Floating Electrode Design with Flexible Termination System CHARGED: (FF-CAP), X7R Dielectric, 6.3VDC-250VDC (Commercial & Automotive Grade)

Overview

KEMET's Floating Electrode with Flexible Termination capacitor (FF-CAP) combines two existing KEMET technologies-Floating Electrode and Flexible Termination. The floating electrode component utilizes a cascading internal electrode design configured to form multiple capacitors in series within a single monolithic structure. This unique configuration results in enhanced voltage and ESD performance over standard capacitor designs while allowing for a fail-open condition if mechanically damaged (cracked). The flexible termination component utilizes a conductive silver epoxy between the base metal and nickel barrier layers of KEMET's standard termination system in order to establish pliability while maintaining terminal strength, solderability and electrical performance. Both technologies address the primary failure mode of MLCCs-flex cracks, which are typically the result of excessive shear stresses produced during board flexure or thermal cycling.

Although neither technology can eliminate the potential for mechanical damage that may propagate during extreme

environmental and/or handling conditions, the combination of these two technologies provide the ultimate level of protection against a low IR or short circuit condition. Designed for safety critical applications, the FF-CAP is Pb-Free and RoHS compliant meets the requirements of the Automotive Electronics Council's AEC-Q200 and is widely used in automotive circuits as well as power supplies (input and output filters) and general electronic applications.

The Capacitance Company

Combined with the stability of an X7R dielectric, the FF-CAP complements KEMET's Open Mode, Floating Electrode (FE-CAP), Flexible Termination (FT-CAP) and KEMET Power Solutions (KPS) product lines by providing an ultimate fail-safe design optimized for low to mid range capacitance values. These devices exhibit a predictable change in capacitance with respect to time and voltage and boast a minimal change in capacitance with reference to ambient temperature. Capacitance change is limited to $\pm 15\%$ from -55°C to ± 125 °C.

Benefits

- -55°C to +125°C operating temperature range
- Superior flex performance (up to 5mm)
- · Floating Electrode/fail open design
- · Low to mid capacitance flex mitigation
- · Pb-Free and RoHS compliant
- EIA 0603, 0805, 1206, 1210, and 1812 case sizes
- DC voltage ratings of 6.3V, 10V, 16V, 25V, 50V, 100V, 200V and 250V
- Capacitance offerings ranging from 180pF to $0.22 \mu F$
- Available capacitance tolerances of $\pm 5\%$, $\pm 10\%$ and $\pm 20\%$

Ordering Information

- · Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated end metallization allowing for excellent solderability
- SnPb end metallization option available upon request (5% min)
- · Commercial and Automotive (AEC-Q200) grades available

С	0805	Y	104	K	5	R	Α	С	AUTO
Ceramic	Case Size (L" x W")	Specification/ Series	Capacitance Code (pF)	Capacitance Tolerance	Voltage	e Dielectric Failure Ra		End Metallization ¹	Packaging/Grade (C-Spec) ²
	0603 0805 1206 1210 1812	Y = Floating Electrode w/ Flexible Termination	2 Sig. Digits + Number of Zeros	J = ±5% K = ±10% M = ±20%	9 = 6.3V 8 = 10V 4 = 16V 3 = 25V 5 = 50V 1 = 100V 2 = 200V A = 250V	R = X7R	A = N/A	C = 100% Matte Sn L = SnPb (5% min)	Blank = Bulk TU = 7" Reel Unmarked TM = 7" Reel Marked AUTO = Automotive Grade 7" Reel Unmarked

¹ Additional termination options may be available. Contact KEMET for details.

² Additional reeling or packaging options may be available. Contact KEMET for details.

Dimensions – Millimeters (Inches)

EIA Size Code	Metric Size Code	L Length	W Width	B Bandwidth	T Thickness	Mounting Technique
0603	1608	1.6 (.063) ± 0.20 (.008)	0.80 (.032) ± 0.15 (.006)	0.45 (.018) ± 0.15 (.006)		0.11.14
0805	2012	2.1 (.083) ± 0.30 (.012)	1.25 (.049) ± 0.20 (.008)	0.50 (0.02) ± 0.25 (.010)	0 711 07	Solder Wave or Solder Reflow
1206	3216	3.3 (.130) ± 0.40 (.016)	1.60 (.063) ± 0.20 (.008)	0.60 (.024) ± 0.25 (.010)	See Table 2 for	Colder Renow
1210	3225	3.3 (.130) ± 0.40 (.016)	2.50 (.098) ± 0.20 (.008)	0.60 (.024) ± 0.25 (.010)	THICKIESS	Solder Reflow
1812	4532	4.5 (.178) ± 0.40 (.016)	3.20 (.126) ± 0.30 (.012)	0.70 (.028) ± 0.35 (.014)		Only

Applications

Typical applications include circuits with a direct battery or power source connection, critical and safety relevant circuits without (integrated) current limitation and any application that is subject to high levels of board flexure or temperature cycling. Examples include raw power input side filtering (power plane/bus), high current applications (automobile battery line) and circuits that cannot be fused to open. Markets include consumer, medical, industrial (power supply), automotive, aerospace and telecom.

Qualification/Certification

Commercial grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance and Reliability.

Automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC-Q200, please visit their website @www.aecouncil.com.

Environmental Compliance

RoHS PRC (Peoples Republic of China) compliant

Electrical Parameters/Characteristics

Item	Parameters/Characteristics
Operating Temperature Range:	-55°C to +125°C
Capacitance Change with Reference to +25°C and 0 Vdc Applied (TCC):	±15%
Aging Rate (Max % Cap Loss/Decade Hour):	3.5%
Dielectric Withstanding Voltage:	250% of rated voltage (5 ± 1 seconds and charge/discharge not exceeding 50mA)
Dissipation Factor (DF) Maximum Limits @ 25°C:	5%(10V), 3.5%(16V & 25V) and 2.5%(50V to 200V)
Insulation Resistance (IR) Limit @ 25°C:	See Insulation Resistance Limit Table

To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to $G\Omega$ limit. Select the lower of the two limits.

Capacitance and Dissipation Factor (DF) measured under the following conditions:

1kHz \pm 50Hz and 1.0 \pm 0.2 Vrms if capacitance ${\leq}10\mu F$

120Hz \pm 10Hz and 0.5 \pm 0.1 Vrms if capacitance >10 μ F

Insulation Resistance Limit Table

EIA Case Size	1000 megohm microfarads or 100GΩ	500 megohm microfarads or 10GΩ
0201	N/A	ALL
0402	< .012µF	≥ .012µF
0603	< .047µF	≥ .047µF
0805	< .047µF	≥ .047µF
1206	< 0.22µF	≥ 0.22µF
1210	< 0.39µF	≥ 0.39µF
1808	ALL	N/A
1812	< 2.2µF	≥ 2.2µF
1825	ALL	N/A
2220	< 10µF	≥ 10µF
2225	ALL	N/A

Table 1A – (0603 - 0805 Case Sizes)

		Series				(C06031	(C0805Y								
Can	Сар	v	oltage Co	de	9	8	4	3	5	1	2	9	8	4	3	5	1	2	Α
oup	Code	V	/oltage VD	С	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	250
		C	ap Toleran	ce	P	roduct	Availat	oility ar	nd Chip	Thickr	ness Co	odes - S	See Tab	ole 2 fo	r Chip [·]	Thickne	ess Din	nensior	າຣ
150 pF	151	J	K	М															
180 pF	181	J	K	M	CB	CB	CB	CB	CB	CB	CB	DC	DC	DC	DC	DC	DC	DC	DC
220 pF	221	J	K	M	CB	CB	CB	CB	CB	CB	CB	DC	DC	DC	DC	DC	DC	DC	DC
270 pF 330 pF	2/1	J	ĸ	IVI	CB	CB	CB	CB	CB	CB	CB		DC	DC					
390 pF	301	J	K	M	CB	CB	CB	CB	CB	CB	CB		DC	DC	DC	DC	DC	DC	DC
470 pF	471	J	ĸ	M	CB	CB	CB	CB	CB	CB	CB		DC	DC	DC	DC	DC	DC	DC
560 pF	561	J	K	M	СВ	CB	CB	CB	CB	CB	CB	DC	DC	DC	DC	DC	DC	DC	DC
680 pF	681	J	К	М	СВ	СВ	СВ	СВ	СВ	СВ	СВ	DC	DC	DC	DC	DC	DC	DC	DC
820 pF	821	J	К	М	СВ	СВ	СВ	СВ	СВ	СВ	СВ	DC	DC	DC	DC	DC	DC	DC	DC
1,000 pF	102	J	K	М	СВ	CB	CB	CB	СВ	CB	CB	DC	DC	DC	DC	DC	DC	DC	DC
1,200 pF	122	J	K	Μ	СВ	CB	CB	CB	CB	CB	CB	DC	DC	DC	DC	DC	DC	DC	DC
1,500 pF	152	J	K	М	СВ	CB	CB	CB	CB	CB	CB	DC	DC	DC	DC	DC	DC	DC	DC
1,800 pF	182	J	K	M	CB	CB	CB	CB	CB	CB	CB	DC	DC	DC	DC	DC	DC	DC	DC
2,200 pF	222	J	K	M	CB	CB	CB	CB	CB	CB	CB	DC	DC	DC	DC	DC	DC	DC	DC
2,700 pF	272	J	ĸ	IVI M	CB	CB	CB	CB	CB	CB	CB		DC		DC		DC		DC
3,300 pF	302 302	J	ĸ	IVI M		CB	CB	CB	CB	CB	CB								
4 700 pF	472	J	K	M	CB	CB	CB	CB	CB	CB	CB		DC	DC	DC		DC	DC	DC
5 600 pF	562	J	ĸ	M	CB	CB	CB	CB	CB	CB	00		DC	DC	DC	DC	DC	DC	DC
6,800 pF	682	J	K	M	CB	CB	CB	CB	CB	CB		DC	DC	DC	DC	DC	DC	DC	DC
8,200 pF	822	J	К	М	СВ	СВ	СВ	СВ	СВ	СВ		DC	DC	DC	DC	DC	DC	DC	DC
10,000 pF	103	J	K	Μ	СВ	СВ	CB	СВ	СВ			DC	DC	DC	DC	DC	DC	DC	DC
12,000 pF	123	J	K	М	СВ	CB	CB	CB	СВ			DC	DC	DC	DC	DC	DC	DC	DC
15,000 pF	153	J	K	М	СВ	CB	CB	CB	CB			DC	DC	DC	DC	DC	DD		
18,000 pF	183	J	K	М	CB	CB	CB	CB	CB			DC	DC	DC	DC	DC	DD		
22,000 pF	223	J	K	M	СВ	CB	CB	CB	СВ			DC	DC	DC	DC	DC	DD		
27,000 pF	2/3	J	K	M								DC	DC	DC	DC	DC			
33,000 pF	333	J	ĸ	IVI									DC						
47.000 pF	393 173	J	K	M									DC	DC	DC				
56 000 pF	563	.1	K	M									סס	סס	סס	םם			
68.000 pF	683	J	ĸ	M								DD	DD	DD	DD	DD			
82,000 pF	823	J	К	М							DG DG DG DG DG								
0.10 uF	104	J	K	K M DG DG DG DG DG DG					DG										
		V	/oltage VD	С	6.3	9	16	25	50	100	200	6.3	9	16	25	50	100	200	250
Сар	Cap Code	V	oltage Co	de	9	8	4	3	5	1	2	9	8	4	3	5	1	2	А
			Series		C0603Y						C0805Y								

Table 1B - (1206 - 1812 Case Sizes)

		9	Serie	S				C12	06Y							C12	10Y				C1812Y				
Can	Сар	Vo	ltage C	ode	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	A	9	8	4	3	5
Oap	Code	Vo	ltage V	DC	6.3	9	16	25	50	100	200	250	6.3	9	16	25	50	100	200	250	6.3	9	16	25	50
		Cap	o Tolera	ance		Pro	duct	Avai	labili	ty and	d Chi	o Thio	knes	s Co	des -	See	Table	2 for	Chip	Thic	knes	s Dim	ensio	ons	
1,000 pF	102	J	K	М	EB	EB	EB	EB	EB	EB	EB	EB													
1,200 pF	122	J	K	M	EB	EB	EB	EB	EB	EB	EB	EB													
1,500 pF	152	J	K	M	EB	EB	EB	EB	EB	EB	EB	EB													
1,800 pF	182	J	K	M	EB	EB	EB	EB	EB	EB	EB	EB													
2,200 pF	222	J	K	M	EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB					
2,700 pF	272	J	K	M	EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB					
3,300 pF	332	J	K	M	EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB					
3,900 pF	392	J	K	M	EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB					
4,700 pF	472	J	K	M	EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB					
5,600 pF	562	J	K	M	EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB	0.0	0.0	0.0	00	00
6,800 pF	682	J	K	M	EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB	GB
8,200 pF	822	J	K	IVI	EB	EB	EB	EB	EB	EB	EB	EB	FR	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB	GB
10,000 pF	103	J	K	IVI	EB	EB	EB	EB	EB	EB	EB	EB	FR	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB	GB
12,000 pF	123	J	K	IVI	EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB	GB
15,000 pF	153	J	K	IVI	EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB	GB
18,000 pF	183	J	K	IVI	EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB	GB
22,000 pF	223	J	ĸ		EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB	GB
27,000 pF	2/3	J	ĸ		EB	EB	EB	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB	GB
33,000 pF	202	J	r k	IVI M						ED											GB	GB	GB	GB	GB
47.000 pF	472	J	Γ.	IVI N4		ED	ED	ED	ED	EC			ED	ED	FD	ED	ED	ED	FD	FD	CP	CP	CP	CP	CP
56 000 pF	563	J		M															EC	FC	GB	GB	CP	CP	CP
68 000 pF	683	J	K	M		EB	EB	EB	EB	LD			FR	FR	FR	FR	FR	FR	10	10	GB	GB	GB	GB	GB
82 000 pF	823		K	M	FR	EB	EB	EB	EB				FR	FR	FR	FB	FR	FC			GB	GB	GB	GB	GB
0.10 µF	104	J	ĸ	M	FR	FR	FR	FR	FR				FR	FR	FR	FB	FR	FD			GB	GB	GB	GB	GB
0.12 µF	124	J	K	M	FC	FC	FC	FC	FC				FB	FB	FB	FB	FB				GB	GB	GB	GB	GB
0.15 uF	154	J	ĸ	M	⁻								FC	FC	FC	FC	FC				GB	GB	GB	GB	GB
0.18 uF	184	Ĵ	ĸ	M									FC	FC	FC	FC	FC				GB	GB	GB	GB	GB
0.22 uF	224	Ĵ	K	M									FC	FC	FC	FC	FC				GB	GB	GB	GB	GB
		Vo	ltage V	DC	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50
Сар	Cap	Vo	Itage C	ode	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	Α	9	8	4	3	5
	Code Series			s				C12	06Y							C12	10Y				C1812Y				

Table 2 – Chip Thickness / Packaging Quantities

Thickness	Chip	Thickness ±	Qty per Reel	Qty per Reel	Qty per Reel	Qty per Reel	Qty per Bulk
Code	Size	Range (mm)	7" Plastic	13" Plastic	7" Paper	13" Paper	Cassette
AA AB BB CB	01005 0201 0402 0603	$\begin{array}{c} 0.20 \pm 0.02 \\ 0.30 \pm 0.03 \\ 0.50 \pm 0.05 \\ 0.80 \pm 0.07 \end{array}$			15000 15000 10000 4000	50000 10000	50000 15000
CC CD DC DD	0603 0603 0805 0805	$\begin{array}{c} 0.80 \pm 0.10 \\ 0.80 \pm 0.15 \\ 0.78 \pm 0.10 \\ 0.90 \pm 0.10 \\ 0.95 \pm 0.10 \end{array}$	4000	10000	4000 4000 4000 4000	10000 10000 10000 10000	
DE DF DG DH	0805 0805 0805 0805 0805	$\begin{array}{c} 1.00 \pm 0.10 \\ 1.00 \pm 0.10 \\ 1.10 \pm 0.10 \\ 1.25 \pm 0.15 \\ 1.25 \pm 0.20 \end{array}$	2500 2500 2500 2500	10000 10000 10000 10000			
EB EK EC EN ED	1206 1206 1206 1206 1206 1206	$\begin{array}{c} 0.78 \pm 0.10 \\ 0.80 \pm 0.10 \\ 0.90 \pm 0.10 \\ 0.95 \pm 0.10 \\ 1.00 \pm 0.10 \end{array}$	4000 2000 4000 4000 2500	10000 8000 10000 10000 10000	4000	10000	
EE EF EM EG FH	1206 1206 1206 1206 1206	$\begin{array}{c} 1.10 \pm 0.10 \\ 1.20 \pm 0.15 \\ 1.25 \pm 0.15 \\ 1.60 \pm 0.15 \\ 1.60 \pm 0.20 \end{array}$	2500 2500 2500 2000 2000	10000 10000 10000 8000 8000			
EJ FB FC FD	1206 1210 1210 1210 1210	$\begin{array}{c} 1.00 \pm 0.12 \\ 1.70 \pm 0.20 \\ 0.78 \pm 0.10 \\ 0.90 \pm 0.10 \\ 0.95 \pm 0.10 \end{array}$	2000 4000 4000 4000	8000 10000 10000 10000	Package	Quantity	1
FE FF FG FL FO	1210 1210 1210 1210 1210 1210	$1.00 \pm 0.10 \\ 1.10 \pm 0.10 \\ 1.25 \pm 0.15 \\ 1.40 \pm 0.15 \\ 1.50 \pm 0.20$	2500 2500 2500 2000 2000	10000 10000 10000 8000 8000	Based on Thickness	Finished Chip s Specifications	
FH FP FM FJ	1210 1210 1210 1210	$1.55 \pm 0.15 \\ 1.60 \pm 0.20 \\ 1.70 \pm 0.20 \\ 1.85 \pm 0.20 \\ $	2000 2000 2000 2000	8000 8000 8000 8000			-
FN FT FK FR FR FS	1210 1210 1210 1210 1210	1.05 ± 0.20 1.90 ± 0.20 2.10 ± 0.20 2.25 ± 0.20 2.50 ± 0.20	2000 1500 2000 2000 1000	4000 8000 8000 4000			
PA MA NA	1220 1632 1706 1706	$\begin{array}{c} 0.80 \pm 0.10 \\ 0.80 \pm 0.10 \\ 0.90 \pm 0.10 \\ 0.90 \pm 0.10 \\ 0.90 \pm 0.10 \end{array}$	4000 4000 4000 4000	10000 10000 10000 10000			
LD LA LB LC GB	1808 1808 1808 1808 1808	$\begin{array}{c} 0.90 \pm 0.10 \\ 1.40 \pm 0.15 \\ 1.60 \pm 0.15 \\ 2.00 \pm 0.15 \\ 1.00 \pm 0.15 \end{array}$	2500 1000 1000 1000 1000	4000 4000 4000 4000 4000			
GC GD GE GH	1812 1812 1812 1812 1812	$\begin{array}{c} 1.00 \pm 0.10 \\ 1.10 \pm 0.10 \\ 1.25 \pm 0.15 \\ 1.30 \pm 0.10 \\ 1.40 \pm 0.15 \end{array}$	1000 1000 1000 1000	4000 4000 4000 4000			
GF GG GK GJ	1812 1812 1812 1812 1812	$\begin{array}{c} 1.50 \pm 0.10 \\ 1.55 \pm 0.10 \\ 1.60 \pm 0.20 \\ 1.70 \pm 0.15 \\ 1.70 \pm 0.20 \end{array}$	1000 1000 1000 1000	4000 4000 4000 4000			
GL GM GO HB HC	1812 1812 1812 1812 1825 1825	$\begin{array}{c} 1.90 \pm 0.20 \\ 2.00 \pm 0.20 \\ 2.50 \pm 0.20 \\ 1.10 \pm 0.15 \\ 1.15 \pm 0.15 \end{array}$	1000 1000 500 1000 1000	4000 4000 2000 4000 4000			
HD HE HF HG JB	1825 1825 1825 1825 1825 2220	$\begin{array}{c} 1.30 \pm 0.15 \\ 1.40 \pm 0.15 \\ 1.50 \pm 0.15 \\ 1.60 \pm 0.20 \\ 1.00 \pm 0.15 \end{array}$	1000 1000 1000 1000 1000	4000 4000 4000 4000 4000			
JC JD JE JF	2220 2220 2220 2220 2220 2220	$\begin{array}{c} 1.10 \pm 0.15 \\ 1.30 \pm 0.15 \\ 1.40 \pm 0.15 \\ 1.50 \pm 0.15 \\ 1.60 \pm 0.20 \end{array}$	1000 1000 1000 1000	4000 4000 4000 4000 4000			
JG JH JO KB	2220 2220 2220 2220 2220 2225	$\begin{array}{c} 1.00 \pm 0.20 \\ 1.70 \pm 0.15 \\ 1.80 \pm 0.15 \\ 2.40 \pm 0.15 \\ 1.00 \pm 0.15 \end{array}$	1000 1000 500 1000	4000 4000 2000 4000			
KC KD KE KF	2225 2225 2225 2225 2225	$\begin{array}{c} 1.10 \pm 0.15 \\ 1.30 \pm 0.15 \\ 1.40 \pm 0.15 \\ 1.60 \pm 0.20 \end{array}$	1000 1000 1000 1000	4000 4000 4000 4000			

Soldering Process

Recommended Soldering Technique:

- Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206
- All other EIA case sizes are limited to solder reflow only

Recommended Soldering Profile

• KEMET recommends following the guidelines outlined in IPC/JEDEC J-STD-020D.1

Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC-7351

EIA Size Code	Metric Size Code	Density Level A: Maximum (Most) Land Protrusion (mm)					Dens Media Land P	sity Lev an (Nor rotrusio	vel B: ninal) on (mm)	Density Level C: Minimum (Least) Land Protrusion (mm)					
		C Y X V1 V2					С	Y	Х	V1	V2	С	Y	Х	V1	V2
0603	1608	0.85	1.25	1.10	4.00	2.10	0.75	1.05	1.00	3.10	1.50	0.65	0.85	0.90	2.40	1.20
0805	2012	1.05	1.45	1.55	4.60	2.60	0.95	1.25	1.45	3.70	2.00	0.85	1.05	1.35	3.00	1.70
1206	3216	1.60	1.65	1.90	5.90	2.90	1.50	1.45	1.80	5.00	2.30	1.40	1.25	1.70	4.30	2.00
1210	3225	1.60	1.65	2.80	5.90	3.80	1.50	1.45	2.70	5.00	3.20	1.40	1.25	2.60	4.30	2.90
1808	4520	2.25	1.85	2.30	7.40	3.30	2.15	1.65	2.20	6.50	2.70	2.05	1.45	2.10	5.80	2.40
1812	4532	2.10	1.80	3.60	7.00	4.60	2.00	1.60	3.50	6.10	4.00	1.90	1.40	3.40	5.40	3.70
1825	4564	2.15	1.80	6.90	7.10	7.90	2.05	1.60	6.80	6.20	7.30	1.95	1.40	6.70	5.50	7.00
2220	5650	2.85	2.10	5.50	8.80	6.50	2.75	1.90	5.40	7.90	5.90	2.65	1.70	5.30	7.20	5.60
2225	5664	2.85	2.10	6.90	8.80	7.90	2.75	1.90	6.80	7.90	7.30	2.65	1.70	6.70	7.20	7.00

Density Level A: For low-density Product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805 and 1206 case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC standard 7351 (IPC-7351).

Table 4 – Performance & Reliability: Test Methods and Conditions

Stress	Reference	Test or Inspection Method
Ripple Current	Heat Generation ΔT : 20°C max.	Reflow solder the capacitor onto a PC board and apply voltage with 10kHz~1Mhz sine curve. (Ripple voltage must be < rated voltage)
Terminal Strength	JIS-C-6429	Appendix 1, Note: Force of 1.8kg for 60 seconds.
Board Flex	JIS-C-6429	Appendix 2, Note: 2mm (min) for all except 3mm for C0G.
		Magnification 50X. Conditions:
Colderability		a) Method B, 4 hrs @ 155°C, dry heat @ 235°C
Solderability	J-STD-002	b) Method B @ 215°C category 3
		c) Method D, category 3 @ 260°C
Temperature Cycling	JESD22 Method JA-104	1000 Cycles (-55°C to +125°C), Measurement at 24 hrs. +/- 2 hrs after test conclusion.
Biased Humidity	MIL-STD-202 Method 103	Load Humidity: 1000 hours 85°C/85%RH and Rated Voltage.Add 100K ohm resistor. Measurement at 24 hrs. +/- 2 hrs after test conclusion.
Diasca Hamary		Low Volt Humidity: 1000 hours 85C°/85%RH and 1.5V.Add 100K ohm resistor. Measurement at 24 hrs. +/- 2 hrs after test conclusion.
Moisture Resistance	MIL-STD-202 Method 106	t = 24 hours/cycle. Steps 7a & 7b not required. Unpowered. Measurement at 24 hrs. +/- 2 hrs after test conclusion.
Thermal Shock	MIL-STD-202 Method 107	-55°C/+125°C. Note: Number of cycles required-300, Maximum transfer time-20 seconds, Dwell time-15 minutes. Air-Air.
High Temperature Life	MIL-STD-202 Method 108	1000 hours at 125°C (85°C for X5R, Z5U and Y5V) with 1.5X rated voltage applied.
Storage Life	MIL-STD-202 Method 108	150°C, 0VDC, for 1000 Hours.
Mechanical Shock	MIL-STD-202 Method 213	Figure 1 of Method 213, Condition F.
Resistance to Solvents	MIL-STD-202 Method 215	Add aqueous wash chemical - OKEM Clean or equivalent.

Tape & Reel Packaging Information

KEMET offers Multilayer Ceramic Chip Capacitors packaged in 8mm, 12mm and 16mm tape on 7" and 13" reels in accordance with EIA standard 481. This packaging system is compatible with all tape fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.

Table 5 – Carrier Tape Configuration (mm)

EIA Case Size	Tape size (W)*	Pitch (P ₁)*
01005 - 0402	8	2
0603 - 1210	8	4
1805 - 1808	12	4
≥ 1812	12	8
KPS 1210	12	8
KPS 1812 & 2220	16	12
Array 0508 & 0612	8	4

*Refer to Figure 1 for W and P₁ carrier tape reference locations. *Refer to Table 6 for tolerance specifications.

Figure 1 – Embossed (Plastic) Carrier Tape Dimensions

Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

Constant Dimensions — Millimeters (Inches)														
Tape Size	D ₀	D ₁ Min. Note 1	E ₁	P ₀	P ₂	R Ref. Note 2	S₁ Min. Note 3	T Max.	T ₁ Max.					
8mm		1.0 (0.039)				25.0 (0.984)								
12mm	1.5 +0.10/-0.0 (0.059 +0.004/-0.0)	1.5	$\begin{array}{c} 1.75 \pm 0.10 \\ (0.069 \pm 0.004) \end{array}$	4.0 ± 0.10 (0.157 ± 0.004)	2.0 ± 0.05 (0.079 ± 0.002)	30	0.600 (0.024)	0.600 (0.024)	0.100 (0.004)					
16mm		(0.059)				(1.181)								
	Variable Dimensions — Millimeters (Inches)													
Tape Size	Pitch	B₁ Max. Note 4	E ₂ Min.	F	P ₁	T ₂ Max	W Max	A ₀ ,B	. & K o					
8mm	Single (4mm)	4.35 (0.171)	6.25 (0.246)	3.5 ± 0.05 (0.138 ± 0.002)	4.0 ± 0.10 (0.157 ± 0.004)	2.5 (0.098)	8.3 (0.327)							
12mm	Single (4mm) & Double (8mm)	8.2 (0.323)	10.25 (0.404)	5.5 ± 0.05 (0.217 ± 0.002)	8.0 ± 0.10 (0.315 ± 0.004)	4.6 (0.181)	12.3 (0.484)	No	te 5					
16mm	Triple (12mm)	12.1 (0.476)	14.25 (0.561)	5.5 ± 0.05 (0.217 ± 0.002)	8.0 ± 0.10 (0.315 ± 0.004)	4.6 (0.181)	16.3 (0.642)							

1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.

2. The tape with or without components shall pass around R without damage (see Figure 5).

3. If S₁<1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Document 481 paragraph 4.3 (b)).

4. B1 dimension is a reference dimension for tape feeder clearance only.

5. The cavity defined by A_{α} , B_{α} and K_{α} shall surround the component with sufficient clearance that:

(a) the component does not protrude above the top surface of the carrier tape.

(b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

(c) rotation of the component is limited to 20° maximum for 8 and 12mm tapes and 10° maximum for 16mm tapes (see Figure 3).

(d) lateral movement of the component is restricted to 0.5 mm maximum for 8mm and 12mm wide tape and to 1.0mm maximum for 16mm tape (see Figure 4).

(e) for KPS Series product A_0 and B_0 are measured on a plane 0.3mm above the bottom of the pocket.

(f) see Addendum in EIA Document 481 for standards relating to more precise taping requirements.

Figure 2 – Punched (Paper) Carrier Tape Dimensions

Table 7 – Punched (Paper) Carrier Tape Dimensions

Metric will govern

Constant Dimensions — Millimeters (Inches)														
Tape Size	D ₀	E ₁	P ₀	P ₂	T₁Max	G Min	R Ref. Note 2							
8mm	1.5 +0.10-0.0 (0.059 +0.004, -0.0)	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	0.10 (.004) Max.	0.75 (.030)	25 (.984)							
Variable Dimensions — Millimeters (Inches)														
Tape Size	Pitch	E2 Min	F	P ₁	T Max	W Max	A ₀ B ₀							
8mm	Half (2mm)	6.25	3.5 ± 0.05	2.0 ± 0.05 (0.079 ± 0.002)	1.1	8.3 (0.327)	Noto 5							
8mm	Single (4mm)	(0.246)	(0.138 ± 0.002)	4.0 ± 0.10 (0.157 ± 0.004)	(0.098)	8.3 (0.327)	NOLE 3							

1. The cavity defined by A_{α} , B_{α} and T shall surround the component with sufficient clearance that:

a) the component does not protrude beyond either surface of the carrier tape.

b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4).

e) see Addendum in EIA Document 481 for standards relating to more precise taping requirements.

2. The tape with or without components shall pass around R without damage (see Figure 5).

Packaging Information Performance Notes

1. Cover Tape Break Force: 1.0 Kg Minimum.

2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

Tape Width	Peel Strength
8mm	0.1 Newton to 1.0 Newton (10g to 100g)
12mm & 16mm	0.1 Newton to 1.3 Newton (10g to 130g)

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300±10 mm/minute.

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556 and EIA-624.

Figure 3 – Maximum Component Rotation

Figure 4 – Maximum Lateral Movement

Figure 5 – Bending Radius

Figure 6 – Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.

Table 8 – Reel Dimensions

Metric Dimensions Will Govern

Constant Dimensions — Millimeters (Inches)						
Tape Size	A	B Min	С	D Min		
8mm	178 ± 0.20					
12mm	or	1.5 (0.059)	13.0 +0.5/-0.2 (0.521 +0.02/-0.008)	20.2 (0.795)		
16mm	330 ± 0.20 (13.000 ± 0.008)					
	Variable Dimensions — Millimeters (Inches)					
Tape Size	N Min	W ₁	W ₂ Max	W ₃		
8mm		8.4 +1.5/-0.0 (0.331 +0.059/-0.0)	14.4 (0.567)			
12mm	50	12.4 +2.0/-0.0	18.4	Shall accommodate tape width		
16mm	(1.303)	16.4 +2.0/-0.0 (0.646 +0.078/-0.0)	22.4 (0.882)			

Figure 7 – Tape Leader & Trailer Dimensions

Figure 8 – Maximum Camber

Figure 9 – Bulk Cassette Packaging (Ceramic Chips Only)

Meets Dimensional Requirements IEC-286 and EIAJ 7201 Unit mm *Reference

Table 9 – Capacitor Dimensions for Bulk Cassette

Cassette Packaging – Millimeters

EIA Size Code	Metric Size Code	L Length	W Width	B Bandwidth	S Separation minimum	T Thickness	Number of Pcs/Cassette
0402	1005	1.0 ± 0.05	0.5 ± 0.05	0.2 to 0.4	0.3	0.5 ± .05	50,000
0603	1608	1.6 ± 0.07	0.8 ± 0.07	0.2 to 0.5	0.7	0.8 ± .07	15,000

Table 10 – Capacitor Marking

Laser marking is available as an extra-cost option for most KEMET ceramic chips. Such marking is two sided, and includes a K to identify KEMET, followed by two characters (per EIA-198) to identify the capacitance value. Note that marking is not available for any Y5V chip. In addition, the 0603 marking option is limited to the K only. (Marking Optional – Not Available for 0402 Size)

Numeral Alpha	Capacitance (pF) For Various Numeral Identifiers								
Character	9	0	1	2	3	4	5	6	7
A	0.1	1	10	100	1000	10000	100000	1000000	1000000
В	0.11	1.1	11	110	1100	11000	110000	1100000	11000000
С	0.12	1.2	12	120	1200	12000	120000	1200000	12000000
D	0.13	1.3	13	130	1300	13000	130000	1300000	13000000
E	0.15	1.5	15	150	1500	15000	150000	1500000	15000000
F	0.16	1.6	16	160	1600	16000	160000	1600000	16000000
G	0.18	1.8	18	180	1800	18000	180000	1800000	18000000
Н	0.2	2	20	200	2000	20000	200000	2000000	2000000
J	0.22	2.2	22	220	2200	22000	220000	2200000	22000000
K	0.24	2.4	24	240	2400	24000	240000	2400000	24000000
L	0.27	2.7	27	270	2700	27000	270000	2700000	27000000
М	0.3	3	30	300	3000	30000	300000	3000000	3000000
N	0.33	3.3	33	330	3300	33000	330000	3300000	33000000
Р	0.36	3.6	36	360	3600	36000	360000	3600000	36000000
Q	0.39	3.9	39	390	3900	39000	390000	3900000	39000000
R	0.43	4.3	43	430	4300	43000	430000	4300000	43000000
S	0.47	4.7	47	470	4700	47000	470000	4700000	47000000
Т	0.51	5.1	51	510	5100	51000	510000	5100000	51000000
U	0.56	5.6	56	560	5600	56000	560000	5600000	56000000
V	0.62	6.2	62	620	6200	62000	620000	6200000	62000000
W	0.68	6.8	68	680	6800	68000	680000	6800000	68000000
Х	0.75	7.5	75	750	7500	75000	750000	7500000	75000000
Y	0.82	8.2	82	820	8200	82000	820000	8200000	82000000
Z	0.91	9.1	91	910	9100	91000	910000	9100000	91000000
а	0.25	2.5	25	250	2500	25000	250000	2500000	25000000
b	0.35	3.5	35	350	3500	35000	350000	3500000	35000000
d	0.4	4	40	400	4000	40000	400000	4000000	4000000
e	0.45	4.5	45	450	4500	45000	450000	4500000	45000000
f	0.5	5	50	500	5000	50000	500000	5000000	5000000
m	0.6	6	60	600	6000	60000	600000	6000000	6000000
n	0.7	7	70	700	7000	70000	700000	7000000	7000000
t	0.8	8	80	800	8000	80000	800000	8000000	80000000
у	0.9	9	90	900	9000	90000	900000	9000000	90000000

KA3

Example shown is 1,000 pF capacitor

Other KEMET Resources

Tools		
Resource	Location	
Configure A Part: CapEdge	http://capacitoredge.kemet.com	
SPICE & FIT Software	http://www.kemet.com/spice	
Search Our FAQs: KnowledgeEdge	http://www.kemet.com/keask	

Product Information		
Resource	Location	
Products	http://www.kemet.com/products	
Technical Resources (Including Soldering Techniques)	http://www.kemet.com/technicalpapers	
RoHS Statement	http://www.kemet.com/rohs	
Quality Documents	http://www.kemet.com/qualitydocuments	

Product Request		
Resource	Location	
Sample Request	http://www.kemet.com/sample	
Engineering Kit Request	http://www.kemet.com/kits	

Contact		
Resource	Location	
Website	www.kemet.com	
Contact Us	http://www.kemet.com/contact	
Investor Relations	http://www.kemet.com/ir	
Call Us	1-877-MyKEMET	
Twitter	http://twitter.com/kemetcapacitors	

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") are subject to change without notice.

All Information given herein is believed to be accurate and reliable, but is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on our knowledge of typical operating conditions for such applications, but are not intended to constitute – and we specifically disclaim – any warranty concerning suitability for a specific customer application or use. This Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by us with reference to the use of our products is given gratis, and we assume no obligation or liability for the advice given or results obtained.

Although we design and manufacture our products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.

KEMET Corporation World Headquarters

P.O. Box 5928 Greenville, SC 29606 2835 KEMET Way Simpsonville, SC 29681 www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

North America

Corporate Offices

101 NE Third Avenue Tower 101, Suite 1700 Fort Lauderdale, FL 33301 Tel: 954-766-2800 Fax: 954-766-2805

Southeast

801 International Parkway, Suite 5070 Lake Mary, FL 32746 Tel: 407-855-8886

Northeast

340-X Fordham Road Wilmington, MA 01887 Tel: 978-658-1663 Fax: 978-658-1790

Central

1900 North Roselle Road, Suite 405 Schaumburg, IL 60195 Tel: 847-882-3590 Fax: 847-882-3046

West

1551 McCarthy Boulevard, Suite 117 Milpitas, CA 95035 Tel: 408-433-9946 Fax: 408-433-9946

Mexico

Tezozomoc No. 47 Col. Ciudad del Sol Zapopan, Jalisco C.P. 45050 Mexico Tel: 52-33-3123-2141 Fax: 52-33-3123-2144

Europe

Southern Europe 15bis chemin des Mines, 4th floor 1202 Geneva Switzerland Tel: 41-22-715-0100 Fax: 41-22-715-0170

Zac Paris Rive Gauche 118-122 avenue de France 75013 Paris France Tel: 33-1-4646-1009 Fax: 33-1-4646-1599

Via San Lorenzo 19 Sasso Marconi, BO 40037 Italy Tel: 39-051-939111 Fax: 39-051-840684

Viale Milanofiori 1 Palazzo E1 20090 Assago Milano Italy Tel: 39-02-57518176 Fax: 39-02-57512093

Central Europe

Hermann-Koehl-Str. 2 Landsberg am Lech 86899 Germany Tel: 49-8191-3350800 Fax: 49-8191-3350990

Ruhrallee 9 Dortmund 44139 Germany Tel: 49-2307-3619672 Fax: 49-2307-961527

Northern Europe

Unit 1, Ducketts Wharf South Street Bishops Stortford Hertfordshire CM23 3AL United Kingdom Tel: 44-1279-757201 Fax: 44-1279-465237 20-21 Cumberland Drive Granby Industrial Estate Weymouth, Dorset DT4 9TE United Kingdom Tel: 44-1305-830747 Fax: 44-1305-760670

Thörnblads Väg 6 Färjestaden 386 90 Sweden Tel: 46-485-563934 Fax: 46-485-563938

Stella Business Park Lars Sonckin kaari 16 Espoo 02600 Finland Tel: 358-9-5406-5000 Fax: 358-9-5406-5010

Asia

Northeast Asia

30 Canton Road, Room 1512 Silvercord Tower II Tsimshatshui, Kowloon Hong Kong Tel: 852-2305-1168 Fax: 852-2759-0345

Room 1411, 14/F New China Insurance Edifice Mintian Road, CBD Futian District Shenzhen 518001 China Tel: 1-867-55-25181306 Fax: 1-867-55-25181307

Floor 17, Tower B, Ping An IFC No.1-3 Xin Yuan South Road Chao Yang District Beijing 100027 China Tel: 86-10-5829-1711 Fax: 86-10-5829-1963

Room 2602, Grand Gateway Tower 1 No.1 Hong Qiao Road Shanghai 200030 China Tel: 86-21-6447-0707 Fax: 86-21-6447-0070 Room 305, Floor 3, #142 Sec. 4, Chung Hsiao East Road Taipei 106 Taiwan ROC Tel: 886-2-27528585 Fax: 886-2-27213129

Southeast Asia

73 Bukit Timah Road #05-01 Rex House 229832 Singapore Tel: 65-6586-1900 Fax: 65-6586-1901

1-5-20 Krystal Point 2 Lebuh Bukit Kecil 6 11900 Bayan Baru Penang Malaysia Tel: 6-04-6430200 Fax: 6-04-6444220

Office No. 605, 6th Floor Barton Centre M.G. Road Bangalore 560 001 India Tel: 91-80-653-76817 Fax: 91-80-2532-0160

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.

