MOS FET Relays

G3VM-41LR11

SSOP Package MOS FET Relay with Low Output

Capacitance and ON Resistance ($\times R=4.9 \mathrm{pF} \cdot \Omega$) in a 40-V Load Voltage Model.

- ON resistance of 7Ω (typical) suppresses output signal attenuation.
- Leakage current of 0.2 nA max. (10 pA typ.) when relay is open
- Turn-on time $=0.026 \mathrm{~ms}$ (typ.), Turn-off time $=0.045 \mathrm{~ms}$ (typ.)
- RoHS compliant

Application Examples

- Semiconductor inspection tools
- Measurement devices and Data loggers

Note: The actual product is marked differently from the image shown here.

- Broadband systems

List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per tape
SPST-NO	Surface-mounting terminals	40 VAC	G3VM-41LR11	---
			G3VM-41LR11(TR)	1,500

Dimensions

Note: All units are in millimeters unless otherwise indicated.
G3VM-41LR11

Note: A tolerance of $\pm 0.1 \mathrm{~mm}$ applies to all dimensions unless otherwise specified.

Note: The actual product is marked differently from the image shown here. specified.

- Terminal Arrangement/Internal Connections (Top View)

- Actual Mounting Pad Dimensions (Recommended Value, Top View) G3VM-41LR11

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item		Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I_{F}	30	mA	
	LED forward current reduction rate	$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.3	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$
	LED reverse voltage	V_{R}	5	V	
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Output	Load voltage (AC peak/DC)	$\mathrm{V}_{\text {OFF }}$	40	V	
	Continuous load current	I_{0}	140	mA	
	ON current reduction rate	$\Delta \mathrm{I}_{\mathrm{oN}}{ }^{\circ} \mathrm{C}$	-1.4	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between input and output (See note 1.)		$\mathrm{V}_{\text {- }}$	1,500	$\mathrm{V}_{\text {rms }}$	AC for 1 min
Ambient operating temperature		Ta	-20 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Storage temperature		$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Soldering temperature		---	260	${ }^{\circ} \mathrm{C}$	10 s

Note:

1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Electrical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item		Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage	V_{F}	1.15	1.30	1.45	V	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
	Reverse current	I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals	$\mathrm{C}_{\text {T }}$	---	70	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current	I_{FT}	---	---	3	mA	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$
Output	Maximum resistance with output ON	$\mathrm{R}_{\text {ON }}$	---	7	10	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=140 \mathrm{~mA}, \mathrm{t}<1 \mathrm{~s} \end{aligned}$
	Current leakage when the relay is open	$\mathrm{I}_{\text {LEAK }}$	---	10	200	pA	$\mathrm{V}_{\text {OFF }}=35 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
	Capacity between terminals	$\mathrm{C}_{\text {OFF }}$	---	0.7	1.3	pF	$\begin{aligned} & \mathrm{V}=0, \mathrm{f}=100 \mathrm{MHz}, \\ & \mathrm{t}=<1 \mathrm{~s} \end{aligned}$
Capacity between I/O terminals		$\mathrm{C}_{\text {-0 }}$	---	0.3	---	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$
Insulation resistance between I/O terminals		$\mathrm{R}_{1-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{R}_{\mathrm{oH}} \leq 60 \% \end{aligned}$
Turn-ON time		t_{ON}	---	0.026	0.2	ms	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \text { (See note 2.) } \end{aligned}$
Turn-OFF time		$\mathrm{t}_{\text {OFF }}$	---	0.045	0.2	ms	

Note:
2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions
Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}	---	---	32	V
Operating LED forward current	I_{F}	---	---	20	mA
Continuous load current (AC peak/DC)	I_{O}	---	---	140	mA
Operating temperature	T_{a}	25	---	60	${ }^{\circ} \mathrm{C}$

LED forward current vs.
Ambient temperature
IF - Ta

Continuous load current vs.
On-state voltage

Turn ON, Turn OFF time vs.
LED forward current
ton, toff - IF

Continuous load current vs.
Ambient temperature

On-state resistance vs.
Ambient temperature
Ron - Ta

Turn ON, Turn OFF time vs.
Ambient temperature
ton, toff - Ta

Ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

LED forward current vs. LED forward voltage

Trigger LED forward current vs. Ambient temperature

Current leakage vs. Ambient temperature

I leak - Ta

Ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OmROn

OMRON ELECTRONIC COMPONENTS LLC
55 E. Commerce Drive, Suite B
Schaumburg, IL 60173

847-882-2288

OMRON ON-LINE

Global - http://www.omron.com
USA - http://www.components.omron.com

