MOS FET Relays G3VM-601G

Ultrasensitive MOS FET Relays in 600 V Load series for electric power saving.

- 4-pin SOP package now included in the 600 V load series.
- Trigger LED forward current of 1 mA (maximum) facilitates power saving designs and prolonged battery life.
- · Continuous load current of 90 mA.
- RoHS Compliant

■ Application Examples

- Broadband systems and Measurement devices
- Security systems and Industrial equipment
- Battery powered equipment and Amusement machines

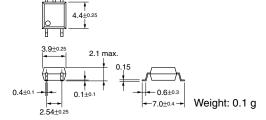
<u>NEW</u>

Note: The actual product is marked differently from the image shown here

■ List of Models

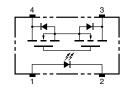
Contact form	Terminals	Load voltage (peak value) (See the note.)	Model	Number per stick	Number per tape
SPST-NO	Surface-mounting ter-	600 V	G3VM-601G	100	
	minals		G3VM-601G(TR)		2,500

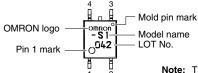
Note: The AC peak and DC value are given for the load voltage.


■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

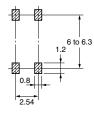
G3VM-601G




Note: The actual product is marked differently from the image shown here.

■ Terminal Arrangement/Internal Connections (Top View)

G3VM-601G

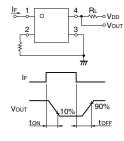


Note: The actual product is marked differently from the image shown here.

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-601G

■ Absolute Maximum Ratings $(T_a = 25^{\circ}C)$

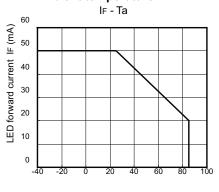

Item		Symbol	Rating	Unit	Measurement Conditions	
Input	nput LED forward current		50	mA		Note
	Repetitive peak LED forward current	I _{FP}	1	Α	100 μs pulses, 100 pps	
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$	
	LED reverse voltage	V_R	5	٧		Î
	Connection temperature	T _j	125	°C		İ
Output	Load voltage (AC peak/DC)	V_{OFF}	600	٧		
	Continuous load current (AC peak/DC)	Io	90	mA		
	ON current reduction rate	Δ I _O /°C	-0.9	mA/°C	$T_a \ge 25^{\circ}C$	
	ric strength between input and (See note 1.)	V _{I-O}	1,500	V _{rms}	AC for 1 min	
Operati	ng temperature	T _a	-40 to +85	°C	With no icing or condensation	
Storage temperature		T _{stg}	-55 to +125	°C	With no icing or condensation	
Soldering temperature (10 s)			260	°C	10 s	

 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side

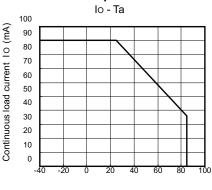
■ Electrical Characteristics ($T_a = 25$ °C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA
	Reverse current	I _R			10	μА	V _R = 5 V
	Capacity between terminals	C _T		30		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}		0.4	1	mA	I _O = 90 mA
Output	Maximum resistance with output ON	R _{ON}		45	60	Ω	I _F = 2 mA, I _O = 90 mA
	Current leakage when the relay is open	I _{LEAK}		0.001	1.0	μΑ	V _{OFF} = 600 V
	Capacity between terminals	C _{OFF}		75		pF	V = 0, f = 1MHz
Capacit	ty between I/O terminals	C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V
Insulation resistance		R _{I-O}	1,000			ΜΩ	$\begin{aligned} &V_{I\text{-O}} = 500 \text{ VDC}, \\ &R_{\text{oH}} \leq 60\% \end{aligned}$
Turn-ON time		t _{ON}		2	8	ms	$I_F = 2 \text{ mA}, R_L = 200 \Omega,$
Turn-OFF time		t _{OFF}		0.5	3	ms	V _{DD} = 10 V (See note 2.)

Note: 2. Turn-ON and Turn-OFF Times

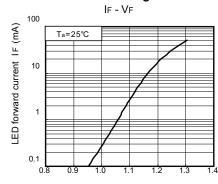

■ Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.


Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}			480	V
Operating LED forward current	I _F		2	25	mA
Continuous load current (AC peak/DC)	Io			70	mA
Operating temperature	Ta	– 20		65	°C

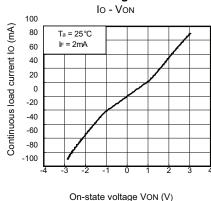
■ Engineering Data

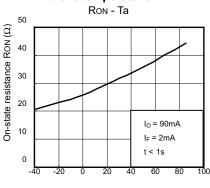
LED forward current vs. Ambient temperature



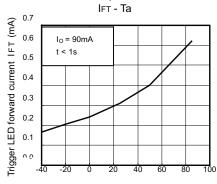
Continuous load current vs. Ambient temperature

Ambient temperature Ta (°C)

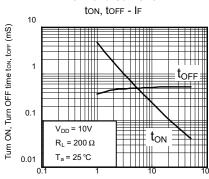

LED forward current vs. LED forward voltage


LED forward voltage VF (V)

Continuous load current vs. On-state voltage

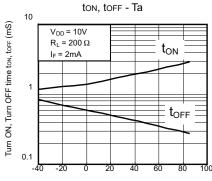

Ambient temperature Ta (°C)

On-state resistance vs.
Ambient temperature

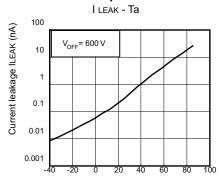


Trigger LED forward current vs. Ambient temperature

Ambient temperature Ta (°C)


Turn ON, Turn OFF time vs. LED forward current

LED forward current IF (mA)


Turn ON, Turn OFF time vs. Ambient temperature

Ambient temperature Ta (°C)

Ambient temperature Ta (°C)

Current leakage vs.
Ambient temperature

Ambient temperature Ta (°C)

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

OMRON ELECTRONIC COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Specifications subject to change without notice Printed in USA

MOS FET Relays **G3VM-601G**