TMK325 BJ225MH	2.2	B/X7R	3.5			1.5±0.1
	TMK325 BJ335MN	3.3	B/X7R	3.5			1.9±0.2
25V	TMK325 BJ475MN	4.7	B/X5R	3.5			1.9±0.2
	TMK325 BJ106MN*	10	B/X5R	5			1.9±0.2
	TMK325 BJ106MM*	10	B/X7R*	5			2.5±0.2
	TMK325 BJ106MM*	10	B/X5R	5			2.5±0.2
	EMK325 BJ475MN	4.7	B/X7R	3.5			1.9±0.2
40) (EMK325 BJ106MD*	10	B/X5R	5			0.85±0.1
16V	EMK325 BJ106MN	10	B/X5R	3.5		Ī	1.9±0.2
	EMK325 BJ226MM*	22	B/X5R	5		±20%	2.5±0.2
	LMK325 BJ335MD	3.3	B/X5R	3.5		120/0	0.85±0.1
	LMK325 BJ106MN	10	B/X7R	3.5			1.9±0.2
	LMK325 BJ475MD	4.7	B/X5R	5			0.85±0.1
10V	LMK325 BJ106MD*	10	B/X5R	5	1		0.85±0.1
	LMK325 BJ226MY*	22	B/X5R	5	R		1.9+0.1/-0.2
	LMK325 BJ226MM*	22	B/X5R	5			2.5±0.2
	LMK325 BJ476MM*	47	B/X5R	10			2.5±0.2
	JMK325 BJ685MD	6.8	B/X5R	5			0.85±0.1
	JMK325 BJ226MY	22	B/X5R	5			1.9+0.1/-0.2
	JMK325 BJ826MN*	82	X5R	10	1		1.9±0.2
6.3V	JMK325 BJ476MM*	47	B/X5R	10			2.5±0.2
	JMK325 BJ107MM*	100	X5R	10	1		2.5±0.3
	JMK325 E826ZN*	82	E/Y5U	16	1		1.9±0.2
	JMK325 E107ZM*	100	E/Y5U	16	1		2.5±0.2
50V	UMK325 F475ZH	4.7	F/Y5V	7			1.5±0.1
35V	GMK325 F106ZH	10	F/Y5V	7	1	1000	1.5±0.1
16V	EMK325 F226ZN	22	F/Y5V	16	1	+80%	1.9±0.2
40)/	LMK325 F106ZF	10	F/Y5V	16	1	-20%	1.15±0.1
10V	LMK325 F226ZN	22	F/Y5V	16	1		1.9±0.2
0.01/	JMK325 F476ZN	47	F/Y5V	16	1		1.9±0.2
6.3V	JMK325 F107ZM*	100	F/Y5V	16	1		2.5±0.2

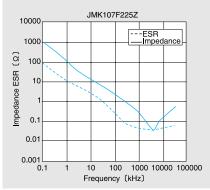
■422TVDE

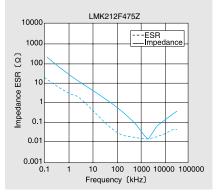
■4321YPE							
定格電圧	形名	公 称 静電容量	温度特性 Temperature	$ an \delta$	実装条件 Soldering method	静電容量 許容差	厚 み Thickness
RatedVoltage	Ordorning code	Capacitance [µF]	characteristics		R:リフロー Reflow soldering W:フロー Wave soldering	Capacitance tolerance	[mm]
25V	TMK432 BJ106MM	10	B/X5R	3.5			2.5±0.2
16V	EMK432 BJ226MM*	22	B/X5R	3.5			2.5±0.2
10V	LMK432 BJ226MM	22	B/X5R	3.5			2.5±0.2
0.01/	JMK432 BJ476MM*	47	B/X5R	5			2.5±0.2
6.3V	JMK432 BJ107MU*	100	B/X5R	10			3.2±0.3
50V	UMK432 C106MM*	10	C/X5S	5		±20%	2.5±0.2
05)/	TMK432 C226MM*	22	C/X5S	5	R		2.5±0.2
25V	TMK432 C476MM*	47	C/X5S	5			2.5±0.2
	JMK432 C227MU*	220	C/X5S	15			3.2±0.3
6.3V	JMK432 C107MM*	100	C/X6S	7			2.5±0.2
	JMK432 C107MY*	100	C/X5S	10			1.9+0.1/-0.2
10V	LMK432 F476ZM*	47	F/Y5V	16		+80%	2.5±0.2
6.3V	JMK432 F107ZM*	100	F/Y5V	16		-20%	2.5±0.2

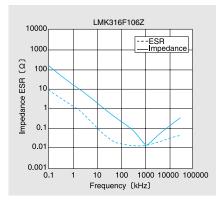
形名の \square には静電容量許容差記号が入ります。 \square Please specify the capacitance tolerance code.

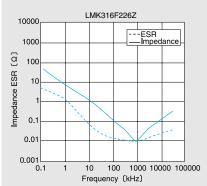
^{*}高温負荷試験の試験電圧は定格電圧の1.5倍

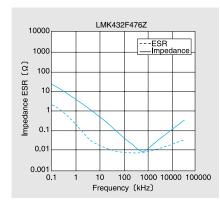

^{*} Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage. ※品名末尾にRが付きます。

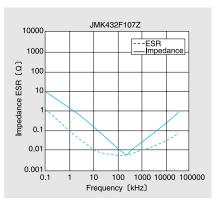

^{*} Internal code shall be R.

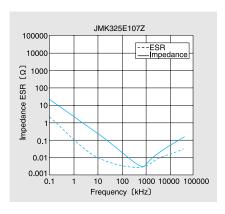

特性図 ELECTRICAL CHARACTERISTICS

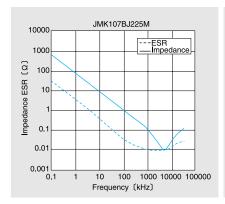

インピーダンス・ESR-周波数特性例 Example of Impedance ESR vs. Frequency characteristics

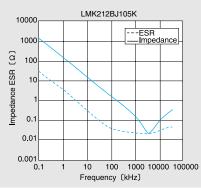

・当社積層セラミックコンデンサ例(Taiyo Yuden multilayer ceramic capacitor)

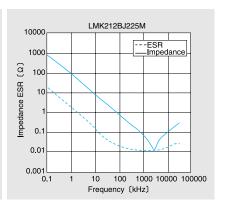


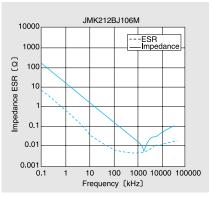


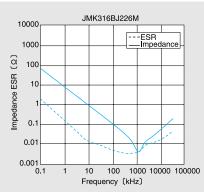


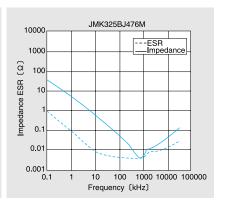


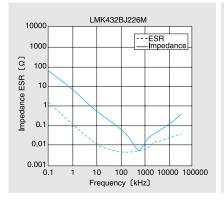


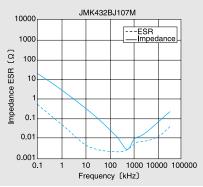




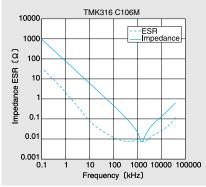


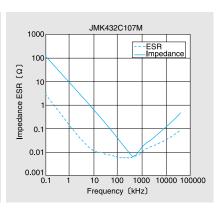








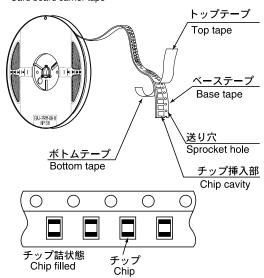




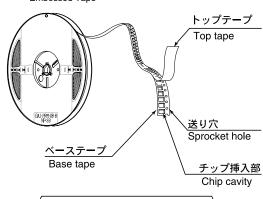
梱包 PACKAGING

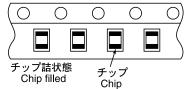
①最小受注単位数 Minimum Quantity

■袋づめ梱包 Bulk packaging

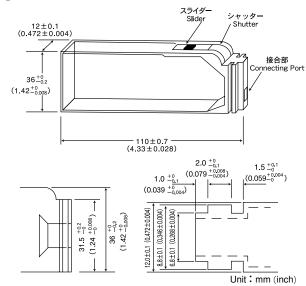

形式(EIA) Type	製品厚 <i>み</i> Thickness		標準数量 Standard quantity
	mm(inch)	code	[pcs]
☐MK105(0402)	0.5	V, W	
□VK105(0402)	(0.020)	W	
☐MK107(0603)	0.8 (0.031)	A Z	
□2K110(0504)	0.8 (0.031)	Α	
	0.6 (0.024)	В	
□MK212(0805)	0.85 (0.033)	D	
□IVII12 12(0003)	1.25 (0.049)	G	
□4K212(0805)	0.85 (0.033)	D	
□2K212(0805)	0.85 (0.033)	D	
	0.85 (0.033)	D	1000
□MK316(1206)	1.15 (0.045)	F	
□IVII(310(1200)	1.25 (0.049)	G	
	1.6 (0.063)	L	
	0.85 (0.033)	D	
	1.15 (0.045)	F	
□MK325(1210)	1.5 (0.059)	Н	
□IVIN323(1210)	1.9 (0.075)	N	
	2.0max (0.079)	Υ	
	2.5 (0.098)	М	

■テーピング梱包 Taped packaging

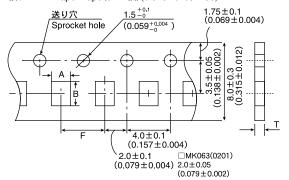

形式(EIA) Type	製品厚み Thickness			数量 I quantity cs]
	mm(inch)	code	紙テープ paper	エンボステープ Embossed tape
□MK063(0201)	0.3 (0.012)	Р	15000	
□MK105(0402)	0.5	V, W	10000	_
□VK105(0402)	(0.020)	W	10000	
	0.5 (0.020)	V	4000	
□MK107(0603)	0.45 (0.018)	K	4000	
	0.8 (0.031)	A Z	4000	_
□2K110(0504)	0.8 (0.031)	Α	4000	_
□2K110(0304)	0.6 (0.024)	В	4000	_
	0.45 (0.018)	К	4000	_
□MK212(0805)	0.85 (0.033)	D	4000	_
	1.25 (0.049)	G	_	3000
□4K212(0805)	0.85 (0.033)	D	4000	_
□2K212(0805)	0.85 (0.033)	D	4000	_
	0.85 (0.033)	D	4000	_
□MK316(1206)	1.15 (0.045)	F		
□4K316(1206)	1.25 (0.049)	G	_	3000
	1.6 (0.063)	L	_	2000
	0.85 (0.033)	D		
	1.15 (0.045)	F		
	1.5 (0.059)	Н	_	2000
□MK325(1210)	1.9 (0.075)	N		
	2.0max (0.079)	Υ	_	2000
	2.5 (0.098)	М	_	500
	1.9 (0.075)	Υ	_	1000
□MK432(1812)	2.5 (0.098)	М	_	500
	3.2 (0.125)	U		000


②テーピング材質 Taping material 紙テープ

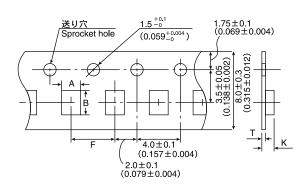
Card board carrier tape



エンボステープ Embossed Tape

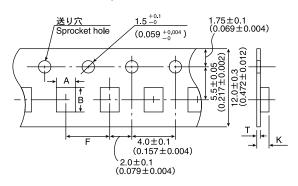


③バルクカセット Bulk Cassette

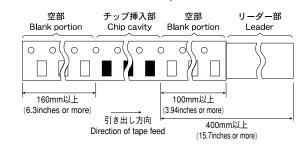

105, 107, 212形状で個別対応致しますのでお問い合せ下さい。 Please contact any of our offices for accepting your requirement according to dimensions 0402, 0603, 0805.(inch)

③テーピング寸法 Taping dimensions 紙テープ Paper Tape (8mm幅) (0.315inches wide)

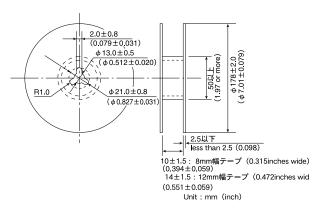
Туре	チッフ	[°] 挿入部	挿入ピッチ	テープ厚み
(EIA)	Chip	Cavity	Insertion Pitch	Tape Thickness
	Α	В	F	Т
□MK063(0201)	0.37±0.06	0.67±0.06	2.0±0.05	0.45max.
	(0.06±0.002)	(0.027±0.002)	(0.079±0.002)	(0.018max.)
☐MK105(0402)	0.65±0.1	1.15±0.1	2.0±0.05	0.8max.
□VK105(0402)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max.)
	1.0±0.2	1.8±0.2	4.0±0.1	1.1max.
□MK107(0603)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max.)
□2K110(0504)	1.15±0.2	1.55±0.2	4.0±0.1	1.0max.
	(0.045±0.008)	(0.061±0.008)	(0.157±0.004)	(0.039max.)
□MK212(0805)	1.65±0.2	2.4±0.2		
□4K212(0805)	(0.065±0.008)	(0.094±0.008)	4.0±0.1	1.1max.
□2K212(0805)			(0.157±0.004)	(0.043max.)
	2.0±0.2	3.6±0.2		
□MK316(1206)	(0.079±0.008)	(0.142±0.008)		


Unit: mm(inch) エンボステープ Embossed tape (8mm幅) (0.315inches wide)

Туре	チップ挿入部		挿入ピッチ	テーフ	プ厚み
(EIA)	Chip	cavity	Insertion Pitch	Tape Th	ickness
	A B		F	K	Т
	1.65±0.2	2.4±0.2			
□MK212(0805)	(0.065±0.008)	(0.094±0.008)			
□MK316(1206)	2.0±0.2	3.6±0.2	4.0±0.1	2.5max.	0.6max
□4K316(1206)	(0.079±0.008)	(0.142±0.008)	(0.157±0.004)	(0.098max.)	(0.024max.)
□MK20E(1010)	2.8±0.2	3.6±0.2		3.4max.	
□MK325(1210)	(0.110±0.008)	(0.142±0.008)		(0.134max.)	

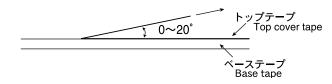

Unit: mm(inch)

エンボステープ Embossed tape (12mm幅) (0.472inches wide)



Туре	チップ挿入部		挿入ピッチ	テーフ	プ厚み
(EIA)	Chip cavity		Insertion Pitch	Tape Th	nickness
	A B		F	K	Т
□MK432(1812)	3.7±0.2 4.9±0.2		8.0±0.1 (0.315±0.004)	4.0max. (0.157max.)	0.6max. (0.024max.)
Unit: mm(inch)					

④リーダー部/空部 Leader and Blank portion



⑤リール寸法 Reel size

⑥トップテープ強度 Top Tape Strength

トップテープのはがし力は下図矢印方向にて0.1~0.7Nとなります。 The top tape requires a peel-off force of 0.1~0.7N in the direction of the arrow as illustrated below.

Multilayer Ceramic Capacitor Chips

			Specifie				
It	em	Temperature Compensating (Class 1)		High Permitivity (Class 2)		Test Methods and Remarks	
		Standard	High Frequency Type	Standard Note1	High Value		
1.Operating Range	Temperature	-55 to +125℃		B: -55 to +125°C F: -25 to +85°C	-25 to +85°C	$\begin{array}{lll} \mbox{High Capacitance Type} & \mbox{BJ}(X7R): -55 \sim +125 C, \mbox{ BJ}(X5R): -55 \sim +85 C \\ & \mbox{C}(X5S): -55 \sim +85 C, \mbox{ C}(X6S): -55 \sim +105 C \\ & \mbox{E}(Y5U): -30 \sim +85 C, \mbox{ F}(Y5V): -30 \sim +85 C \\ \end{array}$	
2.Storage Range	Temperature	−55 to +125°C		B: -55 to +125°C F: -25 to +85°C	−25 to +85°C	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
3.Rated Voltage	ge	50VDC,25VDC, 16VDC	16VDC 50VDC	50VDC,25VDC	50VDC,35VDC,25VDC 16VDC,10VDC,6.3VDC 4DVC		
4.Withstanding Between ter		No breakdown or damage	No abnormality	No breakdown or damag	ge	Applied voltage: Rated voltage×3 (Class 1) Rated voltage×2.5 (Class 2) Duration: 1 to 5 sec. Charge/discharge current: 50mA max. (Class 1,2)	
5.Insulation R	esistance	10000 MΩ min.		500 M Ω μ F. or 10000 smaller.	$M\Omega$., whichever is the	Applied voltage: Rated voltage Duration: 60±5 sec.	
6.Capacitance	e (Tolerance)	0.5 to 5 pF: ±0.25 pF 1 to 10 pF: ±0.5 pF 5 to 10 pF: ±1 pF 11 pF or over: ±5% ±10% 105TYPERA, SA, TA, UA only 0.5~2pF: ±0.1pF 2.2~20pF: ±5%	0.5 to 2 pF : ±0.1 pF 2.2 to 5.1 pF : ±5%	Note 5 B: ±10%, ±20% F: +80/20 %	B: ±10%、±20% C: ±10%、±20% E: -20%/+80% F: -20%/+80%	$\label{eq:continuous} \begin{split} & \text{Charge/discharge current: 50mA max.} \\ & \text{Measuring frequency:} \\ & \text{Class1: } 1\text{MHz}\pm10\%(\text{C}\!\leq\!1000\text{pF}) \\ & 1 \text{k} \text{Hz}\pm10\%(\text{C}\!>\!1000\text{pF}) \\ & \text{Class2: } 1 \text{k} \text{Hz}\pm10\%(\text{C}\!\leq\!22_{\mu}\text{F}) \\ & 120\text{Hz}\pm10\text{Hz}(\text{C}\!>\!22_{\mu}\text{F}) \\ & \text{Measuring voltage:} \\ & \text{Class1: } 0.5{\sim}5\text{Vrms}(\text{C}\!\leq\!1000\text{pF}) \\ & 1\pm0.2\text{Vrms}(\text{C}\!>\!1000\text{pF}) \\ & \text{Class2: } 1\pm0.2\text{Vrms}(\text{C}\!\geq\!22_{\mu}\text{F}) \\ & 0.5\pm0.1\text{Vrms}(\text{C}\!>\!22_{\mu}\text{F}) \\ & \text{Bias application: None} \end{split}$	
7.Q or Tangen $(an s)$	t of Loss Angle	Under 30 pF : Q≥400 + 20C 30 pF or over : Q≥1000 C= Nominal capacitance	Refer to detailed specification	B: 2.5% max.(50V, 25V) F: 5.0% max. (50V, 25V)	B: 2.5% max. C、E、F: 7% max. Note 4	Multilayer: Measuring frequency: Class1: $1 \text{MHz} \pm 10\% (\text{C} \leq 1000 \text{pF})$ $1 \text{ k Hz} \pm 10\% (\text{C} \leq 1000 \text{pF})$ $1 \text{ k Hz} \pm 10\% (\text{C} \leq 1000 \text{pF})$ $1 \text{ k Hz} \pm 10\% (\text{C} \leq 22\mu \text{F})$ $120 \text{Hz} \pm 10 \text{Hz} (\text{C} \leq 22\mu \text{F})$ $120 \text{Hz} \pm 10 \text{Hz} (\text{C} \leq 22\mu \text{F})$ $120 \text{Hz} \pm 10 \text{Hz} (\text{C} \leq 1000 \text{pF})$ $1 \pm 0.2 \text{Vrms} (\text{C} \leq 22\mu \text{F})$ $0.5 \pm 0.1 \text{Vrms} (\text{C} \leq 22\mu \text{F})$ Bias application: None High-Frequency-Multilayer: Measuring frequency: 1GHz Measuring quipment: HP4291A Measuring jig: HP16192A	
8.Temperature Characteristic of Capacitance	(Without voltage application)	CK: 0±250 CJ: 0±120 CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±120 TH: -470±60 UK: -750±250 UJ: -750±250 UJ: -750±120 SI: -3501n:1000 (nom(x))	CH: 0±60 RH: -220±60 (ppm/C)	B: ±10%(-25~85°) F: +30 %(-25~85°) B(X7R): ±15% F(Y5V): +22%	B:±10% (-25~+85°C) C:±20% (-25~+85°C) E:+20%/-55% (-25~+85°C) F:+30%/-80% (-25~+85°C) B(X7R, X5R): ±15% C(X5S, X6S): ±22% E(Y5U): +22%/-56% F(Y5V): +22%/-82%	According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (C85 - C20) C20 × ΔT × 10 6 (ppm/C) High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C Reference temperature Temperature at step 5: +20°C Reference temperature for X7R, X5R, X5S, X6S, Y5U and Y5V shall be +25°C	
9.Resistance Substrate	Los Flexure of	SL: +350 to -1000 (ppm/c) Appearance: No abnormality Capacitance change: Within ±5% or ±0.5 pF, whichever is larger.	Appearance: No abnormality Capacitance change: Within±0.5 pF	Appearance: No abnormality Capacitance change: B, BJ, C: Within ±12.5% E, F: Within ±30%	6	Warp: 1mm Testing board: glass epoxy-resin substrate Thickness: 1.6mm (063 TYPE: 0.8mm) The measurement shall be made with board in the bent positio Warp Warp	

Multilayer Ceramic Capacitor Chips

		Specifie				
Item	Temperature Comp	pensating (Class 1)	High Permittivity (Class 2)		Test Methods and Remarks	
	Standard	High Frequency Type	Standard Note1	High Value		
10.Body Strength	_	No mechanical damage.	_	_	High Frequency Multilayer: Applied force: 5N Duration: 10 sec. Press Pressing jie Chip L≥ W	
11.Adhesion of Electrode	No separation or indication of separation of electrode.			Applied force: 5N Duration: 30±5 sec. (0201 TYPE 2N) Hooked jig Chip Cross-section		
12.Solderability	At least 95% of terminal	electrode is covered by n	iew solder.		Solder temperature: 230±5°C	
	Appearance: No abnor-	Appearance: No abnor-	Appearance: No abnorm		Duration: 4±1 sec. Preconditioning: Thermal treatment (at 150°C for 1 hr)	
13.Resistance to soldering	mality Capacitance change: Within ± 2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	mality Capacitance change: Within ±2.5% Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Capacitance change: W W tan ε: Initial value Insulation resistance: In	/ithin ±7.5% (B, BJ) /ithin ±15% (C) /ithin ±20% (E, F) Note 4	(Applicable to Class 2.) Solder temperature: 270±5°C Duration: 3±0.5 sec. Preheating conditions: 80 to 100°C, 2 to 5 min. or 5 to 10 m 150 to 200°C, 2 to 5 min. or 5 to 10 m Recovery: Recovery for the following period under the stadard condition after the test. 24±2 hrs (Class 1) 48±4 hrs (Class 2)	
14.Thermal shock	Appearance: No abnormality Capacitance change: Within ± 2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No abnormality Capacitance change: Within ±0.25pF Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No abnormality Capacitance change: Within ±7.5% (B, BJ) Within ±15% (C) Within ±20% (E, F) tan δ: Initial value Note 4 Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality		Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Conditions for 1 cycle: Step 1: Minimum operating temperature $^{+0}_{-3}$ °C 30 \pm 3 m Step 2: Room temperature 2 to 3 m Step 3: Maximum operating temperature $^{-0}_{+3}$ °C 30 \pm 3 m Step 4: Room temperature 2 to 3 m Number of cycles: 5 times Recovery after the test: 24 \pm 2 hrs (Class 1) 48 \pm 4 hrs (Class 2)	
15.Damp Heat (steady state)	Appearance: No abnormality Capacitance change: Within ±5% or ±0.5pF, whichever is larger. Q: C≥30 pF: Q≥350 10≤C<30 pF: Q≥275 +2.5C C<10 pF: Q≥200 + 10C C: Nominal capacitance Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: Within ±0.5pF, Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : B: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: 50 M Ω μ F or 1000 M Ω whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ:Within $\pm 12.5\%$ C(X6S) Within $\pm 25\%$ C(X5S),E,F Within $\pm 30\%$ Note 4 $\tan \delta$: BJ: 5.0% max. C, E, F: 11.0% max. Insulation resistance: $50~\mathrm{M}\Omega~\mu\mathrm{F}$ or $1000~\mathrm{M}\Omega$ whichever is smaller. Note 5	Multilayer: Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 ⁴²⁴ / ₋₀ hrs Recovery: Recovery for the following period under the sta dard condition after the removal from test chamber. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 ⁴²⁴ / ₋₀ hrs Recovery: Recovery for the following period under the sta dard condition after the removal from test chamber. 24±2 hrs (Class 1)	

Multilayer Ceramic Capacitor Chips

		Specifie	ed Value			
Item	Temperature Compensating (Class 1)		High Permittivity (Class 2)		Test Methods and Remarks	
	Standard	High Frequency Type	Standard Note1	High Value		
16.Loading under Damp Heat	Appearance: No abnormality Capacitance change: Within ± 7.5% or ±0.75pF, whichever is larger. Q: C≥30 pF: Q≥200 C <30 pF: Q≥100 + 10C/3 C: Nominal capacitance Insulation resistance: 500 MΩ min.	Appearance: No abnormality Capacitance change: C≤2 pF: Within ±0.4 pF C>2 pF: Within ±0.75 pF C: Nominal capacitance Insulation resistance: 500 MΩ min.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : B: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: $25 \ \text{M}\Omega \ \mu \text{F}$ or 500 $\ \text{M}\Omega_{\star}$ whichever is the smaller. Note 5	Appearance: No abnormality Capacitance change: BJ : Within±12.5% C , E , F : Within±30% Note 4 $tan\delta$: BJ : 5.0%max. C , E , F : 11%max. Insulation resistance: $25 \text{ M}\Omega \mu F$ or 500 M Ω , whichever is the smaller. Note 5	According to JIS C 5102 Clause 9. 9. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 *24* hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. (Class 1,2) Recovery: Recovery for the following period under the standard condition after the removal from test chamber. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 *24* hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. Recovery: 24±2 hrs of recovery under the standard condition after the removal from test chamber.	
17.Loading at High Temperature	Appearance: No abnormality Capacitance change: Within $\pm 3\%$ or ± 0.3 pF, whichever is larger. Q: C ± 30 pF: Q ± 25 0 f : Q ± 275 + 2.5C C ± 20 0 pF: Q ± 200 0 + 10C C: Nominal capacitance Insulation resistance: 1000 M Ω min.	Appearance: No abnormality Capacitance change: Within ±3% or ±0.3pF, whichever is larger. Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ Note 4 tan s : B: 4.0% max. F: 7.5% max. Insulation resistance: $50 \text{M}\Omega \mu \text{F}$ or $1000 \text{M}\Omega$, whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ: Within $\pm 12.5\%$ Within $\pm 20\% \%\%$ Within $\pm 25\% \%\%$ C: Within $\pm 25\% (X6S)$ Within $\pm 30\% (X5S)$ E, F: Within $\pm 30\%$ Note 4 tan δ : BJ: 5.0% max. C, F, F: 11% max. Insulation resistance: $50~\mathrm{M}\Omega\mu\mathrm{F}~\mathrm{or}~1000~\mathrm{M}\Omega$, whichever is smaller. Note 5	According to JIS C 5102 clause 9.10. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature:125±3°C(Class 1, Class 2: B, BJ(X7R)) 85±2°C (Class 2: BJ,F) Duration: 1000 +48 Applied voltage: Rated voltage×2 Note 6 Recovery: Recovery for the following period under the standard condition after the removal from test chamber. As for Ni product, thermal treatment shall be performed prior to the recovery. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 125±3°C (Class 1) Duration: 1000 +48 hrs Applied voltage: Rated voltage×2 Recovery: 24±2 hrs of recovery under the standard condition after the removal from test chamber.	

Note 1 Note 2 Note 3 Note 4, 5 Note 6

Note 1 :For 105 type, specified in "High value".

Note 2 :Thermal treatment (Multilayer): 1 hr of thermal treatment at 150 +0 /-10 °C followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement.

Note 3 :Voltage treatment (Multilayer): 1 hr of voltage treatment under the specified temperature and voltage for testing followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement.

Note 4, 5 :The figure indicates typical inspection. Please refer to individual specifications.

Note 6 :Some of the parts are applicable in rated voltage×1.5. Please refer to individual specifications.

Note on standard condition: "standard condition" referred to herein is defined as follows: 5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure.

Stages	Precautions	Technical considerations
1.Circuit Design	Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any capacitors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Operating Voltage (Verification of Rated voltage) 1. The operating voltage for capacitors must always be lower than their rated values. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than the rated value of the capacitor chosen. For a circuit where both an AC and a pulse voltage may be present, the sum of their peak voltages should also be lower than the capacitor's rated voltage. 2. Even if the applied voltage is lower than the rated value, the reliability of capacitors might be reduced if either a high frequency AC voltage or a pulse voltage having rapid rise time is present in the circuit.	
2.PCB Design	Pattern configurations (Design of Land-patterns) 1. When capacitors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect capacitor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist.	1.The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amourts.(larger fillets which extend above the component end terminations) Examples of improper pattern designs are also shown. (1) Recommended land dimensions for a typical chip capacitor land patterns for PCBs Land pattern Chip capacitor Chip capacitor Chip capacitor Chip capacitor Solder-resist Chip capacitor W Recommended land dimensions for wave-soldering (unit: mm) Type 107 212 316 325 L 1.6 2.0 3.2 3.2 Size W 0.8 1.25 1.6 2.5 A 0.8~1.0 1.0~1.4 1.8~2.5 1.8~2.5 B 0.5~0.8 0.8~1.5 0.8~1.7 0.8~1.7 C 0.6~0.8 0.9~1.2 1.2~1.6 1.8~2.5
		Recommended land dimensions for reflow-soldering (unit: mm) Type

а b

d

0.5~0.6

0.5~0.6 1.0

0.55~0.65

0.3~0.4

0.64

Stages	Precautions		Technical consider	ations	
2.PCB Design		(2) Examples of	of good and bad solder application	1	
		Items	Not recommended	Recommended	
		Mixed mounting of SMD and leaded components	Lead wire of component	Solder-resist	
		Component placement close to the chassis	Chassis Solder(for grounding)	Solder-resist	
		Hand-soldering of leaded components near mounted components	Lead wire of component- Soldering iron—	Solder-resist	
		Horizontal component placement		Solder-resist	
	Pattern configurations (Capacitor layout on panelized [breakaway] PC boards) 1. After capacitors have been mounted on the boards, chips can	-		citor layout; SMD capacitors should be sses from board warp or deflection.	
	be subjected to mechanical stresses in subsequent manufac-		Not recommended	Recommended	
	turing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD capacitors should be carefully performed to minimize stress.	Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses that are anticipated.	
	silouid de carefully performed to minimize stress.	1-2. To layout the capacitors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on capacitor layout. The example below shows recommendations for better design.			
		Perforati	on C Slit Magnitude of stress A:	D	
		the capacitors	can vary according to the methor	s, the amount of mechanical stress on ad used. The following methods are sful: push-back, slit, V-grooving, and at must also consider the PCB splitting	

Stages	Precautions	Technical considerations			
Considerations for automatic placement	Adjustment of mounting machine 1. Excessive impact load should not be imposed on the capacitors when mounting onto the PC boards. 2. The maintenance and inspection of the mounters should be conducted periodically.	1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the capacitors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle: (1)The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board. (2)The pick-up pressure should be adjusted between 1 and 3 N static loads. (3)To reduce the amount of deflection of the board caused by impact of the pick-up nozzle supporting pins or back-up pins should be used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement:			
		Not recommended Single-sided mounting Double-sided Not recommended Recommended Recommended			
		2. As the alignment pin wears out, adjustment of the nozzle height can cause chipping cracking of the capacitors because of mechanical impact on the capacitors. To avoit this, the monitoring of the width between the alignment pin in the stopped position, an maintenance, inspection and replacement of the pin should be conducted periodically			
	Selection of Adhesives 1. Mounting capacitors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded capacitor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.	1. Some adhesives may cause reduced insulation resistance. The difference between the shrinkage percentage of the adhesive and that of the capacitors may result in stresse on the capacitors and lead to cracking. Moreover, too little or too much adhesive applie to the board may adversely affect component placement, so the following precaution should be noted in the application of adhesives. (1) Required adhesive characteristics a. The adhesive should be strong enough to hold parts on the board during the mounting solder process. b. The adhesive should have sufficient strength at high temperatures. c. The adhesive should have good coating and thickness consistency. d. The adhesive should be used during its prescribed shelf life. e. The adhesive should harden rapidly f. The adhesive must not be contaminated. g. The adhesive should not be toxic and have no emission of toxic gasses.			
		(2)The recommended amount of adhesives is as follows; Figure 212/316 case sizes as examples a 0.3mm min b 100 ~120 μm c Adhesives should not contact the pad Amount of adhesive After capacitors are bonded			

Stages	Precautions	Technical considerations
4. Soldering	Selection of Flux 1. Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1) Flux used should be with less than or equal to 0.1 wt% (equivelent to chroline) of halogenated content. Flux having a strong acidity content should not be applied. (2) When soldering capacitors on the board, the amount of flux applied should be controlled at the optimum level. (3) When using water-soluble flux, special care should be taken to properly clean the boards.	1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance of the surface of the capacitors. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To min mize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of capacitors in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.
	Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	1-1. Preheating when soldering Heating: Ceramic chip components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C. Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted witting great care so as to prevent malfunction of the components due to excessive thermal shock
	And please contact us about peak temperature when you use lead-free paste.	Recommended conditions for soldering [Reflow soldering] Temperature profile Temperature (C) 300 Peak 260C max 10 sec m
		1. The ideal condition is to have solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of the capacitor, as shown below: Capacitor PC board 2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible. [Wave soldering] Temperature profile
		Temperature (*C) 300 Peak 260°C max *** 10 sec max 10 s
		Caution 1. Make sure the capacitors are preheated sufficiently. 2. The temperature difference between the capacitor and melted solder should not b greater than 100 to 130°C 3. Cooling after soldering should be as gradual as possible. 4. Wave soldering must not be applied to the capacitors designated as for reflow soldering only.

Stages	Precautions	Technical considerations
4. Soldering		[Hand soldering] Temperature profile Temperature (°C) 300 Preheating 230°C 300 300 AT Gradual cooling Within 3 seconds (# AT ≤ 190°C (3216Type max), AT ≤ 130°C (32216Type max), AT ≤ 130°
5.Cleaning	Cleaning conditions 1. When cleaning the PC board after the capacitors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the capacitor's characteristics.	1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the capacitor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the capacitors. (1)Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the capacitor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked; Ultrasonic output Below 20 W/ℓ Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6.Post cleaning processes	1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance. 2. When a resin's hardening temperature is higher than the capacitor's operating temperature, the stresses generated by the excess heat may lead to capacitor damage or destruction. The use of such resins, molding materials etc. is not recommended.	
7.Handling	Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting capacitors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. Mechanical considerations 1. Be careful not to subject the capacitors to excessive mechanical shocks. (1)If ceramic capacitors are dropped onto the floor or a hard surface, they should not be used. (2)When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.	

Stages	Precautions	Technical considerations
8.Storage conditions	Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40°C Humidity Below 70% RH The ambient temperature must be kept below 30°C. Even under ideal storage conditions capacitor electrode solderability decreases as time passes, so should be used within 6 months from the time of delivery. Ceramic chip capacitors should be kept where no chlorine or sulfur exists in the air. 2. The capacitance value of high dielectric constant capacitors (type 2 &3) will gradually decrease with the passage of time, so this should be taken into consideration in the circuit design. If such a capacitance reduction occurs, a heat treatment of 150°C for 1hour will return the capacitance to its initial level.	If the parts are stored in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.

97