MOS FET RELAYS G3VM-21LR10

SSOP Package MOS FET Relay with Low Leakage Current, Output Capacitance and ON Resistance ($C \times R = 2.4 \text{ pF} \cdot \Omega$) in a 20-V Load Voltage Model.

- Output capacitance of 0.8 pF (typical) allows high frequency applications.
- Leakage current of 0.2 nA max. (10 pA typ.) when relay is open
- Turn-on time = 0.026 ms (typ.), turn-off time = 0.045 ms (typ.)
- RoHS compliant

■ Application Examples

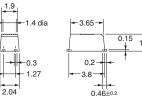
- Semiconductor inspection tools
- Measurement devices and Data loggers
- Broadband systems

Note: The actual product is marked differently from the image shown here

■ List of Models

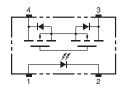
Contact form	Terminals	Load voltage (peak value)	Model	Number per tape
SPST-NO	Surface-mounting	20 VAC	G3VM-21LR10	
	terminals		G3VM-21LR10(TR05)	500
			G3VM-21LR10(TR)	1,500

■ Dimensions


Note: All units are in millimeters unless otherwise indicated.

G3VM-21LR10

Note: The actual product is marked differently from the image shown here.



Note: A tolerance of ± 0.1 mm applies to all dimensions unless otherwise specified.

Weight: 0.03 g

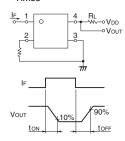
■ Terminal Arrangement/Internal Connections (Top View)

G3VM-21LR10

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-21LR10

■ Absolute Maximum Ratings (Ta = 25°C)

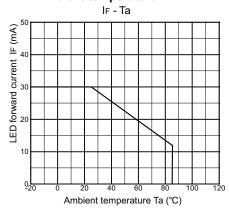

Item		Symbol	Rating	Unit	Measurement Conditions	
Input	LED forward current	I _F	30	mA		Note
	LED forward current reduction rate	Δ I _F /°C	-0.3	mA/°C	$T_a \ge 25^{\circ}C$	
	LED reverse voltage	V _R	5	V		
	Connection temperature	T _j	125	°C		
Output	Load voltage (AC peak/DC)	V_{OFF}	20	٧		
	Continuous load current	Io	200	mA		
	ON current reduction rate	Δ I _{ON} /°C	-2.0	mA/°C	$T_a \ge 25^{\circ}C$	
	Connection temperature	T _j	125	°C		
	ic strength between input and See note 1.)	V _{I-O}	1,500	V_{rms}	AC for 1 min	
Ambien	t operating temperature	T _a	-20 to +85	°C	With no icing or condensation	
Storage	temperature	T _{stg}	-40 to +125	°C	With no icing or condensation	
Solderin	ng temperature		260	°C	10 s	

1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

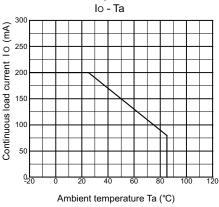
■ Electrical Characteristics (Ta = 25°C)

	Item	Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V _F	1.15	1.35	1.45	V	I _F = 5 mA
	Reverse current	I _R			10	μА	V _R = 5 V
	Capacity between terminals	C _T		70		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}			3	mA	I _O = 100 mA
Output	Maximum resistance with output ON	R _{ON}		3	5	Ω	I _F = 5 mA, I _O = 200 mA, t < 1 s
	Current leakage when the relay is open	I _{LEAK}		10	200	pA	$V_{OFF} = 20 \text{ V}, T_a = 25^{\circ}\text{C}$
	Capacity between terminals	C _{OFF}		0.8	1.1	pF	V = 0, f = 100 MHz
Capacity between I/O terminals		C _{I-O}		0.3		pF	f = 1 MHz, V _s = 0 V
Insulation resistance between I/O terminals		R _{I-O}	1,000			ΜΩ	$\begin{aligned} &V_{\text{I-O}} = 500 \text{ VDC}, \\ &R_{\text{oH}} \leq 60\% \end{aligned}$
Turn-ON time		t _{ON}		0.026	0.2	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$
Turn-OFF time		t _{OFF}		0.045	0.2	ms	V _{DD} = 10 V (See note 2.)

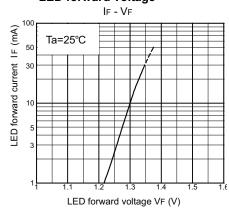
te: 2. Turn-ON and Turn-OFF Times

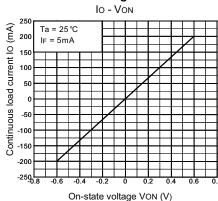

■ Recommended Operating Conditions

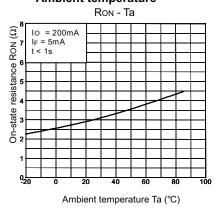
Use the G3VM under the following conditions so that the Relay will operate properly.

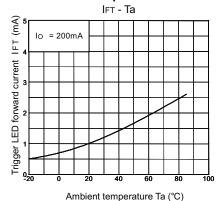

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			20	V
Operating LED forward current	I _F			20	mA
Continuous load current (AC peak/DC)	Io			200	mA
Operating temperature	T _a	25		60	°C

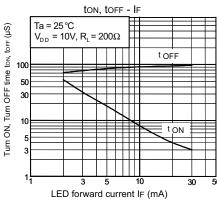
■ Engineering Data

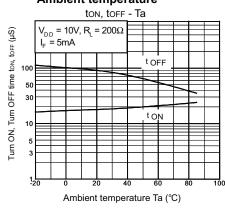

LED forward current vs. Ambient temperature


Continuous load current vs. Ambient temperature


LED forward current vs. LED forward voltage


Continuous load current vs. On-state voltage


On-state resistance vs. Ambient temperature


Trigger LED forward current vs. Ambient temperature

Turn ON, Turn OFF time vs. LED forward current

Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Ambient temperature

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

OMRON ELECTRONIC COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Specifications subject to change without notice Printed in USA