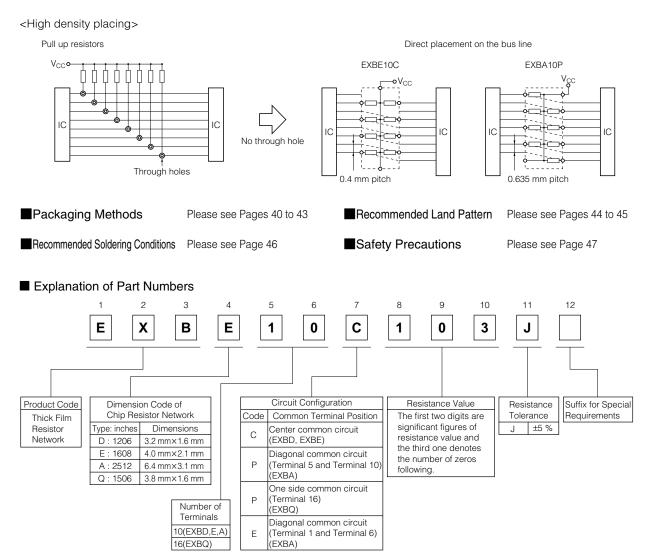
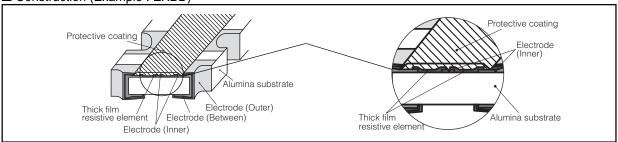
# **Chip Resistor Networks**

Type: **EXBD:1206** 

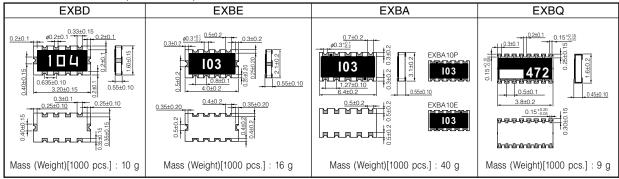
EXBE:1608 EXBA:2512 EXBQ:1506




## ■ Features


- High density placing for digital signal circuits
  - · Bussed 8 or 15 resistors for pull up/down circuits

EXBD:  $3.2 \text{ mm} \times 1.6 \text{ mm} \times 0.55 \text{ mm}, 0.635 \text{ mm} \text{ pitch}$ EXBE:  $4.0 \text{ mm} \times 2.1 \text{ mm} \times 0.55 \text{ mm}, 0.8 \text{ mm} \text{ pitch}$ EXBA:  $6.4 \text{ mm} \times 3.1 \text{ mm} \times 0.55 \text{ mm}, 1.27 \text{ mm} \text{ pitch}$ EXBQ:  $3.8 \text{ mm} \times 1.6 \text{ mm} \times 0.45 \text{ mm}, 0.5 \text{ mm} \text{ pitch}$ 


- Available direct placing on the bus line by means of half pitch spacing without through-holes on PWB ("High density placing" is shown below)
- High speed mounting using conventional placing machine
- Reference Standard…IEC 60115-9, JIS C 5201-9, EIAJ RC-2130



■ Construction (Example : EXBD)

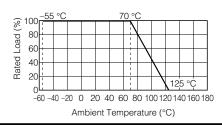


### ■ Dimensions in mm (not to scale)



## ■ Circuit Configuration

| EXBD, EXBE | EXBA       |            | EXBQ                                                             |  |
|------------|------------|------------|------------------------------------------------------------------|--|
|            | EXBA10P    | EXBA10E    |                                                                  |  |
| 1          | 10 9 8 7 6 | 10 9 8 7 6 | 16 15 14 13 12 11 10 9<br>10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |


## Ratings

| Item                                    | Specifications                    |                     |       |                                            |  |  |
|-----------------------------------------|-----------------------------------|---------------------|-------|--------------------------------------------|--|--|
| Series                                  | EXBD                              | EXBE                | EXBA  | EXBQ                                       |  |  |
| Resistance Range                        | 47 $\Omega$ to 1 M $\Omega$ (E12) |                     |       | 100 $\Omega$ to 470 k $\Omega$ (E6 series) |  |  |
| Resistance Tolerance                    | ±5%                               |                     |       |                                            |  |  |
| Number of Terminals                     | 10 terminals                      |                     |       | 16 terminals                               |  |  |
| Number of Resistors                     | 8 element                         |                     |       | 15 element                                 |  |  |
| Power Rating at 70 °C                   | 0.05 W/element                    | 0.063 W/element 0.0 |       | 0.025 W/element                            |  |  |
| Limiting Element Voltage <sup>(1)</sup> | 25V                               |                     | 50 V  | 25V                                        |  |  |
| Maximum Overload Voltage(2)             | 50 V                              |                     | 100 V | 50 V                                       |  |  |
| T. C. R.                                | ±200 × 10 <sup>-6</sup> / °C      |                     |       |                                            |  |  |
| Category Temperature Range              | −55 °C to +125 °C                 |                     |       |                                            |  |  |
|                                         |                                   |                     |       |                                            |  |  |

<sup>(1)</sup> Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=√Power Rating × Resistance Value, or Limiting Element Voltage listed above, whichever less.

#### Power Derating Curve

For resistors operated in ambient temperature above 70 °C, power rating shall be derated in accordance with the figure on the right.



<sup>(2)</sup> Overload (Short-time Overload) Test Voltage (SOTV) shall be determined from SOTV=2.5 × RCWV\* or Maximum Overload Voltage listed above whichever less.