MOS FET Relays G3VM-21LR11

High-power, 0.9-A Switching with SSOP Package in a 20-V Load Voltage Model.

• RoHS compliant

■ Application Examples

- Semiconductor inspection tools
- Measurement devices
- Broadband systems
- Data loggers

Note: The actual product is marked differently from the image shown

■ List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per tape
SPST-NO	Surface-mounting	20 V	G3VM-21LR11	
	terminals		G3VM-21LR11(TR05)	500
			G3VM-21LR11(TR)	1,500

Note: Use "TR05" instead of "TR" in the part number, to obtain reels with 500 pc/reel. (e.g., G3VM-21LR11(TR05))

■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-21LR11

1.9 1.9 1.9 1.14 dia. 1.0.3 1.27 2.04 1.27 2.04 1.27 2.04 1.27

Note: A tolerance of ± 0.1 mm applies to all dimensions unless otherwise specified.

Weight: 0.03 g

Note: The actual product is marked differently from the image shown here.

■ Terminal Arrangement/Internal Connections (Top View)

G3VM-21LR11

■ Actual Mounting Pad Dimensions (Recommended Value, Top View) G3VM-21LR11

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating Unit		Measurement Conditions	
Input	LED forward current	I _F	50	mA		
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$	
	LED reverse voltage	V_R	5	٧		
	Connection temperature	T _j	125	°C		
Output	Load voltage (AC peak/DC)	V_{OFF}	20	٧		
	Continuous load current (AC peak/DC)	Io	900	mA		
	ON current reduction rate	Δ I _O /°C	-12	mA/°C	$T_a \ge 50^{\circ}C$	
	Connection temperature	T _j	125	°C		
	ic strength between input and See note 1.)	V _{I-O}	1,500	V _{rms}	AC for 1 min	
Ambient operating temperature		T _a	-20 to +85	°C	With no icing or condensatio	
Storage temperature		T _{stg}	-40 to +125	°C	With no icing or condensation	
Soldering temperature			260	°C	10 s	

The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Note:

■ Electrical Characteristics (Ta = 25°C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	
	Reverse current	I _R			10	μΑ	V _R = 5 V	
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}			3.0	mA	I _O = 100 mA	
Output	Maximum resistance with output ON	R _{ON}		0.18	0.22	Ω	I _F = 5 mA, I _O = 900 mA, t < 1 s	
	Current leakage when the relay is open	I _{LEAK}		0.2	1.0	nA	V _{OFF} = 20 V	
	Capacity between terminals	C _{OFF}		40	80	pF	V = 0, f = 100 MHz, t < 1 s	
Capacity between I/O terminals		C _{I-O}		0.3		pF	f = 1 MHz, V _s = 0 V	
Insulation resistance between I/O terminals		R _{I-O}	1,000			ΜΩ	$\begin{aligned} &V_{\text{I-O}} = 500 \text{ VDC}, \\ &R_{\text{oH}} \leq 60\% \end{aligned}$	
Turn-ON time		t _{ON}		0.3	2.0	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$	
Turn-OFF time		t _{OFF}		0.2	1.0	ms	V _{DD} = 10 V (See note 2.)	

Note: 2. Turn-ON and Turn-OFF Times

■ Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}			20	V
Operating LED forward current	I _F			20	mA
Continuous load current (AC peak/DC)	Io			900	mA
Operating temperature	T _a	-20		65	°C

■ Engineering Data

LED forward current vs. Ambient temperature

Continuous load current vs. Ambient temperature

LED forward current vs. LED forward voltage

Continuous load current vs. On-state voltage

On-state resistance vs. Ambient temperature

Trigger LED forward current vs. Ambient temperature

Turn ON, Turn OFF time vs. LED forward current

Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Load voltage

Output terminal capacitance COFF/COFF(ov) vs. Load voltage

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

OMRON ELECTRONIC COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Specifications subject to change without notice Printed in USA

MOS FET Relays **G3VM-21LR11**