MOS FET Relays

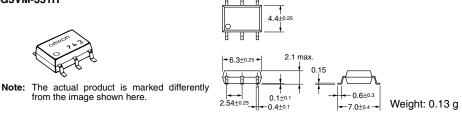
Slim, 2.1-mm High Relay Incorporating a MOS FET Optically Coupled with an Infrared LED in a Miniature, Flat SOP Package

- Upgraded G3VM-S3 Series.
- Continuous load current of 110 mA.
- Dielectric strength of 1,500 Vrms between I/O.
- RoHS Compliant.

■ Application Examples

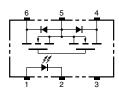
- Broadband systems
- Measurement devices and Data loggers
- Amusement machines

List of Models

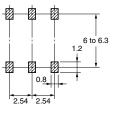

Note: The actual product is marked differently from the image shown here.

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NO Surface-mounting		350 VAC	G3VM-351H	75	
	terminals		G3VM-351H(TR)		2,500

Dimensions


Note: All units are in millimeters unless otherwise indicated.

G3VM-351H


■ Terminal Arrangement/Internal Connections (Top View)

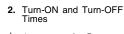
G3VM-351H

Actual Mounting Pad Dimensions (Recommended Value, Top View)

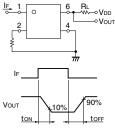
G3VM-351H

OMRON

■ Absolute Maximum Ratings (Ta = 25°C)


Item			Symbol	Rating	Unit	Measurement conditions	
Input	LED forward current		l _F	50	mA		Note
	Repetitive peak LED forward current		I _{FP}	1	A	100 μs pulses, 100 pps	
	LED forward current reduction rate		$\Delta I_{\rm F}^{\circ}/{}^{\circ}{\rm C}$	-0.5	mA/°C	$T_a \ge 25^{\circ}C$	
	LED reverse voltage		V _R	5	V		
	Connection temperature		Т _ј	125	°C		
Out- put	Load voltage (AC peak/DC)		V_{OFF}	350	V		
	Continuous	Connection A	I _o	110	mA		
	load current	Connection B		110			
		Connection C		220			
	ON current	Connection A	$\Delta I_{\rm ON}/^{\circ}{\rm C}$	-1.1	mA/°C	$T_a \ge 25^{\circ}C$	
	reduction rate	Connection B		-1.1			
		Connection C		-2.2			
	Connection temperature		Т _ј	125	°C		
Dielectric strength between input and output (See note 1.)		V _{I-O}	1,500	V _{rms}	AC for 1 min		
Operating temperature			T _a	-40 to +85	°C	With no icing or condensation	
Storage temperature			T _{stg}	-55 to +125	°C	With no icing or condensation	
Soldering temperature (10 s)				260	°C	10 s	

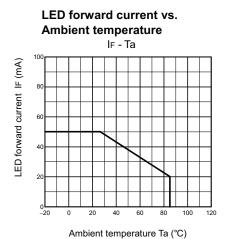
 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.


Connection Diagram								
Connection A	$\begin{bmatrix} 1 & 6 \\ - & Load \\ 2 & 5 \\ 0 & 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{AC} \bigoplus_{i=1}^{AC} \bigoplus_{i$							
Connection B	$\begin{bmatrix} 1 & 6 \\ - \end{bmatrix} \begin{bmatrix} Load \\ - \end{bmatrix} \begin{bmatrix} 2 & 5 \\ - \end{bmatrix} \begin{bmatrix} C \\ - \end{bmatrix} \begin{bmatrix} 2 \\ - \end{bmatrix} \begin{bmatrix} - \\ - \end{bmatrix} \begin{bmatrix} C \\ - \end{bmatrix} \begin{bmatrix} - \\ - \end{bmatrix} \begin{bmatrix} -$							
Connection C								

■ Electrical Characteristics (Ta = 25°C)

Item			Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input LED forward voltage			V _F	1.0	1.15	1.3	V	I _F = 10 mA
	Reverse current		I _R			10	μA	V _R = 5 V
		C _T		30		pF	V = 0, f = 1 MHz	
		I _{FT}		1	3	mA	l _o = 110 mA	
Output	Maximum resistance with output ON	Connection A	R _{on}		25	35	Ω	I _F = 5 mA, I _O = 110 mA, t < 1 s
					35	50	Ω	I _F = 5 mA, I _O = 110 mA
		Connection B			28	40	Ω	I _F = 5 mA, I _O = 110 mA
		Connection C			14	20	Ω	I _F = 5 mA, I _O = 220 mA
	Current leakage when the relay is open		I _{LEAK}		0.0018	1.0	μA	V _{OFF} = 350 V
	Capacity between terminals A Connection		C _{OFF}		30		pF	V = 0, f = 1MHz
Capacit	Capacity between I/O terminals				0.8		pF	f = 1 MHz, V _s = 0 V
Insulation resistance			R _{I-O}	1,000			MΩ	$\begin{array}{l} V_{\text{I-O}} = 500 \text{ VDC}, \\ R_{\text{oH}} \leq 60\% \end{array}$
Turn-ON time			t _{on}		0.3	1.0	ms	$I_{\rm F} = 5 \text{ mA}, R_{\rm L} = 200 \Omega,$
Turn-OFF time			t _{off}		0.1	1.0	ms	$V_{DD} = 20 V (See note 2.)$

Note:


Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			280	V
Operating LED forward current	I _F	5	10	25	mA
Continuous load current (AC peak/DC)	I _o			100	mA
Operating temperature	T _a	- 20		65	°C

OMRON

Engineering Data

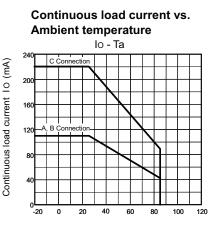
Continuous load current vs.

IO - VON

On-state voltage

Ta=25°C

IF = 5 mA


A Connectio

Continuous load current IO (mA)

100

-200

, -4 -3 -2 -1 0

Ambient temperature Ta (°C)

Ron - Ta

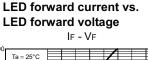
On-state resistance vs.

Ambient temperature

IO = 120 mA

A Connection

0

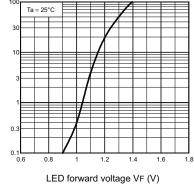

IF = 5 mA

40 t<1s

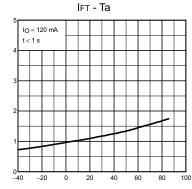
On-state resistance RON (Ω)

10

0∟ −20

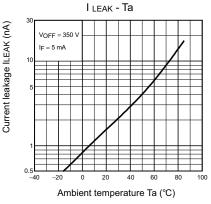

(mA)

뜨


LED forward current

(mA)

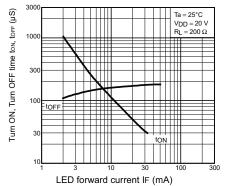
Trigger LED forward current IFT



Trigger LED forward current vs. Ambient temperature

Ambient temperature Ta (°C)

Current leakage vs. Ambient temperature



MOS FET Relays G3VM-351H

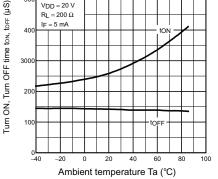
Turn ON, Turn OFF time vs. LED forward current ton, toff - If

On-state voltage VON (V)

2 3

40

Ambient temperature Ta (°C)


60

80

100

20

Ambient temperature ton, torr - Ta

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

847-882-2288

Cat. No. X302-E-1

12/10

Specifications subject to change without notice

Printed in USA

MOS FET Relays G3VM-351H