High-Frequency NPN Transistor Array For Low-Power Applications at Frequencies Up to 1.5 GHz

The CA3227 consists of five general purpose silicon NPN transistors on a common monolithic substrate. Each of the transistors exhibits a value of f_{T} in excess of 3 GHz , making them useful from DC to 1.5 GHz . The monolithic construction of these devices provides close electrical and thermal matching of the five transistors.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
$\begin{aligned} & \text { CA3227M } \\ & (3227) \end{aligned}$	-55 to 125	16 Ld SOIC	M16.15
$\begin{aligned} & \text { CA3227M96 } \\ & (3227) \end{aligned}$	-55 to 125	16 Ld SOIC Tape and Reel	M16.15

Features

- Five Transistors on a Common Substrate

Applications

- VHF Amplifiers
- VHF Mixers
- Multifunction Combinations - RF/Mixer/Oscillator
- IF Converter
- IF Amplifiers
- Sense Amplifiers
- Synthesizers
- Synchronous Detectors
- Cascade Amplifiers

Pinout

CA3227 (SOIC)
TOP VIEW

Absolute Maximum Ratings
Collector to Emitter Voltage ($\mathrm{V}_{\text {CEO }}$). 8V
Collector to Base Voltage ($\mathrm{V}_{\mathrm{CBO}}$) . 12V
Collector to Substrate Voltage (V CIO , Note 1) 20 V
Collector Current (IC) . 20mA

Operating Conditions

Temperature Range
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2)	$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
16 Ld SOIC Package	185
Maximum Power Dissipation (Any One Transistor).	85 mW
Maximum Junction Temperature (Die).	$175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package).	. $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range.	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) (SOIC - Lead Tips Only)	$300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. The collector of each transistor of these devices is isolated from the substrate by an integral diode. The substrate (Terminal 5) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.
2. $\theta_{J A}$ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications $T_{A}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
DC CHARACTERISTICS FOR EACH TRANSISTOR							
Collector to Base Breakdown Voltage	$V_{(B R) C B O}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$		12	20	-	V
Collector to Emitter Breakdown Voltage	$V_{(B R)}$ CEO	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$		8	10	-	V
Collector to Substrate Breakdown Voltage	$V_{(B R) C I O}$	$\mathrm{I}_{C 1}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{E}}=0$		20	-	-	V
Emitter Cutoff Current (Note 3)	$\mathrm{I}_{\text {EBO }}$	$\mathrm{V}_{\mathrm{EB}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		-	-	10	$\mu \mathrm{A}$
Collector Cutoff Current	ICEO	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$		-	-	1	$\mu \mathrm{A}$
Collector Cutoff Current	$\mathrm{I}_{\text {CBO }}$	$\mathrm{V}_{\mathrm{CB}}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-	-	100	nA
DC Forward Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$	$V_{C E}=6 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	-	110	-	
			$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	40	150	-	
			$\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}$	-	150	-	
Base to Emitter Voltage	$V_{\text {BE }}$	$V_{C E}=6 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	0.62	0.71	0.82	V
Collector to Emitter Saturation Voltage	VCE SAT	$\mathrm{I}_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$		-	0.13	0.50	V
Base to Emitter Saturation Voltage	VBE SAT	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$		0.74	-	0.94	V

NOTE:
3. On small-geometry, high-frequency transistors, it is very good practice never to take the Emitter Base Junction into reverse breakdown. To do so may permanently degrade the $h_{\text {FE }}$. Hence, the use of $I_{E B O}$ rather than $V_{(B R) E B O}$. These devices are also susceptible to damage by electrostatic discharge and transients in the circuits in which they are used. Moreover, CMOS handling procedures should be employed.

Electrical Specifications $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 200 \mathrm{MHz}$, Common Emitter, Typical Values Intended Only for Design Guidance

PARAMETER	SYMBOL		TEST CONDITIONS	TYPICAL VALUES	UNITS
DYNAMIC CHARACTERISTICS FOR EACH TRANSISTOR					
Input Admittance	Y_{11}	b_{11}	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	4	mS
		g_{11}		0.75	mS
Output Admittance	Y_{22}	b_{22}	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	2.7	mS
		g_{22}		0.13	mS
Forward Transfer Admittance	Y_{21}	Y_{21}	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	29.3	mS
		θ_{21}		-33	Degrees
Reverse Transfer Admittance	Y_{12}	Y_{12}	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	0.38	mS
		θ_{12}		-97	Degrees
Input Admittance	Y_{11}	b_{11}	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	4.8	mS
		g_{11}		2.85	mS
Output Admittance	Y_{22}	b_{22}	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	2.75	mS
		g_{22}		0.9	mS
Forward Transfer Admittance	Y_{21}	Y_{21}	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	95	mS
		θ_{21}		-62	Degrees
Reverse Transfer Admittance	Y_{12}	Y_{12}	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	0.39	mS
		θ_{12}		-97	Degrees
Small Signal Forward Current Transfer Ratio	h_{21}		$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	7.1	
			$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	17	
TYPICAL CAPACITANCE AT 1 MHz, THREE-TERMINAL MEASUREMENT					
Collector to Base Capacitance	$\mathrm{C}_{\text {CB }}$		$V_{C B}=6 \mathrm{~V}$	0.3	pF
Collector to Substrate Capacitance	C_{Cl}		$\mathrm{V}_{\mathrm{CI}}=6 \mathrm{~V}$	1.6	pF
Collector to Emitter Capacitance	$\mathrm{C}_{\text {CE }}$		$\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}$	0.4	pF
Emitter to Base Capacitance	$\mathrm{C}_{\text {EB }}$		$V_{E B}=3 V$	0.75	pF

Spice Model (Spice 2G.6)

.model NPN

+	$B F=2.610 E+02$	$B R=4.401 E+00$	$I S=6.930 E-16$	$R B=130.0 E+00$
+	$R C=1.000 E+01$	$R E=7.396 \mathrm{E}-01$	$V A=6.300 E+01$	$V B=2.208 E+00$
+	$\mathrm{IK}=1.000 \mathrm{E}-01$	ISE $=1.87 E-14$	$N E=1.653 \mathrm{E}+00$	$\mathrm{IKR}=1.000 \mathrm{E}-02$
+	ISC $=9.25 E-14$	$N C=1.333 E+00$	$\mathrm{TF}=1.775 \mathrm{E}-11$	TR $=1.000 \mathrm{E}-09$
+	$C J S=1.800 \mathrm{E}-12$	$C J E=1.010 \mathrm{E}-12$	$P E=8.350 \mathrm{E}-01$	$M E=4.460 \mathrm{E}-01$
+	CJC $=9.100 E-13$	$P C=3.850 E-01$	$M C=2.740 E-01$	$\mathrm{KF}=0.000 \mathrm{E}+00$
+	$A F=1.000 \mathrm{E}+00$	$E F=1.000 E+00$	$\mathrm{FC}=5.000 \mathrm{E}-01$	PJS $=5.410 \mathrm{E}-01$
+	MJS $=3.530 \mathrm{E}-01$	RBM $=30.00$	$R B V=100$	$\mathrm{IRB}=0.00$

Please Note: No measurements have been made to model the reverse AC operation (tr is an estimation).

Typical Performance Curves

FIGURE 1. $\mathrm{h}_{\text {FE }}$ vs COLLECTOR CURRENT

FIGURE 3. NOISE FIGURE vs COLLECTOR CURRENT

FIGURE 2. f_{T} vs COLLECTOR CURRENT

FIGURE 4. NOISE FIGURE vs COLLECTOR CURRENT

FIGURE 5. CAPACITANCE vs BIAS VOLTAGE

Die Characteristics

DIE DIMENSIONS:

46 mils $\times 32$ mils
Metallization Mask Layout
CA3227

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed $0.15 \mathrm{~mm}(0.006$ inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M16.15 (JEDEC MS-012-AC ISSUE C) 16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
B	0.013	0.020	0.33	0.51	9
C	0.0075	0.0098	0.19	0.25	-
D	0.3859	0.3937	9.80	10.00	3
E	0.1497	0.1574	3.80	4.00	4
e	0.050 BSC		1.27 BSC		-
H	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	16		16		7
α	0°	8°	0°	8°	-

Rev. 0 12/93

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

