PAA140L
${ }^{\text {shand }}$ Pat
188 Dual Single-Pole, Normally Open, Current-Limiting OptoMOS ${ }^{\circledR}$ Relays

Parameter	Rating	Units
Load Voltage	400	V
Load Current	200	mA
Max $\mathrm{R}_{\text {ON }}$	13	Ω

Features

- Current Limiting
- $3750 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- Small 8-Pin Package
- Low Drive Power Requirements (TTL/CMOS Compatible)
- No Moving Parts
- High Reliability
- Arc-Free With No Snubbing Circuits
- No EMI/RFI Generation
- Machine Insertable, Wave Solderable
- Tape \& Reel Versions Available

Applications

- Telecommunications
- Telecom Switching
- Tip/Ring Circuits
- Modem Switching (Laptop, Notebook, Pocket Size)
- Hook Switch
- Dial Pulsing
- Ground Start
- Ringing Injection
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment-Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls

Description

PAA140L is a dual normally open (1-Form-A) solid state relay that uses optically coupled MOSFET technology to provide $3750 \mathrm{~V}_{\text {rms }}$ of input to output isolation. The efficient MOSFET switches and photovoltaic die use Clare's patented OptoMOS architecture. The optically-coupled outputs are controlled by highly efficient GaAIAs infrared LEDs.

The PAA140L also contains a built-in load current limiting feature. This, combined with low on-resistance and very high load current handling capability, makes it suitable for a variety of high performance switching applications.

Approvals

- UL Recognized Component: File E76270
- CSA Certified Component: Certificate 1175739
- EN/IEC 60950-1 Certified Component: TUV Certificate B 090749410004

Ordering Information

Part \#	Description
PAA140L	8-Lead DIP (50/tube)
PAA140PL	8-Lead Flatpack (50/tube)
PAA140PLTR	8-Lead Flatpack (1000/Reel)
PAA140LS	8-Lead Surface Mount (50/tube)
PAA140LSTR	8-Lead Surface Mount (1000/Reel)

Pin Configuration

Switching Characteristics of Normally Open Devices

PAA140L

Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

Parameter	Ratings	Units
Blocking Voltage	400	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	5	V
Input Control Current Peak (10ms)	50	mA
	1	A
Total Power Dissipation ${ }^{2}$	150	mW
Isolation Voltage, Input to Output	800	mW
Operational Temperature	-4750 to +85	$\mathrm{~V}_{\text {rms }}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

1 Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
2 Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics						
Load Current * AC/DC Configuration, Continuous	${ }^{-}$	I_{L}	-	-	200	mA
Peak	10 ms	ILPK	-	-	500	
On-Resistance	$\mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}$	$\mathrm{R}_{\text {ON }}$	-	10	13	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=400 \mathrm{~V}_{\mathrm{P}}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Switching Speeds Turn-On	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	-	-	5	ms
Turn-Off		$\mathrm{t}_{\text {off }}$	-	-	3	
Load Current Limit	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	I_{CL}	240	-	380	mA
Output Capacitance	$\mathrm{V}_{\mathrm{L}}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {OUT }}$	-	65	-	pF
Input Characteristics						
Input Control Current	$\mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}$	$I_{\text {F }}$	-	-	5	mA
Input Dropout Current	-	I_{F}	0.4	0.7	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$I_{\text {R }}$	-	-	10	$\mu \mathrm{A}$
Common Characteristics						
Capacitance, Input to Output	-	C_{10}	-	3	-	pF

*NOTE: If both poles operate simultaneously, then load current must be derated in order not to exceed the package power dissipation value.

PERFORMANCE DATA*

Typical Turn-On Time
$\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Typical I_{F} for Switch Operation

Typical LED Forward Voltage Drop
$\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Typical LED Forward Voltage Drop vs. Temperature

Typical Turn-Off Time
$\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Typical I_{F} for Switch Dropout

Typical Turn-On
vs. LED Forward Current $\left(\mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}_{\mathrm{DC}}\right)$

Typical Turn-On vs. Temperature

Typical On-Resistance Distribution
$\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Typical Blocking Voltage Distribution
($\mathrm{N}=50, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Typical Turn-Off
vs. LED Forward Current $\left(\mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}_{\mathrm{DC}}\right)$

Typical Turn-Off vs. Temperature
$\left(I_{F}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=250 \mathrm{~mA}_{\mathrm{DC}}\right)$

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

PERFORMANCE DATA*

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. Clare classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) rating as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Rating
PAA140L / PAA140LS / PAA140PL	MSL 1

ESD Sensitivity

A
This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Reflow Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of J-STD-020 must be observed.

Device	Maximum Temperature x Time
PAA140L / PAA140LS	$250^{\circ} \mathrm{C}$ for 30 seconds
PAA140PL	$260^{\circ} \mathrm{C}$ for 30 seconds

Board Wash

Clare recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since Clare employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine-based or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.

PAA140L

MECHANICAL DIMENSIONS

PAA140L

PCB Hole Pattern

PAA140LS

PCB Land Pattern

PAA140PL

PAA140LS Tape \& Reel

PAA140PL Tape \& Reel

NOTES

1. All dimensions carry tolerances of EIA Standard 481-2
2. The tape complies with all "Notes" for constant dimensions listed on page 5 of EIA-481-2

For additional information please visit our website at: www.clare.com
$\overline{\text { Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications }}$ and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.

[^0]
[^0]: Specification: DS-PAA140L-R02
 ©Copyright 2010, Clare, Inc.
 OptoMOS ${ }^{\circledR}$ is a registered trademark of Clare, Inc.
 All rights reserved. Printed in USA.
 7/30/2010

