MOS FET Relays

G3VM-201H1

Slim, 2.1-mm High, MOS FET Relay with Miniature, Flat, 6-pin SOP Package
-6-pin SOP package in the 200-V load voltage series.

- Continuous load current of 200 mA .
- Dielectric strength of $1,500 \mathrm{Vrms}$ between I/O.
- RoHS Compliant.

Application Examples

- Broadband systems
- Measurement devices
- Data loggers

Note: The actual product is marked differently from the image shown

- Amusement machines

List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NO	Surface-mounting terminals	200 VAC	G3VM-201H1	75	---
			---	2,500	

Dimensions

Note: All units are in millimeters unless otherwise indicated.
G3VM-201H1

Note: The actual product is marked differently from the image shown here.

Weight: 0.13 g

- Terminal Arrangement/Internal Connections (Top View)

G3VM-201H1

Actual Mounting Pad Dimensions (Recommended Value, Top View)

 G3VM-201H1

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item			Symbol	Rating	Unit	Measurement conditions	Note:		
Input	LED forward current		I_{F}	50	mA			1. The dielectri output was tween all pin all pins as a Connection D Connection A	between the input and
	Repetitive peak LED forward current		I_{FP}	1	A	$100 \mu \mathrm{~s}$ pulses, 100 pps			ked by applying voltage bea group on the LED side and on the light-receiving side.
	LED forward current reduction rate		$\Delta \mathrm{IF}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.5	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$			m
	LED reverse voltage		V_{R}	5	V				$4{ }_{5}^{1} 66-$ Load
	Connection temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$				$25{ }^{2} \quad{ }^{\mathrm{AC}} \mathrm{DC} \Theta$
Output	Load voltage (AC peak/DC)		$\mathrm{V}_{\text {OFF }}$	200	V				$\left\{\begin{array}{ll} 3 & 4 \end{array}\right]$
	Continuous load current	Connection A	Io	200	mA				
		Connection B		200					6 Load
		Connection C		400				Connection	
	ON current reduction rate	Connection A	$\triangle \mathrm{I}_{\mathrm{ON}} /{ }^{\circ} \mathrm{C}$	-2.0	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$			$\begin{cases}3 & 4\end{cases}$
		Connection B		-2.0					
		Connection C		-4.0					$16 \cdot-\text { Load }$
	Connection temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$			Connection	$\square^{2} \quad 5 D^{D C}=$
Dielectric strength between input and output (See note 1.)			$\mathrm{V}_{\text {- }}$	1,500	$\mathrm{V}_{\text {rms }}$	AC for 1 min			$\begin{cases}4 & 4 \\ 4\end{cases}$

Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item			Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage		V_{F}	1.0	1.15	1.3	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current		I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals		$\mathrm{C}_{\text {T }}$	---	30	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current		I_{FT}	---	1	3	mA	$\mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}$
Output	Maximum resistance with output ON	Connection A	$\mathrm{R}_{\text {ON }}$	---	5	8	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA} \end{aligned}$
		Connection B		---	3	5	Ω	$\begin{aligned} & I_{F}=5 \mathrm{~mA}, \\ & I_{O}=200 \mathrm{~mA} \end{aligned}$
		Connection C		---	1.5	---	Ω	$\begin{aligned} & I_{F}=5 \mathrm{~mA}, \\ & I_{O}=400 \mathrm{~mA} \end{aligned}$
	Current leakage when the relay is open		$\mathrm{I}_{\text {LEAK }}$	---	0.00035	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OFF }}=200 \mathrm{~V}$
	Capacity between terminals A Connection		$\mathrm{C}_{\text {OFF }}$	---	100	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
Capacity between I/O terminals			$\mathrm{C}_{1-\mathrm{O}}$	---	0.8	---	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$
Insulation resistance			$\mathrm{R}_{1-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{R}_{\mathrm{oH}} \leq 60 \% \end{aligned}$
Turn-ON time			t_{ON}	---	0.6	1.5	ms	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \\ & \mathrm{~V}_{\mathrm{DD}}=20 \mathrm{~V} \text { (See note 2.) } \end{aligned}$
Turn-OFF time			$\mathrm{t}_{\text {OFF }}$	---	0.1	1.0	ms	

Note: 2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}	---	---	160	V
Operating LED forward current	I_{F}	5	7.5	25	mA
Continuous load current (AC peak/DC)	I_{O}	---	---	130	mA
Operating temperature	T_{a}	-20	---	60	${ }^{\circ} \mathrm{C}$

■ Engineering Data

LED forward current vs.
Ambient temperature
IF - Ta

Ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

Continuous load current vs.
On-state voltage

Turn ON, Turn OFF time vs. LED forward current
ton, toff - IF

Continuous load current vs.
Ambient temperature
Io - Ta

On-state resistance vs.
Ambient temperature
Ron - Ta

Turn ON, Turn OFF time vs. Ambient temperature
ton, toff - Ta

LED forward current vs. LED forward voltage

Trigger LED forward current vs. Ambient temperature

Current leakage vs.
Ambient temperature
I LEAK - Ta

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OmROn

OMRON ELECTRONIC COMPONENTS LLC
55 E. Commerce Drive, Suite B
Schaumburg, IL 60173

847-882-2288

OMRON ON-LINE

Global - http://www.omron.com
USA - http://www.components.omron.com

