International IOR Rectifier

BOSFET ${ }^{\circledR}$ Photovoltaic Relay
Single-Pole, $130 \mathrm{~mA}, 0-300 \mathrm{~V}$ AC/DC

General Description

The Photovoltaic AC Relay (PVA) is a single-pole, normally open solid state replacement for electromechanical relays used for general purpose switching of analog signals. It utilizes as an output switch a unique bidirectional (AC or DC) MOSFET power IC termed a BOSFET. The BOSFET is controlled by a photovoltaic generator of novel construction, which is energized by radiation from a dielectrically isolated light emitting diode (LED).
The PVA overcomes the limitations of both conventional and reed electromechanical relays by offering the solid state advantages of long life, high operating speed, low pick-up power, bounce-free operation, low thermal voltages and miniaturization. These advantages allow product improvement and design innovations in many applications such as process control, multiplexing, telecommunications, automatic test equipment and data acquisition.
The PVA can switch analog signals from thermocouple level to 300 volts peak AC or DC polarity. Signal frequencies into the RF range are easily controlled and switching rates up to 5 kHz are achievable. The extremely small thermally generated offset voltages allow increased measurement accuracies. Unique silicon technology developed by International Rectifier forms the heart of the PVA. The monolithic BOSFET contains a bidirectional N -channel power MOSFET output structure. In addition, this power IC chip has input circuitry for fast turn-off and gate protection functions. This section of the BOSFET chip utilizes both bipolar and MOS technology to form NPN transistors, P-channel MOSFETs, resistors, diodes and capacitors.
The photovoltaic generator similarly utilizes a unique International Rectifier alloyed multijunction structure. The excellent current conversion efficiency of this technique results in the very fast response of the PVA microelectronic power IC relay.
This advanced semiconductor technology has created a radically new control device. Designers can now develop switching systems to new standards of electrical performance and mechanical compactness.

(BOSFET is a trademark of International Rectifier)

Electrical Specifications $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right.$ unless otherwise specified)

INPUT CHARACTERISTICS	PVA2352	PVA3324	PVA3354	Units
Minimum Control Current (see figures 1 and 2)				DC
For 20mA Continuous Load Current	2.0	1.0	2.0	$\mathrm{mA@} 25^{\circ} \mathrm{C}$
For 100mA Continuous Load Current	5.0	2.0	5.0	$\mathrm{mA@} 25^{\circ} \mathrm{C}$
For 10mA Continuous Load Current	5.0	2.0	5.0	$\mathrm{mA@} 5^{\circ} \mathrm{C}$
Maximum Control Current for Off-State Resistance at 25				
Control Current Range (Caution: current limit input LED. See figure 6)	10			$\mu \mathrm{C}(\mathrm{DC})$
Maximum Reverse Voltage	7.0 to 25			$\mathrm{~mA}(\mathrm{DC})$
7.0			$\mathrm{~V}(\mathrm{DC})$	

GENERAL CHARACTERISTICS (PVA2352, PVA3324 and PVA3354)		Units
Dielectric Strength: Input-Output	2500	$\mathrm{~V}_{\text {RMS }}$
Insulation Resistance: Input-Output @ $90 \mathrm{~V}_{\mathrm{DC}}$	$10^{12} @ 25^{\circ} \mathrm{C}-50 \% \mathrm{RH}$	Ω
Maximum Capacitance: Input-Output	1.0	pF
Max. Pin Soldering Temperature (1.6mm below seating plane, 10 seconds max.)	+260	
Ambient Temperature Range:	Operating	
C		

Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
Figure 1. Current Derating Curves

Figure 2. Current Derating Curves

Figure 3.Typical On Characteristics

Figure 4. Typical On-Resistance

Figure 5. Normalized Off-State Leakage

Figure 7.Typical Delay Times

Figure 6. Input Characteristics (Current Controlled)

Figure 8. Delay Time Definitions

Figure 9. Typical Control Threshold and Transfer Ratio

Figure 10. Typical Output Capacitance

Wiring Diagram

Case Outline

(Dimensions in millimeters (inches))

Mechanical Specifications:
Package: 8-pin DIP
Tolerances: 015 (.38) unless otherwise specified
Case Material: molded epoxy
Weight: . $07 \mathrm{oz} .(2 \mathrm{gr}$.)

International
IgR Rectifier
WORLD HEADQUARTERS: 233 Kansas St., EI Segundo, California 90245 Tel: (310) 252-7105

