To: DIGI-KEY

lssue No.	: CE-VHDA4-CE-0-2						
Date of Issue	: October 24, 2008						
Classification	: New , Changed						

.

PRODUCT SPECIFICATION FOR APPROVAL

Product Description Customer Part Number	: Aluminum Electrolytic Capacitor :
Product Part Number	: V type HD series (High. temp. Pb free reflow type)
Country of Origin Applications	: Japan (Printed on the packaging label) : It has the intention of being used for a general electronic circuit given in a notice matter (limitation of a use). On the occasion of application other than the above, even person in charge of our company needs to inform in advance.

※ If you approve this	specification,	please	fill in	and	sign	the	below	and	return	1copy	to	us.
Approval No	:											
Approval Date	:											
Executed by	:											
	(się	gnature)										
Title	:											
Dept.	:			•	·					-		

Prepared by Capacitor Business Unit : Panasonic Electronic Devices Japan Co.,Ltd. Panasonic Electronic Devices Co.,Ltd. **Aluminum Capacitor Division** Contact Person **Engineering Team** 25.Kohata-nishinaka, Uji City, Signature 1 Kyoto, 611-8585, Japan Name(Print) T Phone :+81-774-32-1111 Title Kunito Inagaki Checked by : Engineer Phone :+81-774-33-3209(Direct) Signature : :+81-774-32-3189 Fax Name(Print) Title Hiroshi Kurimoto Authorized by : Manager Signature Name(Print) : Title Yuji Midou

: General Manager of Engineering

Revision Record

Customer Part No.	Product Part No.	Note
	V type HD series (High. temp. Pb free reflow type)	Guideline-ALV-S2-3

No.	Pg	Revised Date	Enforce Date	Contents	Approval	Accepted No.
Initia	l Date	e October	24, 2008	New	YNE	
\square						
\square						
\square						
\square						
\square						
\square						
\square						
\square						
\square						
\square						
\square						
\square						
\square		ļ				
\square						
\square						
\square						
\bigtriangleup						

,

Produc	ct Specificatio	٦	CE-VHDA4-CE-0-2
V type HD sereis	(High. temp. Pb free	reflow type)	Page No. Contents
<u>Contents</u>			
Notice matter		P.1	
Scope		P.2	
Parts Number		P.2	
Parts Lists		P.3 ~ P.4	
Can Size Table		P.5	
Dimensions		P.6	
Constructions		P.7	
Marking		P.7	
Lot No. System		P.8	
Standard Rating		P.9	
Performance Character	istics	P.10 ~ P.13	
Other Characteristics		P.13	
Reflow Soldering and Te	emperature Profile	P.14	
Taping Shape and Dime	ensions	P.15 ~ P.16	
Carrier Tape Packing M	ethod	P.17 ~ P.18	
Package Label Example	e	P.19	
Application Guidelines		Guidelines-1 ~ 4	

Proc	duct Specification	CE-VHDA4-CE-0-2
V type HD sere	eis (High. temp. Pb free reflow type)	1
Notice matter		
Law and regulation which are	e applied	
 This product complies with Substances in electrical an 	the RoHS Directive (Restriction of the use of certain Hazardon electronic equipment (DIRECTIVE 2002/95/EC).	JUS
 No Ozone Depleting Chem are used in producing this 	nicals(ODC's), controlled under the Montreal Protocol Agreem product.	ent,
\cdot We do not PBBs or PBDEs	s as brominated flame retardants.	
 All the materials that are us "Law Concerning the Exar 	sed for this product are registered as "Known Chemicals" in the mination and Regulation of Manufacture, etc. of Chemical Sul	le Japanese act bstances".
	llowed export related regulations, such as foreign exchange a sion of export of this product Thank you for your consideration	5
 Limitation of a use 		
home appliances, compute and industrial robots. High reliability and safety a	to be used for electronics circuits such as audio/visual equipners and other office equipment, optical equipment, measuring are required [be / a possibility that incorrect operation of this poperty] more. When use is considered by the use, the delivery	equipment product may do
which suited the use separ	ately need to be exchanged.	
 Unless otherwise specified, t 	the product shall conform to JIS 5101-18-2	
 Country of origin : JAPAN 		
12	nasonic Electronic Devices Japan Co., Ltd. 85, Sakutaguchi, Asada,Yamaguchi City, Yamaguchi 3-8536 Japan	

V	type HD sereis	(High	. temp.	Pb free	reflow	type)			2					
	acitors for use in electro olid electrolyte.	onic equi	pment, S	Surface M	lount Typ	be Alumir	num elec	trolytic c	apacitors					
2. Parts num	ber													
<u>EEE</u> 2-1	<u>HD</u> <u>OO</u> <u>OO</u> 2-2 2-3 2-4	<u>○ △</u> 2-	<u>∆A □</u> •5 2-6											
•2-1	Surface Mount Type A	Numinun	n Electro	lytic Cap	acitor (Le	ead-Free	Product	s.)						
•2-2	HD series													
•2-3	Rated Voltage Code													
	Voltage code	0J	1A	1C	1E	1V	1H	1J	2A					
	Rated voltage(V.DC)		10	16	25	35	50	63	100					
·2-5	ex. $0.1\mu F \rightarrow R10$, A : High temperatu XA : High temperatu	ire reflov	v type (6.	.3V∼35V		ui /	,	, h u ,	,2					
	* Due to the method we have eliminate	l used by d "1" froi	y our con m the tap	npany to bing part i	numbers		art numb	ers,						
	ex. EEEHD1V33	0XAP –	→ EEEHD)V330XA	Ρ									
		Suffix Code for Appearance: Taping Code												
•2-6	· · · ·							R12.0mm width (Size code " $B \sim C$ ")16.0mm width (Size code "D,D $8 \sim E$ ")						
•2-6	R 12.0mm v	vidth (Si	ize code	"B∼C")										
•2-6	R 12.0mm v	vidth (Si vidth (Si	ize code ize code	"B~C") "D,D8~	E")									
·2-6	R 12.0mm v P 16.0mm v	vidth (Si vidth (Si vidth (Si	ize code ize code ize code	"B~C") "D,D8~ "F~G")	E")									
•2-6	R 12.0mm v P 16.0mm v 24.0mm v	vidth (Si vidth (Si vidth (Si	ize code ize code ize code	"B~C") "D,D8~ "F~G")	E")									
•2-6	R 12.0mm v P 16.0mm v 24.0mm v	vidth (Si vidth (Si vidth (Si	ize code ize code ize code	"B~C") "D,D8~ "F~G")	E")									

CE-VHDA4-CE-0-2

V type HD sereis (High. temp. Pb free reflow type)

3

Impedance Rated Ripple Current

Leakage

Parts lists					
				Tangent of	
Size	Taping Part No.	R.V.	Cap.	Loss Angle	
Code		[V.DC]	[µF]	(tanδ)	
				max.	
			(120Hz)	(120Hz)	(
			(20°C)	(20°C)	
F	EEEHD0J331AP	6.3	330	0.30	
G	EEEHD0J102AP	6.3	1000	0.50	
E	EEEHD1A101AR	10	100	0.30	
F	EEEHD1A221AP	10	220	0.30	
G	EEEHD1A331AP	10	330	0.30	
					Г

DOJ331AP DOJ331AP DOJ102AP D1A101AR D1A221AP D1A331AP D1C100AR D1C220AR D1C220AR D1C470AP D1C101AP D1C221AP D1C471AP	[V.DC] 6.3 6.3 10 10 10 10 10 10 10 16 16 16 16	Cap. [µF] (120Hz) (20°C) 330 1000 220 330 100 220 330 10 22 47 100	Loss Angle (tanō) max. (120Hz) (20°C) 0.30 0.50 0.30 0.30 0.30 0.30 0.20 0.20 0.20 0.2	Current [µA] max. (After 2min.) 20.7 63.0 10.0 22.0 33.0 3.0 3.0 3.5 7.5	1.5 0.8 2.0 1.5 0.8 12.0 7.2	[mA rms] max. (120Hz) (150°C) 230 313 62 62 160 238 28 39
D0J102AP D1A101AR D1A221AP D1A331AP D1C100AR D1C220AR D1C220AR D1C470AP D1C101AP D1C221AP	6.3 6.3 10 10 10 10 10 10 16 16 16 16 16	(120Hz) (20°C) 330 1000 220 330 10 220 330 10 22 47 100	max. (120Hz) (20°C) 0.30 0.50 0.30 0.30 0.30 0.30 0.20 0.20	max. (After 2min.) 20.7 63.0 10.0 22.0 33.0 3.0 3.0 3.5	(100kHz) (20°C) 1.5 0.8 2.0 1.5 0.8 12.0 7.2	(120Hz) (150°C) 230 313 62 62 160 238 28
D0J102AP D1A101AR D1A221AP D1A331AP D1C100AR D1C220AR D1C220AR D1C470AP D1C101AP D1C221AP	6.3 10 10 10 10 16 16 16 16 16 16	(20°C) 330 1000 100 220 330 10 22 47 100	(120Hz) (20°C) 0.30 0.50 0.30 0.30 0.30 0.30 0.20 0.20	(After 2min.) 20.7 63.0 10.0 22.0 33.0 3.0 3.0 3.5	(20°C) 1.5 0.8 2.0 1.5 0.8 12.0 7.2	(150°C) 230 313 62 160 238 28
D0J102AP D1A101AR D1A221AP D1A331AP D1C100AR D1C220AR D1C220AR D1C470AP D1C101AP D1C221AP	6.3 10 10 10 10 16 16 16 16 16 16	(20°C) 330 1000 100 220 330 10 22 47 100	(20°C) 0.30 0.50 0.30 0.30 0.30 0.20 0.20 0.20	20.7 63.0 10.0 22.0 33.0 3.0 3.5	1.5 0.8 2.0 1.5 0.8 12.0 7.2	230 313 62 160 238 28
D0J102AP D1A101AR D1A221AP D1A331AP D1C100AR D1C220AR D1C220AR D1C470AP D1C101AP D1C221AP	6.3 10 10 10 10 16 16 16 16 16 16	330 1000 220 330 10 22 47 100	0.30 0.50 0.30 0.30 0.30 0.20 0.20 0.20	63.0 10.0 22.0 33.0 3.0 3.5	0.8 2.0 1.5 0.8 12.0 7.2	313 62 160 238 28
D0J102AP D1A101AR D1A221AP D1A331AP D1C100AR D1C220AR D1C220AR D1C470AP D1C101AP D1C221AP	6.3 10 10 10 10 16 16 16 16 16 16	1000 100 220 330 10 22 47 100	0.50 0.30 0.30 0.30 0.20 0.20 0.20	63.0 10.0 22.0 33.0 3.0 3.5	0.8 2.0 1.5 0.8 12.0 7.2	313 62 160 238 28
D1A101AR D1A221AP D1A331AP D1C100AR D1C220AR D1C220AR D1C470AP D1C101AP D1C221AP	10 10 10 16 16 16 16 16 16	100 220 330 10 22 47 100	0.30 0.30 0.30 0.20 0.20 0.20	10.0 22.0 33.0 3.0 3.5	2.0 1.5 0.8 12.0 7.2	62 160 238 28
D1A221AP D1A331AP D1C100AR D1C220AR D1C470AP D1C101AP D1C221AP	10 10 16 16 16 16 16	220 330 10 22 47 100	0.30 0.30 0.20 0.20 0.20	22.0 33.0 3.0 3.5	1.5 0.8 12.0 7.2	160 238 28
D1A221AP D1A331AP D1C100AR D1C220AR D1C470AP D1C101AP D1C221AP	10 10 16 16 16 16 16	220 330 10 22 47 100	0.30 0.30 0.20 0.20 0.20	22.0 33.0 3.0 3.5	1.5 0.8 12.0 7.2	160 238 28
D1A331AP D1C100AR D1C220AR D1C470AP D1C101AP D1C221AP	10 16 16 16 16 16	330 10 22 47 100	0.30 0.20 0.20 0.20	33.0 3.0 3.5	0.8 12.0 7.2	238
D1C100AR D1C220AR D1C470AP D1C101AP D1C221AP	16 16 16 16 16	10 22 47 100	0.20 0.20 0.20	3.0 3.5	12.0 7.2	28
D1C220AR D1C470AP D1C101AP D1C221AP	16 16 16 16	22 47 100	0.20 0.20	3.5	7.2	
D1C220AR D1C470AP D1C101AP D1C221AP	16 16 16 16	22 47 100	0.20 0.20	3.5	7.2	
D1C470AP D1C101AP D1C221AP	16 16 16	47 100	0.20			39
D1C101AP D1C221AP	16 16	100		7.5	4.0	
D1C221AP	16		0.20		4.0	70
			0.20	16.0	1.5	130
		220	0.20	35.2	0.8	220
0104/IAP	16	470	0.20	75.2	0.8	340
D1E4R7AF	25	4.7	0.16	3.0	12.0	17
D1E100AR	25	10	0.16	3.0	7.2	28
D1E220AP	25	22	0.16	5.5	4.0	55
D1E330AP	25	33	0.16	8.2	4.0	55
D1E470AP	25	47	0.18	11.7	2.0	56
D1E101AP	25	100	0.16	25.0	1.5	130
D1E331AP	25	330	0.16	82.5	0.8	238
D1V4R7AF	35	4.7	0.13	3.0	12.0	17
		10	0.13	3.5	7.2	28
D1V220AP	35	22	0.13	7.7	4.0	55
D1V330AP	35	33	0.16	11.5	2.0	53
DV330XAP	35	33	0.13	11.5	2.0	57
	35	47	0.14	16.4	2.0	57
DV470XAP	35	47	0.14	16.4	1.5	79
	35	100	0.14	35.0	0.8	101
D1V470AP		220	0.14	77.0	0.8	220
[D1V220AP D1V330AP DV330XAP DV470XAP D1V470AP	D1V220AP 35 D1V330AP 35 DV330XAP 35 DV470XAP 35 D1V470AP 35 D1V470AP 35 D1V470AP 35	D1V220AP 35 22 D1V330AP 35 33 DV330XAP 35 33 DV470XAP 35 47 D1V470AP 35 47	D1V220AP35220.13D1V330AP35330.16DV330XAP35330.13DV470XAP35470.14D1V470AP35470.14D1V101AP351000.14	D1V220AP35220.137.7D1V330AP35330.1611.5DV330XAP35330.1311.5DV470XAP35470.1416.4D1V470AP35470.1416.4D1V101AP351000.1435.0	D1V220AP35220.137.74.0D1V330AP35330.1611.52.0DV330XAP35330.1311.52.0DV470XAP35470.1416.42.0D1V470AP35470.1416.41.5D1V101AP351000.1435.00.8

CE-VHDA4-CE-0-2

V type HD sereis (High. temp. Pb free reflow type)

4

				Tangent of	Leakage	Impedance	Rated Ripple Current
Size	Taping Part No.	R.V.	Cap.	Loss Angle	Current	[Ω]	[mA rms]
Code		[V.DC]	[µF]	(tanδ)	[µA]	max.	max.
				max.	max.	(100kHz)	(120Hz)
			(120Hz)	(120Hz)	(After 2min.)	(20°C)	(105°C)
			(20°C) (20°C)		
В	EEEHD1HR47R	50	0.47	0.12	3.0	12.0	5
В	EEEHD1H1R0R	50	1	0.12	3.0	12.0	7
В	EEEHD1H2R2R	50	2.2	0.12	3.0	12.0	12
В	EEEHD1H3R3R	50	3.3	0.12	3.0	12.0	16
С	EEEHD1H4R7R	50	4.7	0.12	3.0	7.2	21
D	EEEHD1H100P	50	10	0.12	5.0	4.0	33
Е	EEEHD1H220P	50	22	0.14	11.0	2.0	50
F	EEEHD1H330P	50	33	0.14	16.5	1.5	74
G	EEEHD1H470P	50	47	0.14	23.5	0.8	94
E	EEEHD1J100P	63	10	0.18	6.3	2.0	45
F	EEEHD1J220P	63	22	0.18	13.8	1.5	65
G	EEEHD1J330P	63	33	0.18	20.7	0.8	80
Е	EEEHD2A3R3P	100	3.3	0.18	3.3	2.0	30
F	EEEHD2A4R7P	100	4.7	0.18	4.7	1.5	50
F	EEEHD2A100P	100	10	0.18	10.0	1.5	55
G	EEEHD2A220P	100	22	0.18	22.0	0.8	70

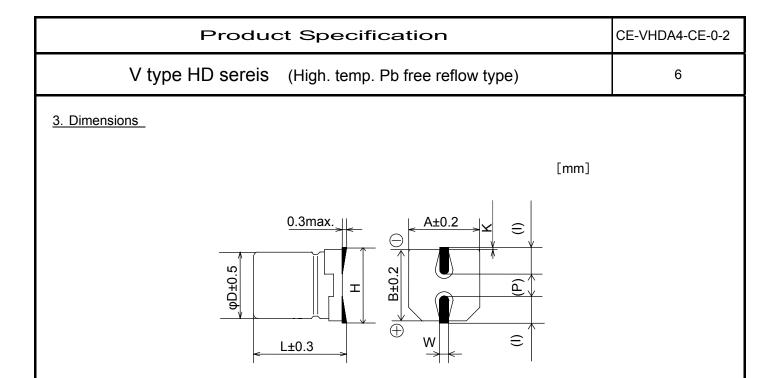
Product Specification	CE-VHDA4-CE-0-2	
V type HD sereis (High. temp. Pb free reflow type)	5	

Can Size [Size code]

V.DC	6.3	10	16	25	35	50	63	100
Cap.(µF)								
0.47						В		
1						В		
2.2						В		
3.3						В		E
4.7				В	В	С		F
10			В	С	С	D	E	F
22			С	D	D	E	F	G
33				D	D8, E	F	G	
47			D	E	D8, F	G		
100		E	F	F	G			
220		F	G		G			
330	F	G		G				
470			G					
1000	G							

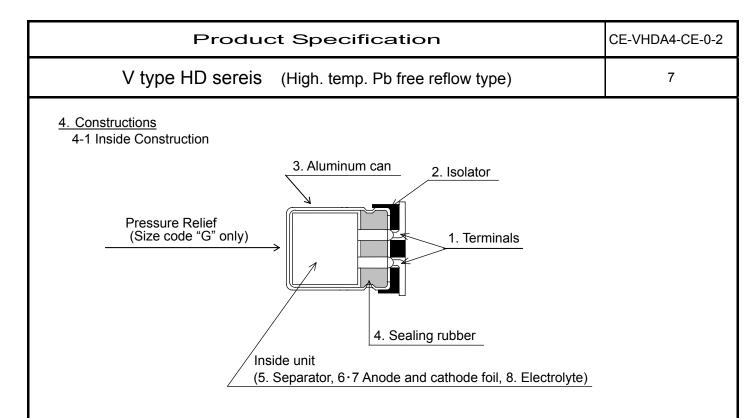
[m m]

Size Code B: $\phi 4 \times 5.8L$


C: φ5×5.8L

D: φ6.3×5.8L

D8: φ6.3×7.7L

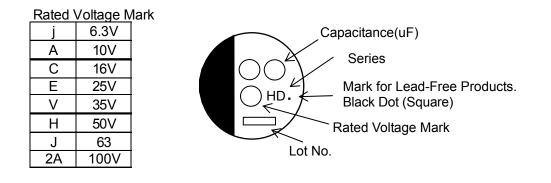

E: φ8×6.2L F: φ8×10.2L

G: φ10×10.2L

() Reference size

								[mm]
Size Code	D	L	A,B	Н		W	Р	K
В	4.0	5.8	4.3	5.5m ax	1.8	0.65±0.1	1.0	0.35 +0.15 -0.20
С	5.0	5.8	5.3	6.5max	2.2	0.65±0.1	1.5	0.35 +0.15 -0.20
D	6.3	5.8	6.6	7.8max	2.6	0.65±0.1	1.8	0.35 +0.15 -0.20
D8	6.3	7.7	6.6	7.8max	2.6	0.65±0.1	1.8	0.35 +0.15 -0.20
E	8.0	6.2	8.3	9.5m ax	3.4	0.65±0.1	2.2	0.35 +0.15 -0.20
F	8.0	10.2	8.3	10.0max	3.4	0.90±0.2	3.1	0.70±0.2
G	10.0	10.2	10.3	12.0max	3.5	0.90±0.2	4.6	0.70±0.2

4-2 Construction parts


	Parts	Materials		Parts	Materials
1	Terminal	Bi contained tin plated Tinned Copper-Clad Steel wire	5	Separator	Cellulose
2	Isolator	Thermo-plastic Resin	6	Anode Foil	High Purity Aluminum Foil
3	Aluminum Can	Aluminum	7	Cathode Foil	Aluminum Foil
4	Sealing Rubber	Synthetic rubber (IIR)	8	Electrolyte	Organic Solvent,Organic Acid (No Quaternary Salt)

5. Marking

Marking Color : BLACK

Following items shall be marked on the body of Capacitor.

- a) Rated Voltage Mark
- b) Capacitance
- c) Negative Polarity
- d) Series Mark
- e) Lot No. (It indicates to Lot No. System)
- f) Mark for Lead-Free Products.

Product Spe	cificatio	'n	CE-VHDA4-CE-0-2				
LOT No. S	LOT No. SYSTEM						
mont	g that the proc	duct was produced in Aug. 20 or October, N for November, D for (A to Z)					
production year 7:2007 8:2008 9:2009 Indicating with the last digit of a year.	produc 1:January 2:February 3:March 4:April 5:May 6:June	tion month 7:July 8:August 9:September O:October N:November D:December					

Product Specification	CE-VHDA4-CE-0-2
V type HD sereis (High. temp. Pb free reflow type)	9

6. Standard rating

N⁰	Item		Ratings								
1	Category Temperature Range				-40°(C ~ +	105°C				
2	Rated Voltage Range	6.3 V.DC ~ 100 V.DC									
3	Capacitance Range	$0.47 \ \mu F \ \sim 1000 \ \mu F $ (120Hz 20°C)									
4	Capacitance Tolerance	±20% (120Hz 20°C)									
5	Surge Voltage	R.V.	6.3	10	16	25	35	50	63	100	
	(V.DC)	S.V.	8	13	20	32	44	63	79	125	
6	Rated Ripple Current	Part lists and Table 2									

Product Specification	CE-VHDA4-CE-0-2
V type HD sereis (High. temp. Pb free reflow type)	10

2 Capacitance Within the specified capacitance tolerance. Measuring Freque Measuring Circuit Measuring Voltage 3 Tangent of Loss Angle (tan δ) Less than the part lists. Measuring Freque Measuring Voltage 4 Charact- eristics at High and Low Tem- perature Step 2 Impedance Ratio: Less than the table 1 value of item 8 ratio against step 1. Step Test Te 1 2 -25 3 2 -25 3 5 Surge Leakage Current: Step 4 Impedance Ratio: Less than the table 1 value of item 7.1. 5 Surge Leakage Current: Step 4 Tangent of Loss Angle (tanδ): Step 4 Impedance should	Rated voltage After 2 minutes ncy : 120Hz± : Equivalent e : +1.5 V.DC (≦0.5 V for ncy : 120Hz± : Equivalent	20% series circuit ~ +2 V.DC A.C.) 20% series circuit ~ +2 V.DC		
greater. Applied Voltage : Measuring : 2 Capacitance Within the specified capacitance tolerance. Measuring Freque Measuring Circuit Measuring Voltage 3 Tangent of Loss Angle (tan δ) Less than the part lists. Measuring Freque Measuring Voltage 4 Charact- eristics at High and Low Tem- perature Step 2 Leskage Current: Step 4 Leakage Current: Step 2 (the value of item 7.1. Capacitance Change: Within ±25% of the value in step 1. Tangent of Loss Angle (tanδ): Surge Step 4 Leakage Current: Step 4 (tanδ) 5 Surge Leakage Current: Step 4 (tanδ) Tangent of Loss Angle (tanδ): Step 4 (tanδ)	Rated voltage After 2 minutes ncy : 120Hz± : Equivalent : = +1.5 V.DC (\leq 0.5 V for ncy : 120Hz± : Equivalent : = +1.5 V.DC (\leq 0.5 V for	20% series circuit $\sim +2 V.DC$ A.C.) 20% series circuit $\sim +2 V.DC$		
2 Capacitance Within the specified capacitance tolerance. Measuring Freque Measuring Circuit Measuring Voltage 3 Tangent of Loss Angle (tan δ) Less than the part lists. Measuring Freque Measuring Circuit Measuring Voltage 4 Charact-eristics at High and Low Tem-Step 4 perature Lesk tage Current: ≤500% of the value of item 7.1. Step 1 5 Surge Leakage Current: ≤the value of item 7.3. Tangent of Loss Angle (tan 5): Impedance should	After 2 minutes ncy : 120Hz+ : Equivalent e : +1.5 V.DC (≤ 0.5 V for ncy : 120Hz+ : Equivalent e : +1.5 V.DC (≤ 0.5 V for	20% series circuit $\sim +2 V.DC$ A.C.) 20% series circuit $\sim +2 V.DC$		
2 Capacitance Within the specified capacitance tolerance. Measuring Freque Measuring Circuit Measuring Voltage 3 Tangent of Loss Angle (tan δ) Less than the part lists. Measuring Freque Measuring Voltage 4 Charact- (tan δ) Step 2 Impedance Ratio: Less than the table 1 value of item 8 ratio against step 1. Measuring Voltage 4 Charact- eristics at High and Low Tem- perature Step 4 Leakage Current: ≤ 500% of the value of item 7.1. Step 1. 5 Surge Leakage Current: ≤ the value of item 7.3. Test temperature	ncy : 120Hz± : Equivalent e : +1.5 V.DC (≦0.5 V for ncy : 120Hz± : Equivalent e : +1.5 V.DC (≦0.5 V for	20% series circuit $\sim +2 V.DC$ A.C.) 20% series circuit $\sim +2 V.DC$		
2 Capacitance Within the specified capacitance tolerance. Measuring Freque Measuring Circuit Measuring Voltage 3 Tangent of Loss Angle (tan δ) Less than the part lists. Measuring Freque Measuring Circuit Measuring Voltage 4 Charact-eristics at High and Low Tem-Step 4 Leakage Current: Step 1 2 -25 3 2 5 Surge Leakage Current: 4 5 Surge Leakage Current: 5 5 Surge Leakage Current: 5	: Equivalent : +1.5 V.DC $(\leq 0.5 V \text{ for})$ ncy : 120Hz± : Equivalent : +1.5 V.DC $(\leq 0.5 V \text{ for})$	series circuit ~ +2 V.DC A.C.) 20% series circuit ~ +2 V.DC		
3 Tangent of Loss Angle (tan δ) Less than the part lists. Measuring Voltage Measuring Voltage Measuring Voltage 4 Charact- eristics at High and Low Tem- perature Step 2 Impedance Ratio: Less than the table 1 value of item 8 ratio against step 1. Low Tem- perature Step 7 est Te 1 5 Surge Leakage Current: ≤ 500% of the value of item 7.1. Test temperature	: Equivalent : +1.5 V.DC $(\leq 0.5 V \text{ for})$ ncy : 120Hz± : Equivalent : +1.5 V.DC $(\leq 0.5 V \text{ for})$	series circuit ~ +2 V.DC A.C.) 20% series circuit ~ +2 V.DC		
3 Tangent of Loss Angle (tan δ) Less than the part lists. Measuring Freque Measuring Circuit Measuring Voltage 4 Charact- eristics at High and Low Tem- perature Step 2 Impedance Ratio: Less than the table 1 value of item 8 ratio against step 1. Low Tem- perature Step 2 Impedance Ratio: Less than the table 1 value of item 8 ratio against step 1. Low Tem- perature Step 7 test Te 1 4 Charact- eristics at High and Low Tem- perature Leakage Current: ≦500% of the value of item 7.1. Capacitance Change: Within ±25% of the value in step 1. Tangent of Loss Angle (tanδ): ≦the value of item 7.3. Impedance should 5 Surge Leakage Current: ≦the value of item 7.1. Test temperature	e : +1.5 V.DC $(\leq 0.5 \text{ V for})$ ncy : 120Hz± : Equivalent e : +1.5 V.DC $(\leq 0.5 \text{ V for})$	 ~ +2 V.DC A.C.) 20% series circuit ~ +2 V.DC 		
3 Tangent of Loss Angle (tan δ) Less than the part lists. Measuring Freque Measuring Circuit Measuring Voltage 4 Charact- (tan δ) Step 2 Impedance Ratio: Less than the table 1 value of item 8 ratio against step 1. Low Tem- perature Step 2 Impedance Ratio: Less than the table 1 value of item 8 ratio against step 1. Low Tem- perature Step 4 Step Test Te 1 2 -25 3	(≦0.5 V for ncy : 120Hz± : Equivalent e : +1.5 V.DC (≦0.5 V for	A.C.) 20% series circuit ~ +2 V.DC		
Angle (tan δ)Measuring Circuit Measuring Voltage4Charact- eristics at High and Low Tem- peratureStep 2Impedance Ratio: Less than the table 1 value of item 8 ratio against step 1. $\leq 500\%$ of the value of item 7.1. Capacitance Change: Within ±25% of the value in step 1. Tangent of Loss Angle (tan δ): \leq the value of item 7.3.Step 7 test Te 15SurgeLeakage Current: \leq the value of item 7.1.Impedance should Test temperature	ncy : 120Hz± : Equivalent e : +1.5 V.DC (≦0.5 V for	20% series circuit ~ +2 V.DC		
Angle (tan δ)Measuring Circuit Measuring Voltage4Charact- eristics at High and Low Tem- peratureStep 2Impedance Ratio: Less than the table 1 value of item 8 ratio against step 1. $\leq 500\%$ of the value of item 7.1. Capacitance Change: Within ±25% of the value in step 1. Tangent of Loss Angle (tan δ): \leq the value of item 7.3.Step 7 Est Te 15SurgeLeakage Current: \leq the value of item 7.1.Impedance should Test temperature	: Equivalent e : +1.5 V.DC (≦0.5 V for	series circuit ~ +2 V.DC		
4Charact- eristics at High and Low Tem- Step 4Step 2Impedance Ratio: Less than the table 1 value of item 8 ratio against step 1. $\leq 500\%$ of the value of item 7.1. Capacitance Change: Within ±25% of the value in step 1. Tangent of Loss Angle (tan\delta): \leq the value of item 7.3.Step 7 Impedance 7.1 Step 45SurgeLeakage Current: \leq the value of item 7.1.Impedance should Impedance 8 Impedance 8 Impedance 8 Impedance 8 Impedance 8 Impedance 8	e : +1.5 V.DC (≦0.5 V for	∼ +2 V.DC		
4 Charact- eristics at High and Low Tem- perature Step 2 Impedance Ratio: Less than the table 1 value of item 8 ratio against step 1. Low Tem- Step 4 Step 7 Test Te 1 2 -25 3 2 -25 3 4 5 2 -25 3 4 5 1 5 Surge Leakage Current: Step 4 5 5 Surge Leakage Current: Step 7 1	(≦0.5 V for			
eristics at High and Low Tem-Step 4 Less than the table 1 value of item 8 ratio against step 1. Step Test Te 1 between Step 4 Leakage Current: ≦ 500% of the value of item 7.1. 2 -25 3 4 3 Capacitance Change: Within ±25% of the value in step 1. 5 Impedance should 5 Surge Leakage Current: ≤ the value of item 7.1. Test temperature				
eristics at High and Low Tem-Step 4 Less than the table 1 value of item 8 ratio against step 1. Step Test Te 1 begin{tabular}{lllllllllllllllllllllllllllllllllll	mperature(°C)	A.C.)		
High and ratio against step 1. Low Tem-Step 4 Leakage Current: perature ≦ 500% of the value of item 7.1. Capacitance Change: 4 Within ±25% of the value in step 1. 5 Tangent of Loss Angle (tanδ): Impedance should ≤ the value of item 7.3. Test temperature	mperature(°C)	-		
Low Tem- peratureStep 4 $\leq 500\%$ of the value of item 7.1. Capacitance Change: Within ±25% of the value in step 1. Tangent of Loss Angle (tan δ): \leq the value of item 7.3.2 2 3 4 5 5SurgeLeakage Current: \leq the value of item 7.1.		Time		
perature $\leq 500\%$ of the value of item 7.1. Capacitance Change: Within ±25% of the value in step 1. Tangent of Loss Angle (tan δ): \leq the value of item 7.3.35SurgeLeakage Current: \leq the value of item 7.1.Test temperature	20±2	_		
Capacitance Change: 4 Within ±25% of the value in step 1. 5 Tangent of Loss Angle (tanδ): ≦ the value of item 7.3. 5 Surge Leakage Current: ≦ the value of item 7.1.	±3,-40±3	30 min.		
Within ±25% of the value in step 1. 5 Tangent of Loss Angle (tanδ): ≦the value of item 7.3. 5 Surge Leakage Current: ≤the value of item 7.1. Test temperature	20±2	10 min.~15 min.		
Tangent of Loss Angle (tanδ): Impedance should ≤the value of item 7.3. Impedance should 5 Surge Leakage Current: Test temperature ≤the value of item 7.1. Impedance should	105±2	30 min.		
≦the value of item 7.3. 5 Surge Leakage Current: ≦the value of item 7.1.	20±2	10 min.~15 min.		
5 Surge Leakage Current: Test temperature ≤ the value of item 7.1.	Impedance should be measured 120Hz±10%.			
≦the value of item 7.1.				
≦the value of item 7.1. Capacitance Change: Series Protective	15°C∼35°C			
Capacitance Change: Series Protective		100 ± 50		
	Series Protective Resistance : $R = \frac{100 \pm 50}{C}$			
Within ±15% of initial measured value.				
	R: Protective resistance($k\Omega$)			
	C: Capacitance(µF)			
	Test voltage : Surge voltage item 6.5			
	00 cycles of 30s±5s			
""	ON"and 5 min 3	30 s"OFF".		
6 Robustness of There is no damage or breakage after test. After fixing the	capacitors. the	e terminals are		
Termination pulled in a ver				
(Tensile) Load is gradua		until it reached		
the value spec	-			
seconds.				
Pull Strengt				
Keep time		6		

CE-VHDA4-CE-0-2

V type	HD sereis	(High. temp. Pb free reflow type)
--------	-----------	-----------------------------------

11

No	Item	Performance Characteristics	Test
7	Vibration	Capacitance : During test, measured value shall be stabilized.(Measured several times within 30 min. before completion of test) Appearance : No significant change can be observed. Capacitance Change : Within ±5% of initial measured value.	Frequency : 10Hz~55Hz (1 minute per cycle.) Total amplitudes : 1.5 mm Direction and duration of vibration : It is done in the X,Y,Z axis direction for 2 hours each, with a total of 6 hours.
8	Solderability	More than 95% of the terminal surface shall be covered with new solder. Exclude the cross-section of cutting lead edge.	Solder Type : H60A,H60S,or H63A (JIS Z3282) Solder Temperature : 235°C±5°C Immersing Time : 2s±0.5s Immersing Depth : Dip the terminals for Approx 0.5mm~1mm thick Flux : Approx 25% rosin(JIS K5902) in Ethanol(JIS K8101)
9	Resistance to Soldering heat	Leakage Current : ≦the value of item 7.1. Capacitance Change : Within ±10% of initial measured value. Tangent of Loss Angle (tanδ) : ≦the value of item 7.3. Appearance : No significant change can be observed.	After reflow soldering (item 9) The capacitor shall be left at room temperature for before measurement.
10	Solvent Resistance of the Marking	There shall be no damage end legibly marked. Marking can be deciphered easily.	Class of Reagent : Isopropyl Alcohol Test Temperature : 20°C~25°C Immersing time : 30s±5s
11	Damp Heat (steady state)	Leakage Current : ≦the value of item 7.1. Capacitance Change : Within ±15% of initial measured value. Tangent of Loss Angle (tanδ) : ≦120% the value of item 7.3. Appearance : No significant change can be observed.	Test Temperature : 40°C±2°C Relative Humidity : 90%~95% Test Duration : 240hours±8hours After subjected to the test, the capacitors shall be left for 2 hours at room temperature and room humidity prior to the measurement.

CE-VHDA4-CE-0-2

V type HD sereis (High. temp. Pb free reflow type)

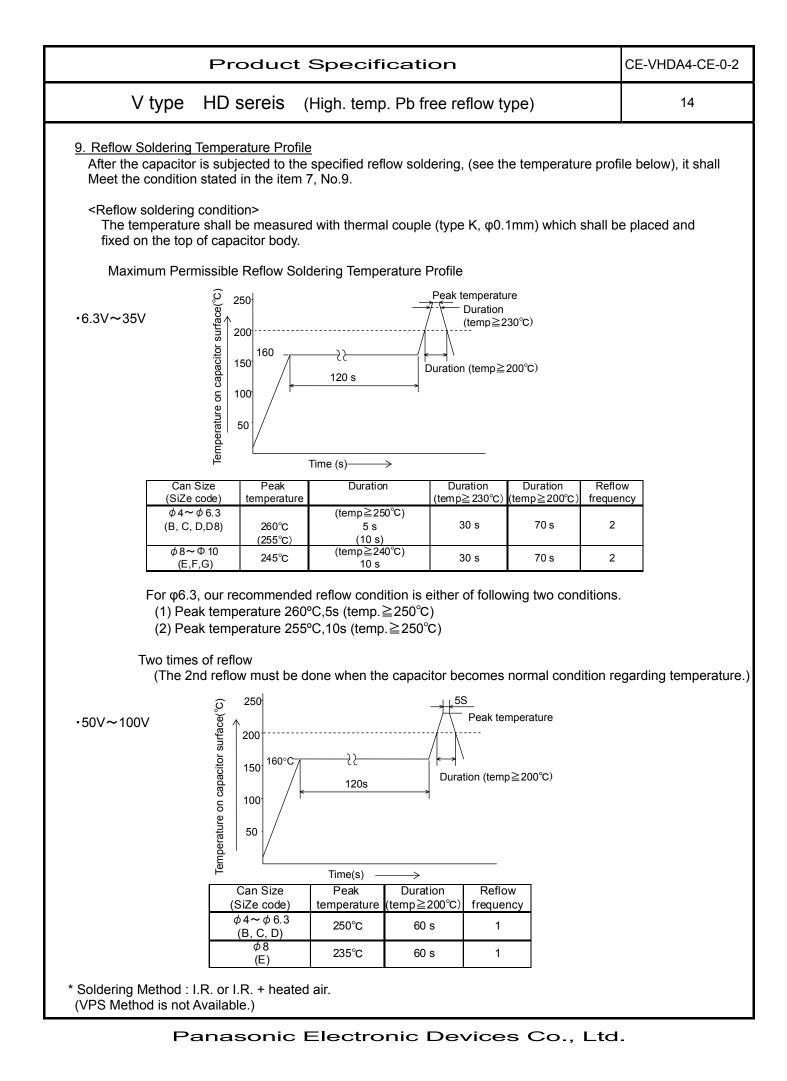
12

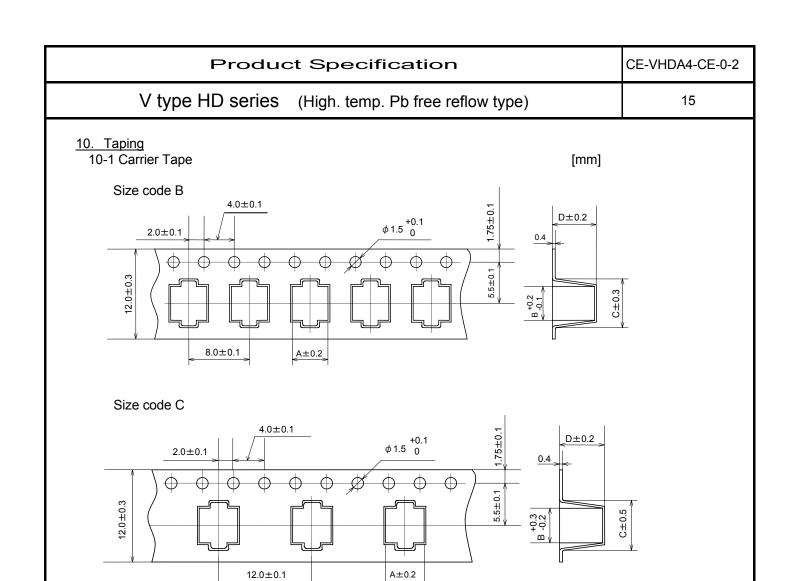
	Pressure Relief					
	Flessule Relief	Pressure relief shall be operated without	•A.C. Current Method			
	(Size code "G" only)	any hazardous expulsion or emission of flame. No emission of gas after 30 minutes of the voltage application also meets the specification.	A C. Power supply 50Hz or 60Hz (A):AC. ammeter R :Serie (X):A.C. voltmeter Cx :Tes	A Cx Cx cx cx cx cx cx cx cx cx cx cx cx cx cx		
			Applied Voltage :			
			A.C. voltage equals to R.V			
			250 V(rms) whichever is s			
			Capacitance (µ F)	D.C. resistance(Ω		
			≦1	1000±100		
			>1 ≦10	100±10		
			>10 ≦100	10±1		
			>100 ≦1000	1±0.1		
			>1000 ≦10000 >10000	0.1±0.01 ※		
			* When capacitance is over 10000µF,the value of series resistance equals to the half of the tested capacitor's impedance.			
			•Reverse Voltage Method			
			+ D.C. Power supply - (A):D.C. ammeter Cx:Te	Cx +		
			Ŭ			
			Nominal Diamether (mm)	D.C. Current(A		
			<u>≦</u> 22.4 > 22.4	1 (const) 10 (const)		

V type HD sereis (High. temp. Pb free reflow type)

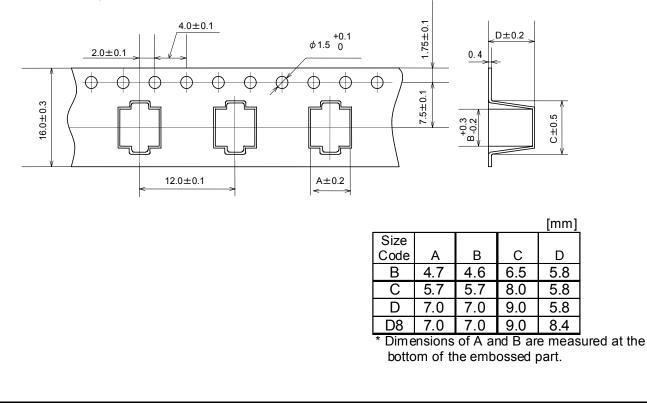
10	Item	Performance characteristics	Test
13	Endurance Leakage Current :		Test Temperature : 105°C±2°C
		\leq the value of item 7.1.	Test Duration : 5000 ⁺⁷² 0 hours
		Capacitance change :	Applied Voltage : Rated voltage
		Within ±30% of initial measured value.	
		Tangent of Loss Aangle (tanδ):	
		\leq 300% of the value of item 7.3.	After subjected to the test, the capacitors shall
		Appearance :	be left at room temperature and room humidity
		No significant change can be observed.	for 2 hours prior to the measurement.
14	Shelf Life	Leakage Current :	Test Temperature : 105°C±2 °C
		\leq the value of item 7.1.	Test Duration : 1000 ⁺⁴⁸ 0 hours
		Capacitance Change :	
		Within ±20% of initial measured value.	After subjected to the test, D.C. rated
		Tangent of Loss Angle (tanδ) :	voltage shall be applied to the capacitors for
		\leq 200% of the value of item 7.3.	30 minutes as post-test treatment after left
		Appearance :	at the room temperature and humidity for 2
		No significant change can be observed.	hours prior to the measurement.

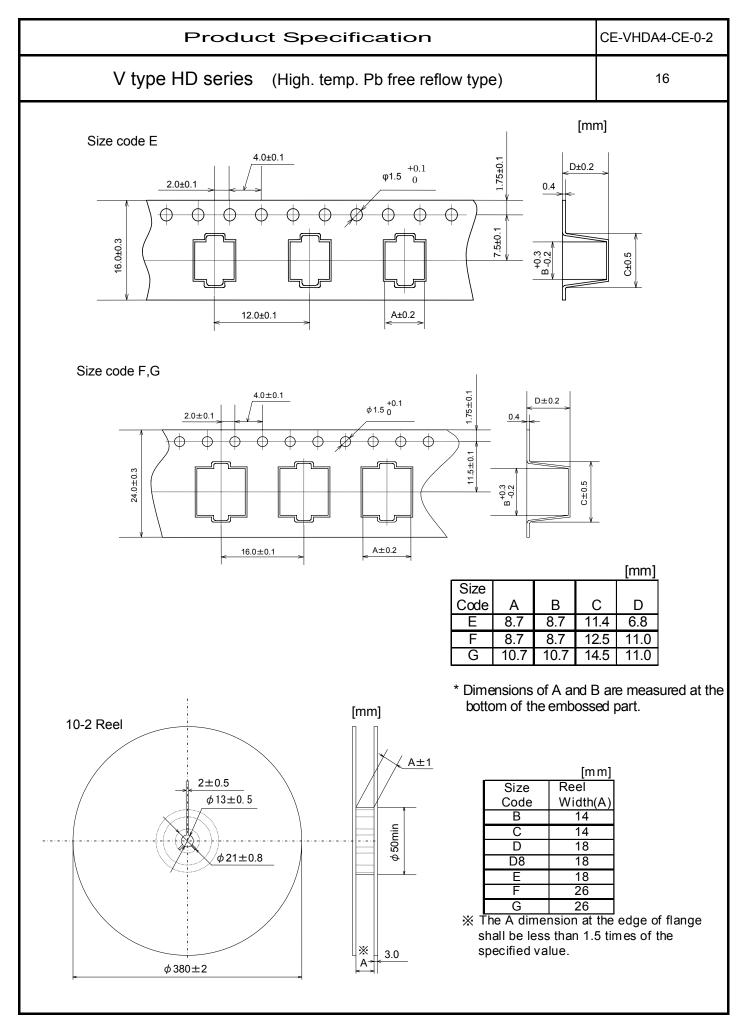
* Voltage treatment : The rated voltage shall be applied to the capacitors, which are connected to series protective resistors ($1000\Omega \pm 10\Omega$), for 30 minutes as a posttest treatment (performing discharge).

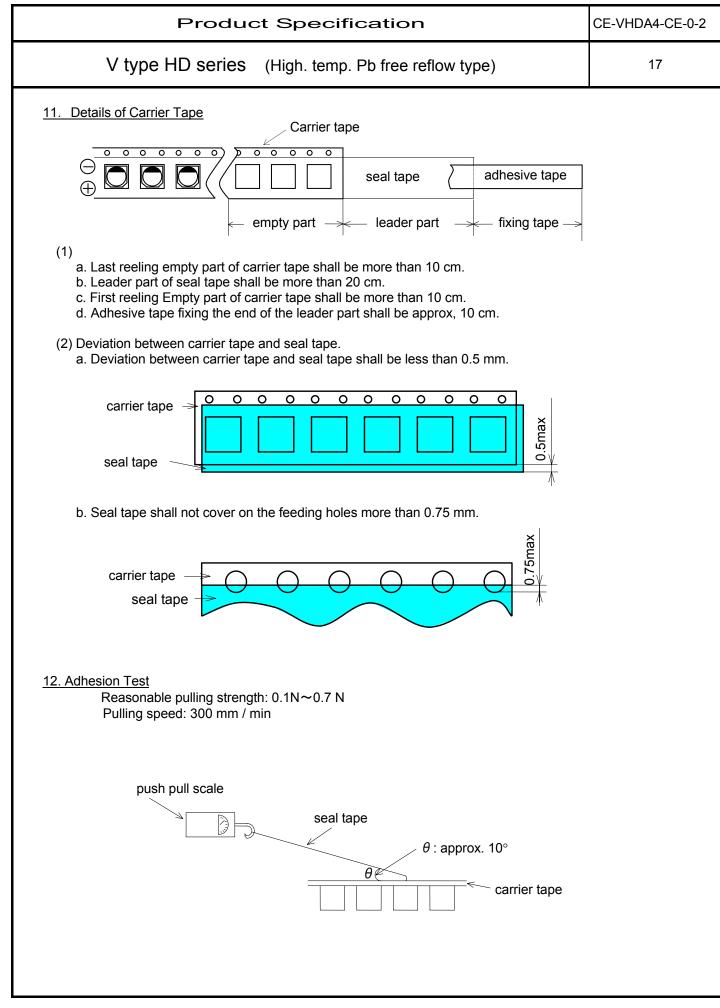

8. Other Characteristics


■ Table 1. Characteristics at low temperature Impedance ratio (at 120Hz)

R.V.(V.DC)	6.3	10	16	25	35	50	63	100
Z(-25°C)/Z(20°C)	3	3	2	2	2	2	2	2
Z(-40°C)/Z(20°C)	4	4	3	3	3	3	3	3

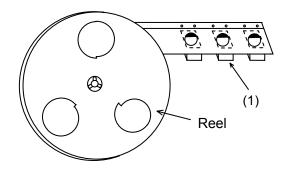

■ Table 2. Frequency Correction Factor of Rated Ripple Current


	Frequency (Hz)			
	50≦f<100	100≦f<1k	1k≦f<10k	10k≦f
coefficient	0.70	1.0	1.3	1.7



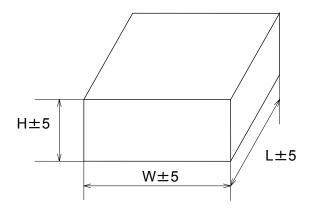
Size code D,D8

Panasonic Electronic Devices Co., Ltd.



Panasonic Electronic Devices Co., Ltd.

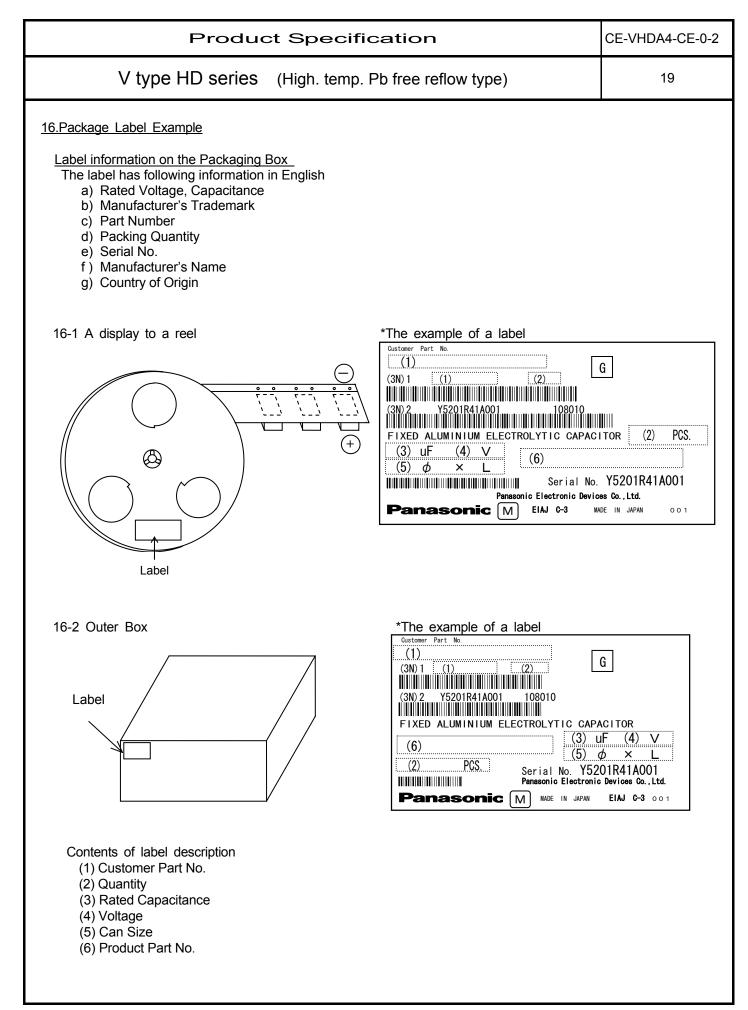
Product Specification	CE-VHDA4-CE-0-2
V type HD series (High. temp. Pb free reflow type)	18


13. Packing Style

- (1) Carrier tape shall be reeled inside. (seal tape shall be outside)
- (2) End of the tape shall be inside to the reel physically as shown in the below figure and leader part of seal tape shall not be attached.

14. Dimensions of Outer Carton Box

Dimensions of outer carton box are subject to change without Notice for adjustment to Reel Size.



		[mm]
Size		
Code	Н	W,L
В	220	395
С	220	395
D	250	395
D8	250	395
E	250	395
F	220	395
G	220	395

15. Packaging quantity

		One outer	Total
Size	One reel	carton box	quantity
Code	(pcs.)	(reel)	(pcs.)
В	2000	10	20000
С	1000	10	10000
D	1000	10	10000
D8	900	10	9000
E	1000	10	10000
F	500	6	3000
G	500	6	3000

* Let an order unit be 1 reel unit.

Product Specification	Guideline-ALV-S2-3
Application Guidelines	Guidelines-1
 * This specification guarantees the quality and performance of the product as individual components. Before use, check and evaluate their compatibility with installed in your products. * Do not use the products beyond the specifications described in this document. 	
* Install the following systems for a failsafe design to ensure safety if these products are to be used in equip products may cause the loss of human life or other signification damage, such as damage to vehicles (auto lights, medical equipment, aerospace equipment, electric heating appliances, combustion/ gas equipment, disaster/crime prevention equipment.	omobile, train, vessel), traffic
 The system is equipped with a protection circuit and protection device. The system is equipped with a redundant circuit or other system to prevent an unsafe status in the ever * Before using the products, carefully check the effects on their quality and performance, and determined where the products are designed and manufactured for general-purpose and standard use in general electronic status. 	nether or not they can be used.
 These products are not intended for use in the following special conditions. 1. In liquid, such as Water, Oil, Chemicals, or Organic solvent 2. In direct sunlight, outdoors, or in dust 3. In vapor, such as dew condensation water of resistive element, or water leakage, salty air, or air with a 	high concentration corrosive
 gas, such as Cl2, H2S, NH3, SO2, or NO2 4. In an environment where strong static electricity or electromagnetic waves exist 5. Mounting or placing heat-generating components or inflammables, such as vinyl-coated wires, near the 6. Sealing or coating of these products or a printed circuit board on which these products are mounted, wi 	
 7. Using resolvent, water or water-soluble cleaner for flux cleaning agent after soldering. (In particular, when using water or a water-soluble cleaning agent, be careful not to leave water residue * Please arrange circuit design for preventing impulse or transitional voltage. 	s)
Do not apply voltage, which exceeds the full rated voltage when the capacitors receive impulse voltage, ir high pulse voltage etc.	istantaneous high voltage,

* Electrolyte is used in the products. Therefore, misuse can result in rapid deterioration of characteristics and functions of each product. Electrolyte leakage damages printed circuit and affects performance, characteristics, and functions of customer system.

1.1 Operating Temperature and Frequency

Electrical parameters for electrolytic capacitors are normally specified at 20 °C temperature and 120 Hz frequency.

These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration. (1) Effects of operating temperature on electrical parameters

- a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
- b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies, capacitance and impedance decrease while tan δ increases.

b) At lower frequencies, heat generated by ripple current will rise due to an increase in equivalent series resistance (ESR).

1.2 Operating Temperature and Life Expectancy

- (1) Expected life is affected by operating temperature. Generally, each 10 °C reduction in temperature will double the expected life. Use capacitors at the lowest possible temperature below the upper category temperature.
- (2) If operating temperatures exceed the upper category limit, rapid deterioration of electrical parameter will occur and irreversible damage will result.

Check for the maximum capacitor operating temperatures including ambient temperature, internal capacitor temperature rise due to ripple current, and the effects of radiated heat from power transistors, IC's or resistors.

Avoid placing components, which could conduct heat to the capacitor from the back side of the circuit board.

(3) The formula for calculating expected life at lower operating temperatures is as follows ;

$$L_2 = L_1 \times 2^{\frac{T_1 - T_2}{10}}$$

- Guaranteed life (h) at temperature, T1 °C L1 :
- Expected life (h) at temperature, T2 °C L_2
- T₁ : Upper category temperature (°C)
- Actual operating temperature, ambient temperature + temperature rise due to ripple current heating(°C) T₂ :
- (4) Please use according to the lifetime as noted in this specification. Using products beyond end of the lifetime may change characteristics rapidly, short-circuit, operate pressure relief vent, or leak electrolyte.

Product Specification	Guideline-ALV-S2-3			
Application Guidelines	Guidelines-2			
 1.3 Common Application Conditions to Avoid The following misapplication load conditions will cause rapid deterioration of a capacitor's electrical parameters in addition, rapid heating and gas generation within the capacitor can occur, causing the pressure relief very of electrolyte. Under extreme conditions, explosion and fire ignition could result. The leaked electrolyte is combustible and electrically conductive. (1) Reverse Voltage DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or under capacitors. (2) Otherse Universe Applications 	nt to operate and resultant leakag			
 (2) Charge / Discharge Applications Standard capacitors are not suitable for use in repeating charge/discharge applications. For charge/ of with your actual application condition. (3) ON-OFF circuit Do not use capacitors in circuit where ON-OFF switching is repeated more than 10000 times/per data 				
 In case of applying to the theses ON-OFF circuit, consult with us about circuit condition and so on. (4) Over voltage Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge volta short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rate of the surge voltage and the superimposed AC ripple voltage does not exceed the rate of the surge voltage does not exceed the rate of the surge voltage and the superimposed AC ripple voltage does not exceed the rate of the surge voltage and the superimposed AC ripple voltage does not exceed the rate of the surge voltage and the superimposed AC ripple voltage does not exceed the rate of the surge voltage and the superimposed AC ripple voltage does not exceed the rate of the surge voltage and the superimposed AC ripple voltage does not exceed the rate of the surge voltage and the superimposed AC ripple voltage does not exceed the rate of the surge voltage and the superimposed AC ripple voltage does not exceed the rate of the surge voltage and the superimposed AC ripple voltage does not exceed the rate of the surge voltage and the surge voltage and the superimposed AC ripple voltage does not exceed the rate of the surge voltage and the	age rating are acceptable for			
(5) Ripple Current Do not apply ripple currents exceeding the maximum specified value. For high ripple current applicati high ripple currents. In addition, consult us if the applied ripple current is to be higher than the maxim Ensure that rated ripple currents that superimposed on low DC bias voltages do not cause reverse volt	ions, use a capacitor designed for num specified value.			
 1.4 Using Two or More Capacitors in Series or Parallel (1) Capacitors Connected in Parallel The circuit resistance can closely approximate the series resistance of the capacitor, causing an imbala the capacitors. Careful wiring methods can minimize the possible application of an excessive ripple c (2) Capacitors Connected in Series Differences in normal DC leakage current among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage currents can prevent capacitor 1.5 Capacitor Mounting Considerations (1) Double-Sided Circuit Boards Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board. 	current to a capacitor.			
(2) Land/ Pad Pattern	d Size vs. Capacitor Size]			
$c \qquad \qquad$	a b c 1.0 2.5 1.6 1.5 2.8 1.6 1.8 3.2 1.6 1.8 3.2 1.6 2.2 4.0 1.6 3.1 4.0 2.0 4.6 4.1 2.0 4.0 5.7 2.0 6.0 6.5 2.5			
Κ (φ18)	6.0 7.5 2.5			
 % The land pattern and size shall be decided in consideration of mountability, solderbility and strength. (3) Clearance for Case Mounted Pressure Relief (≧φ10 mm) Capacitors with case mounted pressure relief require sufficient clearance to allow for proper pressure relief operation. The minimum clearance are dependent on capacitor diameters as follows. (Dia 10mm ~ Dia 16mm : 2mm minimum, Dia 18mm : 3mm minimum) (4) Wiring Near the Pressure Relief (≧φ10 mm) Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief . Flammable, high temperature gas that exceeds 100 ° C may be released which could dissolve the wire insulation and ignite. (5) Circuit Board Patterns Under the Capacitor Avoid circuit board runs under the capacitor, as an electrical short can occur due to an electrolyte leakage. 16 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. • Between the cathode and the case and between the anode terminal and other circuit paths. 17 Capacitor Sleeve The laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. 				

Guideline-ALV-S2-3

Application Guidelines

Guidelines-3

2. Capacitor Handling Techniques 2.1 Considerations Before Using (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$. (3) Capacitors stored for a long period of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be damaged and loss of electrolyte/shortened life can result. 2.2 Capacitor Insertion (1) Verify the correct capacitance and rated voltage of the capacitor. (2) Verify the correct polarity of the capacitor before insertion. (3) Verify the correct hole spacing and land pattern size before insertion to avoid stress on the terminals. (4) For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperature of 350 °C for 3 seconds or less. (2) If a soldered capacitor must be removed and reinserted, avoid excessive stress on the capacitor leads. (3) Avoid physical contacts between the tip of the soldering iron and capacitors to prevent or capacitor failure. 2.4 Reflow Soldering (1) For reflow, use a thermal conduction system such as infrared radiation (IR) or hot blast. Vapor heat transfer systems (VPS) are not recommended. (2) Observe proper soldering conditions (temperature, time, etc.). Do not exceed the specified limits. ※ The Temperature on Capacitor top shall be measured by using thermal couple that is fixed firmly by epoxy glue. (3) Two times of reflow (The 2nd reflow must be done when the capacitor becomes normal condition regarding temperature.) (4) In our recommended reflow condition, the case discoloration and the case swelling might be slightly generated. But please acknowledge that these two phenomena do not influence the reliability of the product. The crack on top marking might be occurred by reflow heat stress. But please acknowledge that it does not influence the reliability of the product. 2.5 Capacitor Handling after Soldering (1) Avoid moving the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal. (2) Do not use the capacitor as a handle when moving the circuit board assembly. (3) Avoid striking the capacitor after assembly to prevent failure due to excessive shock. 2.6 Circuit Board Cleaning (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up to 5 minutes and up to 60 °C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended for the purpose of protecting our environment. (2) Avoid using the following solvent groups unless specifically allowed in the specification ; Halogenated cleaning solvents : except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements based on the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor. Alkaline solvents : could react and dissolve the aluminum case. Petroleum based solvents : deterioration of the rubber seal could result. : deterioration of the rubber seal could result. Xylene Acetone : removal of the ink markings on the vinyl sleeve could result. (3) A thorough drying after cleaning is required to remove residual cleaning solvents that may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the Upper category temperature of the capacitor. (4) Monitor the contamination levels of the cleaning solvents during use in terms of electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. (5) Depending on the cleaning method, the marking on a capacitor may be erased or blurred. Please consult us if you are not certain about acceptable cleaning solvents or cleaning methods. 2.7 Mounting Adhesives and Coating Agents When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. Harden on dry adhesive or coating agents well lest the solvent should be left. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board 2.8 Fumigation In exporting electronic appliances with aluminum electrolytic capacitors, in some cases fumigation treatment using such halogen compound as methyl bromide is conducted for wooden boxes. If such boxes are not dried well, the halogen left in the box is dispersed while transported and enters in the capacitors inside. This possibly causes electrical corrosion of the capacitors. Therefore, after performing fumigation and drying make sure that no halogen is left. Don't perform fumigation treatment to the whole electronic appliances packed in a box.

Application Guidelines

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Exposure to temperatures above the upper category or below the lower category temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bromine, Bromine compound or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of a capacitor as a possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuiting the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.
- (3) A low-molecular-weight-shiroxane which is included in a silicon material shall causes abnormal electrical characteristics.

4. Emergency Procedures

- (1) If the pressure relief of the capacitor operates, immediately turn off the equipment and disconnect from the power source. This will minimize an additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas, which can exceed 100 °C temperatures. If electrolyte or gas enters the eye, immediately flush the eye with large amounts of water.
 - If electrolyte or gas is ingested by mouth, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

- Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film.
- This surge current could cause the circuit or the capacitor to fail.

Storage period is one year. When storage period is over 12 months, a capacitor should be reconditioned by applying the rated voltage in series with a 1000 Ω current limiting resistor for a time period of 30 minutes.

For storage condition, keep room temperature (5°C~35°C) and humidity (45%~85%) where direct sunshine doesn't reach.

5.1 Environmental Conditions

- (1) Exposure to temperatures above the upper category or below the lower category temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bromine, Bromine compound or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

- When disposing capacitors, use one of the following methods.
- (1) Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).
- (2) Dispose as solid waste.

NOTE : Local laws may have specific disposal requirements which must be followed.